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Abstract 
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1. Introduction 

A number of studies show that experts (e.g., institutional investors) are more 

likely to be subject to behavioral biases such as overconfidence, compared to 

inexperienced investors: for example, see De Long et al. (1991), Griffin and Tversky 

(1992) and Odean (1998). The effects of their behavioral biases on financial markets are 

likely to increase even more during the last decade as trading initiated by institutional 

investors have increased dramatically (Chan, Getmansky, Haas, and Lo, 2007; Lo, 2008; 

Hendershott, Jones, and Menkveld, 2011; Dichev, Huang, and Zhou, 2011). However, 

empirical studies in the effects of behavioral biases on financial markets are scarce due 

to the lack of well-defined implications or difficulties in finding the right variables that 

represent behavioral biases.  

In this study we investigate the effects of hedge fund managers’ overconfidence 

on the performance of equity market neutral trading strategies. If experts’ judgment and 

decision making is affected by their overconfidence, then the trading where these 

arbitrageurs predominate is also affected by their overconfidence. Arbitrageurs’ 

overconfidence would instigate more serious problems in the 2000s when their trading 

was active with fewer restrictions, e.g., lower transaction costs and more stocks 

available for short-sales, in comparison to the less arbitrage trading period of the 1970s 

and 1980s.
1
 The effects of overconfidence, boosted by the active trading in the 2000s, 

may cause excessive arbitrage trading: overconfident hedge fund managers without the 

knowledge of how much of arbitrage opportunities can be exploitable may take too 

much positions in these hedge portfolios. Arbitrage trading expected to improve market 

efficiency could create another anomaly due to arbitrageurs’ own overconfidence. This 

is what we investigate in this study. 

For our analysis based on the Bayesian framework as in DHS (1998), the two 

key variables, i.e., signals and overconfidence, are defined for each of the equity market 

neutral strategies as follows. First, signals that arbitrageurs receive consist of 

fundamental payoffs and noise as in the DHS (1998, 2001), Gervais and Odean (2001), 

and Epstein and Schneider (2008). The unobserved fundamental payoffs for arbitrageurs 

(DHS, 1998, 2001) or what arbitrageurs want to know (Epstein and Schneider, 2008) is 
                                                           
1
 Some of the strategies might have been known before the 1990s. However, the total size of hedge funds 

is relatively small before 1990: for example, the estimated hedge fund industry size is only $38 billion in 

1990, whereas the US equity market was $3.1 trillion in the same year.  
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represented by alphas (from CAPM) of their trading strategies. On the other hand, 

idiosyncratic errors of the strategies serve as noise.
2
 The sum of alpha (payoff) and 

idiosyncratic error (temporal profit) is equivalent to realized profit for arbitrageurs; 

alpha alone is an unbiased estimate of the realized profit if the temporal profit is not 

affected by behavioral biases. The decomposition of the two components also makes it 

possible to investigate other behavioral biases such as ambiguity aversion (Epstein and 

Schneider, 2008).  

Second, arbitrageurs’ overconfidence is about their own expertise on each of 

their trading strategies. We construct two such measures of overconfidence from the 

theories proposed in the literature: the probability of successful predictability in the past 

(Odean, 1998; Gervais and Odean, 2001), and the change in the past payoffs (Kyle and 

Wang, 1997; Gervais and Odean, 2001; Statman, Thorley, and Vorkink, 2006; Chuang 

and Lee, 2006). Other popular measures such as trading volume or volatility do not 

necessarily represent arbitrageurs’ overconfidence although they have been used to 

estimate overall levels of overconfidence in the literature (DHS, 1998, 2001; Chuang 

and Lee, 2006; Barone-Adesi, Mancini, Shefrin, 2013).  

Fifteen popular equity market neutral hedge portfolios are formed with the 

equities that hedge fund managers are likely to include in their universe. Our empirical 

results with the signal and overconfidence of each of these fifteen portfolios can be 

summarized as follows. First, we find clear evidence of overconfidence in the equity 

market neutral trading strategies in the 2000s when arbitrage trading is active. The 

positive effects of overconfidence on the temporal profits of equity market neutral 

portfolios are far stronger in the 2000s than in the 1970s and 1980s. When arbitrageurs 

become overconfident of the profitability of hedge portfolios, they attempt to exploit the 

opportunities too much by increasing their positions, which in turn positively affects the 

temporal profits. However, contrary to the previous studies in the literature (Odean, 

1998; DHS, 1998, 2001; Gervais and Odean, 2001; Chuang and Lee, 2006), we do not 

find evidence that arbitrageurs’ overconfidence affects trading volume or volatility of 

                                                           
2
 In most previous empirical studies, trading volume has been used as proxy for private information 

because it should increase on private information, not on public information (Kyle, 1985; Campbell, 

Grossman, and Wang, 1993; Chuang and Lee, 2006). However, trading volume may also increase on 

public information when investors interpret public information heterogeneously (Kandel and Pearson, 

1995). The obscurity of trading volume as private information can be avoided by identifying the 

fundamental payoffs and noise.  
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the equity market neutral hedge portfolios. The results can be explained by the different 

roles of arbitrageurs in financial markets: we focus on how the zero investment hedge 

portfolios are affected by arbitrageurs’ overconfidence whereas other studies investigate 

how asset prices are initially distorted by traders’ overconfidence (DHS, 1998, 2001; 

Gervais and Odean, 2001; Chuang and Lee, 2006). 

Second, contrary to the expectation in the theoretical models, e.g., DHS (1998) 

and Odean (1998), the effects of overconfidence on equity market neutral portfolios are 

not subsequently reversed. The main reason for this unexpected result is periodic 

rebalances of these portfolios together with changes in the universe. When the universe 

is updated annually as in this study for new or delisted equities or when the top and 

bottom portfolios are rebalanced on a monthly or annual basis, the hedge portfolios do 

not necessarily include the same individual equities over time. Therefore, although the 

effects of overconfidence on individual equities are subsequently reversed (e.g., De 

Bondt and Thaler, 1985, 1987; DHS, 1998; Chuang and Lee, 2006), the effects of 

overconfidence on the performance of hedge portfolios appear to be permanent rather 

than temporal to arbitrageurs. 

Third, strong evidence of overconfidence does not suggest that arbitrageurs are 

not ambiguity averse. Contrary to the experimental results of Brenner, Izhakian, and 

Sade (2011), we find evidence of ambiguity aversion in these experts: positive (negative) 

signals are more weighted when confidence is low (high) than when confidence is high 

(low). When the signs of signals are not consistent with their confidence levels, 

arbitrageurs perceive these signals imprecise and thus respond more to these signals. As 

argued by Epstein and Schneider (2008), overconfidence and ambiguity aversion are not 

mutually exclusive.  

Finally and more importantly, arbitrage trading was pervasive in the 2000s but 

it has not eroded away the profit opportunities of the hedge portfolios. Our out-of-

sample forecasting tests indicate that alphas of the equity market neutral hedge 

portfolios decreased in the 2000s as reported by Chan, Getmansky, Haas, and Lo (2007) 

and Lo (2008), but the average alphas were still greater than 0.5% per month, regardless 

of forecasting methods. On the other hand, when the equity market neutral hedge 

portfolios are sorted according to arbitrageurs’ overconfidence levels on these hedge 

portfolios, the difference in temporal profits between high and low overconfidence-
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sorted hedge portfolios was on average 9.6% per year in the 2000s, which is statistically 

and economically significant. Moreover, these anomalous profits increased from 4.5% 

per year in the 1970s and 1980s. These results suggest that arbitrage opportunities are 

excessively exploited by overconfident investors despite the cost or risk of arbitrage 

trading (Barberis and Thaler, 2005; Shleifer and Vishny, 1997).  

The effects of overconfidence on trading profits are predicted differently in the 

literature: the models of DHS (1998, 2001) and Gervais and Odean (2001) suggest that 

overconfident traders have lower gains on average, whereas Kyle and Wang (1997) 

argue that a higher profit is possible. Our results are consistent with Kyle and Wang 

(1997) in the sense that overconfident arbitrageurs can make higher profits, but with a 

different reason: overconfidence creates anomalous profit opportunities that are not 

reversed subsequently. Arbitrage trading expected to exploit mispricing and thus 

improve market efficiency creates another anomaly due to arbitrageurs’ own 

overconfidence.  

Our study differs from previous studies in several ways. We investigate if the 

performance of equity market neutral trading strategies is affected by arbitrageurs’ 

behavioral biases, given that these anomalies exist and are exploited by profit seeking 

arbitrageurs. We do not intend to explain the anomalies of various equity market neutral 

trading strategies using investors’ behavioral biases as many previous studies do.  

We investigate multiple equity market neutral trading strategies to investigate 

the effects of the behavioral biases of arbitrageurs on cross-sectional asset prices. Other 

empirical studies investigate the effects of overconfidence on trading volume and 

volatility (Statman, Thorley, and Vorkink, 2006; Darrat, Zhong, and Cheng, 2007; 

Chuang and Lee, 2006) as well as diversification (Goetzmann and Kumar, 2008; Merkle, 

2013), or try to explain the premia of various hedge portfolios using behavioral biases 

(Lakonishok, Shleifer, and Vishny, 1994; DHS, 1998, 2001). Our study differs from 

those of fund flows by performance-sensitive investors (Shleifer and Vishny, 1997; 

Frazzini and Lamont, 2008) because we focus on the behavioral biases of market 

experts. 

Although this paper is closely related with studies in the effects of sentiment on 

asset prices (Baker and Wurgler, 2006), we focus on overconfidence of market experts 

rather than market-wide sentiment. In order to do so, we form hedge portfolios using 
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liquid and shortable equities that could be included in the universe of hedge fund 

managers, and thus our results are not directly comparable with those of Stambaugh, Yu, 

and Yuan (2011). Moreover, both sentiment and overconfidence are context specific: 

overconfidence in this study is defined with respect to experts’ expertise (Griffin and 

Tversky, 1992) whereas sentiment represents market participants’ expectations relative 

to fundamentals. With this definition we show that expert’s overconfidence matters in 

the equity market neutral trading strategies but sentiment does not. 

This paper is organized as follows. In the following section, we describe the 

basic setting used in this study, and then propose the hypotheses for overconfidence, 

ambiguity and biased self-attribution. In section 3, we explain how we decompose 

hedge portfolio returns into alpha, beta and idiosyncratic error in the conditional CAPM. 

In the empirical tests, from sections 4 and 5, we first explain how hedge portfolios are 

constructed and then report the empirical results for overconfidence, ambiguity and 

biased self-attribution. We then show in section 6 the performance of the hedge 

portfolios in out-of-sample forecasting and suggest consequences of excessive arbitrage 

trading. Section 7 offers the conclusions. 

 

2. Implication of Overconfidence and Ambiguity Bias on Arbitrage Trading 

 

Arbitrageurs’ behavioral biases need to be investigated with care because 

signals of arbitrage trading are not necessarily the same as those of individual assets. 

The signals that arbitrageurs receive for their arbitrage trading strategies are rather 

restricted due to the confidentiality of the hedge fund industry. Moreover, arbitrageurs’ 

overconfidence is not likely to be measured in the same way as that of the other traders 

in the market, because arbitrageurs trade against price distortion created by other traders’ 

anomalous trading. 

We first explain the return process for hedge portfolios, and then describe 

signals that arbitrageurs receive and two measures of overconfidence. A series of 

hypotheses for the effects of behavioral biases on the performance of equity market 

neutral trading strategies follow. 

 

2.1 Return process of hedge portfolios 
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Assume that a hedge portfolio p is neutral to the market by hedging out the 

systematic risk.
3
 Its return at time t can be presented as 

   𝑟𝑝𝑡=𝛼𝑝𝑡 + 𝜂𝑝𝑡,      (1) 

where 𝛼𝑝𝑡 is the payoff that arbitrageurs try to optimize by constructing the hedge 

portfolio, and 𝜂𝑝𝑡 = 𝜎𝑝𝑡𝜀𝑝𝑡 represents an idiosyncratic shock and 𝜀𝑝𝑡~𝑁(0,1). Alpha 

follows a stochastic process as in Epstein and Schneider (2008):
 4

  

  𝛼𝑝𝑡 = 𝜇𝑝 + 𝜙𝑝(𝛼𝑝𝑡−1 − 𝜇𝑝) + 𝜖𝑝𝑡,    (2) 

where 𝜇𝑝 = 𝐸(𝛼𝑝𝑡)  is the unconditional (long-run) expected return of the hedge 

portfolio, 𝜙𝑝  measures the persistence of alpha, and 𝜖𝑝𝑡  follows 𝑁(0, 𝜎𝜖𝑝
2 ).  The 

idiosyncratic volatility, 𝜎𝑝𝑡, is assumed to follow a stochastic volatility process: 

ln(𝜎𝑝𝑡
2 ) = 𝛾0 + 𝛾1ln(𝜎𝑝𝑡−1

2 ) + 𝜐𝑝𝜎𝑡,    (3) 

where 𝜐𝑝𝜎𝑡~𝑁(0, 𝜎𝑝𝜎
2 ). The volatility process models the time-varying uncertainty of 

hedge portfolio returns.
 5

 As commonly assumed in the theoretical models (DHS, 

2001), 𝛼𝑝𝑡+1 (or 𝜖𝑝𝑡+1) and 𝜂𝑝𝑡 are uncorrelated. 

 

2.2 Signals of hedge portfolios 

A noisy signal at time t, 𝑠𝑝𝑡 , received by arbitrageurs consists of future 

innovation in the payoff at t+1 and noise at t:  

𝑠𝑝𝑡 = 𝜖𝑝𝑡+1 + 𝜂𝑝𝑡,      (4) 

which is conditionally independent of 𝛼𝑝𝑡 as in Epstein and Schneider (2008). This 

assumption about the noisy signal reflects the practice in hedge funds, where signals 

come, in most cases, from the past performance of their own trading strategies rather 

than exogenously, mainly due to their confidentiality. Therefore, as in Gervais and 

Odean (2001), arbitrageurs learn from the performance of their past trading.  

                                                           
3
 Simple long-short hedge portfolios are not likely to be market neutral in practice; however, the market 

risk can be hedged out by taking positions in the market portfolio.  
4
 Alphas are often explained in regime switching models which have an advantage in the identification of 

sudden change points in alphas or other parameters. For example, see Perez-Quiros and Timmermann 

(2000), Guidolin and Timmermann (2008), Gulen, Xing, and Zhang (2011), and Hwang and Rubesam 

(2013). In general, the change points are infrequent and alphas are highly persistent. 
5
 Note that we assume 𝜖𝑝𝑡 to be homoskedastic for simplicity. In a complicated model, where the 

innovation of alpha (𝜖𝑝𝑡+1) is also heteroskesdastic, we would have a similar result because it is the ratio 

of 𝜎𝑝𝜎
2  to 𝜎𝜖𝑝

2  that matters. 
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For hedge fund managers, the alpha at time t+1 (𝛼𝑝𝑡+1 ) represents the 

fundamental payoff for their trading strategies (DHS, 1998, 2001; Gervais and Odean, 

2001).
6
 The future realized return (𝑟𝑝𝑡+1) neither represents the ex ante payoff nor the 

one that these investors would like to learn about (Epstein and Schneider, 2008). Hedge 

fund managers would seek a significant positive alpha, because it represents sustainable 

payoff for their trading strategies and also a future source of profits due to its high level 

of persistence.  

The idiosyncratic shock 𝜂𝑝𝑡 represents noise for the trading strategy because a 

fortuitous positive realized return driven by 𝜂𝑝𝑡 would not attract the interests of the 

experts who seek viable profit opportunities in the future. As in Grossman and Stiglitz 

(1980), Kyle (1985), and DHS (1998), noise is defined as the variability of realized 

profits from trading, which is not related to alpha. The volatility, σpt, which we refer to 

as ‘noise volatility’, also represents the quality of information as in Epstein and 

Schneider (2008): an asset with large noise volatility needs to be compensated with 

higher returns because investors try to avoid ambiguity of the low quality information of 

that asset. In this study, rpt+1 and ηpt+1 are referred to as realized profit and temporal 

profit, respectively, in order to differentiate them from the payoff (alpha).  

 

2.3 Overconfidence of arbitrageurs 

It is well documented in psychology and finance that experts are more 

overconfident than novice. Theories and models that these experts develop for their 

trading strategies would make them even more overconfident (De Long et al., 1991; 

Griffin and Tversky, 1992; Odean, 1998). However, there is no definite answer to the 

question of how to measure overconfidence.  

Overconfidence has been measured in various ways in different contexts. For 

example, the timing of option exercises is used to identify overconfidence of CEOs 

(Malmendier and Tate, 2005). Others use trading volume (Chuang and Lee, 2006), 

profits (Gervais and Odean, 2001; Statman, Thorley, Vorkink, 2006; Chuang and Lee, 

2006), psychological profile (Grinblatt and Keloharju, 2009), survey data (Deaves, 

                                                           
6
 The shock on the payoff at time t+1, 𝜖𝑝𝑡+1, together with 𝜇𝑝 + 𝜙𝑝(𝛼𝑝𝑡 − 𝜇𝑝), provides the full 

information for 𝛼𝑝𝑡+1. 
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Lüders, and Schröder, 2010; Merkle, 2013), or bias in expected volatility of returns 

(Barone-Adesi, Mancini, Shefrin, 2013). These are context-specific and may not be 

appropriate to measure overconfidence of arbitrageurs for each of their trading 

strategies. 

Theoretically overconfidence increases upon signals that confirm traders’ prior 

belief (DHS, 1998) or successful predictions in the past (Gervais and Odean, 1998). We 

propose two such overconfidence measures. The first overconfidence measure is 

calculated on odds of success and failure of trading strategies as in Gervais and Odean 

(2001). According to Odean (1998) and Gervais and Odean (2001), an investor’s 

overconfidence grows with the probability of successful predictability in the past or 

favorable feedback from gains: 

𝑐𝑝𝑡
𝑝 =

1

12
∑ 𝐼𝛼𝑝𝑡−ℎ

+
11
ℎ=0 , 

where 𝐼𝛼𝑝𝑡+ = 1  when 𝛼𝑝𝑡 ≥ 𝜇𝑝 + 𝜙𝑝(𝛼𝑝𝑡−1 − 𝜇𝑝) , and zero otherwise. The prior 

𝜇𝑝 + 𝜙𝑝(𝛼𝑝𝑡−1 − 𝜇𝑝) is a predictor for 𝛼𝑝𝑡 free from behavioral biases and thus, 𝑐𝑝𝑡
𝑝

 

measures the successful predictions in the past. The second overconfidence measure is 

constructed on past profits as in Gervais and Odean (2001), Statman, Thorley, Vorkink 

(2006), and Chuang and Lee (2006). If confidence increases when past payoffs increase, 

we can use the changes in alpha over the past 12 months as follows: 

𝑐𝑝𝑡
𝛼 =

1

12
∑ ∆𝛼𝑝𝑡−ℎ
11
ℎ=0 .  

These overconfidence measures are calculated with alphas. Temporal profits are 

not appropriate for measuring confidence. They may be affected by other transitory 

biases, for example, fund flows by performance-chasing investors (Shleifer and Vishny, 

1997). On the other hand, alpha is less likely to be affected by these biases, and a 

significant increase in alpha would boost overconfidence of arbitrageurs on their trading 

strategies. Nonetheless, our overconfidence measures may be confused with 

profitability represented by the level of alpha, and thus we use alpha as a control 

variable.
7
 

We investigate if other overconfidence measures such as trading volume and 

volatility (Chuang and Lee, 2006; Goetzmann and Kumar, 2008) can represent 

                                                           
7
 See section 5. We find that the presence of alpha does not change our results. 
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arbitrageurs’ overconfidence. However, they may not necessarily increase with 

arbitrageurs’ overconfidence, because they are also under influence of other traders in 

the market (Statman, Thorley, Vorkink, 2006; Chuang and Lee, 2006). For example, 

when a profitable arbitrage opportunity initially created by other traders in the market is 

exploited by arbitrageurs, arbitrageurs’ overconfidence alone does not necessarily 

increase the trading volume and volatility of the hedge portfolio. A detailed explanation 

together with empirical results follows in subsection 5.2. The bottom line is that 

volatility or trading volume is not a proper measure of arbitrageurs’ overconfidence.  

In all cases, we assume that arbitrageurs use the past 12-month data to engender 

overconfidence in order to reflect the dynamic trading of hedge funds. We have used 

longer periods, but the results do not change our story. These two overconfidence 

measures are standardized to have zero mean and unit variance. 

 

2.4 Hypotheses on the Effects of Behavioral Biases on Hedge Portfolios 

When posterior means of trading strategies are upward biased as in DHS (1998, 

2001), arbitrageurs tend to increase their investment (i.e., long and short positions) in 

the strategies in order to exploit these profit opportunities. An increase in portfolio 

positions affects equity prices (Wermers, 2004; Coval and Stafford, 2007; Frazzini and 

Lamont, 2008), such that the performance of these strategies may appear to be improved. 

These effects, however, are not likely to be permanent (DHS, 1998, 2001; Gervais and 

Odean, 2001; Epstein and Schneider, 2008), although they may be persistent: the 

behavioral biases are more likely to affect temporal profits than fundamental payoffs 

(alphas).
8
  

Therefore, using signal (𝑠𝑝𝑡) and overconfidence (𝑐𝑝𝑡), we propose the testable 

hypotheses as follows.  

 

Hypothesis 1: Overconfidence positively affects temporal profits of arbitrage trading 

strategies. 

As predicted by many previous studies, if overconfidence affects equity market 

neutral trading strategies, we have  

                                                           
8
 It is likely that behavioral biases affect alphas. However, the effects of behavioral biases on temporal 

profits are far larger than those on alphas. The effects are compared later in the empirical results.   
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𝜂𝑝𝑡
𝑏 = 𝛾𝜂𝑐𝑝𝑡 + 𝜂𝑝𝑡,       (5) 

where 𝛾𝜂 > 0 and superscript 𝑏 indicates that the temporal profits are biased because 

of overconfidence. Overconfident arbitrageurs would increase their long and short 

positions because of the upward bias in the posterior expectation of the hedge portfolio 

return, which in turn could temporally affect the performance of the hedge portfolio. 

 

Hypothesis 2: Positive signals affect arbitrageurs’ confidence more than negative 

signals. 

Overconfidence appears in an asymmetric form ‒ it increases when investors’ 

beliefs are confirmed by signals (Lord, Ross, and Lepper, 1979; Nisbett and Ross, 1980; 

Fiske and Taylor, 1991; DHS, 1998; Gervais and Odean, 2001), but does not decrease 

commensurately upon signals that contradict their beliefs. In order to test the asymmetry 

to positive and negative signals, we have the following equation:   

𝑐𝑝𝑡 = 𝛾𝑠𝑐
+𝑠𝑝𝑡𝐼𝑠𝑝𝑡+ + 𝛾𝑠𝑐

−𝑠𝑝𝑡(1 − 𝐼𝑠𝑝𝑡+ ) + 𝜁𝑐𝑡,    (6) 

where 𝐼𝑠𝑝𝑡+  is an indicator variable that equals one when 𝑠𝑝𝑡 ≥ 0 and zero otherwise. 

As trading strategies are perceived to be profitable, positive signals would increase 

arbitrageurs’ overconfidence more than negative signals, and thus 𝛾𝑠𝑐
+ > 𝛾𝑠𝑐

−  is 

expected.  

  

Hypothesis 3: Ambiguity-averse arbitrageurs react more strongly to unfavorable 

signals than to favorable signals when signals appear imprecise. 

According to Epstein and Schneider (2008), when the signals are ambiguous, 

these investors may respond more to unfavorable signals than to favorable signals 

because they tend to optimize under a worst-case scenario. For arbitrageurs, a signal 

may appear informative if it is consistent with their confidence, whereas a signal 

inconsistent with their confidence may be viewed as imprecise. In order to test 

arbitrageurs’ ambiguity aversion, we divide signals depending on arbitrageurs’ 

confidence levels and the signs of signals as follows:  

𝜂𝑝𝑡
𝑏 = 𝛾𝜂

++𝑠𝑝𝑡𝐼𝑐𝑝𝑡+ 𝐼𝑠𝑝𝑡+ + 𝛾𝜂
—𝑠𝑝𝑡 (1 − 𝐼𝑐𝑝𝑡+ ) (1 − 𝐼𝑠𝑝𝑡+ ) 

+𝛾𝜂
−+𝑠𝑝𝑡 (1 − 𝐼𝑐𝑝𝑡+ ) 𝐼𝑠𝑝𝑡+ + 𝛾𝜂

+−𝑠𝑝𝑡𝐼𝑐𝑝𝑡+ (1 − 𝐼𝑠𝑝𝑡+ ) + 𝜂𝑝𝑡,  (7) 
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where 𝐼𝑠𝑝𝑡+  and 𝐼𝑐𝑝𝑡+  are indicator variables which equal one when 𝑠𝑝𝑡 ≥ 0  and 

𝑐𝑝𝑡 ≥ 0 , respectively, and zero otherwise. Here, signals with 𝐼𝑐𝑝𝑡+ 𝐼𝑠𝑝𝑡+  and (1 −

𝐼𝑐𝑝𝑡+ ) (1 − 𝐼𝑠𝑝𝑡+ )  are unambiguous whereas those with (1 − 𝐼𝑐𝑝𝑡+ ) 𝐼𝑠𝑝𝑡+  and 𝐼𝑐𝑝𝑡+ (1 −

𝐼𝑠𝑝𝑡+ ) are ambiguous.  

Our hypothesis is 𝛾𝜂
+− > 𝛾𝜂

−+ in equation (7) if ambiguity-averse arbitrageurs 

react more strongly to unfavorable signals than to favorable signals when signals appear 

imprecise. Moreover, ambiguity averse arbitrageurs would react to ambiguous signals 

more than to unambiguous signals, and thus we expect 𝛾𝜂
−+ > 𝛾𝜂

++ and 𝛾𝜂
+− > 𝛾𝜂

−−.  

Finally, by observing the reactions of temporal profits to signals and 

overconfidence, equation (7) allows us to investigate if arbitrageurs asymmetrically 

response to favorable and unfavorable signals after controlling ambiguity aversion. 

Only using unambiguous signals, evidence of 𝛾𝜂
++ > 𝛾𝜂

−−  can be interpreted as 

asymmetric response of overconfident investors to favorable signals.  

When asset prices increase (decrease) by overconfidence, these biases are not 

expected to be permanent, but are eventually corrected. Using simulations, DHS (1998) 

demonstrate that the price impact of short-term overreaction is reversed in the long-run. 

Baker and Wurgler (2006) show that the overreaction to sentiment is corrected slowly 

for certain types of stocks. However, it is unknown whether or not the effects of 

overconfidence on equity market neutral hedge portfolios are subsequently reversed, 

and if reversed, how quickly the reversals happen. This is an important issue for 

arbitrageurs because, as shown later in the empirical tests, the effects of overconfidence 

on the hedge portfolios are significant; therefore, the subsequent reversals may be 

critical in the performance of arbitrageurs. As in DHS (1998), we investigate the 

reversals using an autocorrelogram of temporal profits. For the impact of 

overconfidence and its reversals on the performance of arbitrageurs, we conduct a series 

of out-of-sample forecasts.  

 

3. Estimation of Alpha and Idiosyncratic Volatility Processes 

To test the hypotheses from the previous section, we need to obtain 𝛼𝑝𝑡 and 

𝜂𝑝𝑡 for equity market neutral hedge portfolios, both of which time-vary. We use the 

conditional CAPM, as in Ang and Chen (2007).  
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3.1 Conditional CAPM model 

We use the following conditional CAPM model to estimate 𝛼𝑝𝑡 and 𝜂𝑝𝑡: 

  𝑟𝑝𝑡
∗ = 𝛼𝑝𝑡 + 𝛽𝑝𝑡𝑟𝑚𝑡 + 𝜎𝑝𝑡𝜀𝑝𝑡,             (8) 

where 𝜀𝑝𝑡~𝑖. 𝑖. 𝑑.   𝑁(0,  1), 𝑟𝑝𝑡
∗  represents the raw return on hedge portfolio p at time t 

and 𝑟𝑚𝑡 is the excess market return. The time-varying parameters, 𝛼𝑝𝑡 and 𝛽𝑝𝑡, are 

portfolio p’s market risk-adjusted return and systematic risk at time t, respectively, and 

𝜎𝑝𝑡  is the idiosyncratic volatility. Note that equation (1) in the previous section, 

𝑟𝑝𝑡=𝛼𝑝𝑡 + 𝜂𝑝𝑡, can be obtained by excluding 𝛽𝑝𝑡𝑟𝑚𝑡 from equation (8). 

For the latent processes, 𝛼𝑝𝑡, 𝛽𝑝𝑡 and 𝜎𝑝𝑡, we use simple AR(1) processes, 

which minimize the problems associated with the choice of conditioning variables that 

may not represent the full set of state variables (Jostova and Philipov, 2005; Lewellen 

and Nagel, 2006): 

𝛼𝑝𝑡 = 𝑐𝑝𝛼 +𝜙𝑝𝛼𝛼𝑝𝑡−1 + ϵ𝑝𝛼𝑡,     (9) 

𝛽𝑝𝑡 = 𝑐𝑝𝛽 + 𝜙𝑝𝛽𝛽𝑝𝑡−1 + ϵ𝑝𝛽𝑡, 

ℎ𝑝𝑡 = 𝑐𝑝ℎ +𝜙𝑝ℎℎ𝑝𝑡−1 + 𝜐𝑝𝑡, 

where ℎ𝑝𝑡 = ln(𝜎𝑝𝑡
2 ) , (

ϵ𝑝𝛼𝑡
ϵ𝑝𝛽𝑡

)~𝑖. 𝑖. 𝑑.   𝑁((
0
0
) , (

𝜎𝛼
2 𝜎𝛼𝛽

𝜎𝛼𝛽 𝜎𝛽
2 )) , and 

𝜐𝑝𝑡~𝑖. 𝑖. 𝑑.   𝑁(0, 𝜎𝑝ℎ
2 ).  

 

3.2 Estimation method 

We use Bayesian methods (Markov Chain Monte Carlo (MCMC) methods) to 

estimate the three latent processes, i.e., 𝛼𝑝𝑡, 𝛽𝑝𝑡 and ℎ𝑝𝑡. The classical maximum 

likelihood is not appropriate because it has many local maxima, some of which may be 

in the improbable parameter space. The Bayesian MCMC approach updates the 

parameters using standard conjugate draws, conditional on the simulated series of time-

varying parameters. In this section, we briefly explain the econometric techniques 

which we use to estimate the conditional CAPM. The detailed estimation procedure is 

described in Appendix A. 
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The elicitation of prior distribution is vital in the Bayesian estimation. Because 

our model allows all three parameters to time-vary, identification problems arise as in 

Ang and Chen (2007).
9
 In order to minimize these problems, we use informative priors 

for the three AR coefficients, i.e., 𝜙𝑝𝛼, 𝜙𝑝𝛽 and 𝜙𝑝ℎ, as explained in the following. 

For all the other parameters, diffuse priors are used.  

For the prior means of the AR parameters, we calculate the 12
th

 autocorrelations 

of 𝛼𝑝𝑡, 𝛽𝑝𝑡 and ℎ𝑝𝑡, the series of which are calculated from using 12-month rolling 

OLS, and then take their 12
th

 roots. We use a shorter window, i.e., 12 months, than that 

of Ang and Chen (2007), i.e., 60 months, because the estimates of the 60
th

 

autocorrelations are close to zero or even negative for some portfolios.
10

 As expected, 

in most cases, the prior means of 𝜙𝑝𝛼 and 𝜙𝑝𝛽 are close to 1, which is consistent with 

those suggested by the theory as well as by the empirical results (Gomes, Kogan, and 

Zhang, 2003; Ang and Chen, 2007).   

For the variances of AR parameters, we use the following relationship between 

the variance of the 12
th

 autocorrelation estimate and the variance of the first order 

autocorrelation: for example, for 𝜙𝑝𝛼 , var(𝜙𝑝𝛼) = var(𝜙12,𝑝𝛼)
1−𝜙𝑝𝛼

2

1−𝜙𝑝𝛼
24  under the 

assumption that 𝛼𝑝𝑡  follows the AR(1) process, where 𝜙𝑝𝛼  and 𝜙12,𝑝𝛼  are the 

autocorrelation and 12
th

 autocorrelation for 𝛼𝑝𝑡, respectively. The estimated values of 

var(𝜙𝑝𝛼) lie between 0.0012 and 0.0025.
11

 Considering the instability of the OLS 

estimates, we use twice of var(𝜙𝑝𝛼) as our prior variance. 

Finally, the prior values of 𝜙𝑝ℎ lie between 0.9 and 0.95, which are slightly 

lower than those of 𝜙𝑝𝛼 and 𝜙𝑝𝛽. However, these are higher than the value of 0.86, 

which Kim, Shephard, and Chib (1998) use as a prior mean for the estimation of 

stochastic volatility processes.      

                                                           
9
 Ang and Chen (2007) consider the time-variation in beta only. 

10
 The autocorrelations are downward biased due to the measurement error from using the estimates of 

𝛼𝑝𝑡, 𝛽𝑝𝑡 and ℎ𝑝𝑡. We correct the bias by subtracting the average variance of the measurement error from 

the variance of the estimated autocorrelations. Any prior value of 𝜙α and 𝜙β  larger than 0.99 is 

trimmed to 0.99 for the stationarity of 𝛼𝑝𝑡 and 𝛽𝑝𝑡.    
11

 These variances of the AR parameter are significantly larger than 0.003
2
, a figure which Ang and Chen 

(2007) use for the estimation of time-varying beta of the book-to-market portfolio return.  
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We run a Gibbs sampler for 20,000 iterations, the first 10,000 of which is 

discarded. After confirming convergence using the Geweke (1992) diagnostic test, we 

use the last 10,000 draws to compute the posterior statistics. 

 

4. Hedge Portfolios 

In this section, we examine the properties of various equity market neutral 

portfolios documented in the finance literature. We then present the dynamics of alphas 

of these hedge portfolios. For this purpose, we calculate a total number of fifteen equity 

market neutral portfolios for the robustness of our results.  

 

4.1 Data and the universe 

In order to create hedge portfolios, we use the monthly data file from the 

merged Center for Research in Security Prices (CRSP) ‒ Compustat database for 

common stocks listed on the New York Stock Exchange (NYSE), American Stock 

Exchange (AMEX) and NASDAQ. We exclude financial stocks (Standard Industrial 

Classification code from 6000 to 6999) because the accounting practice and variables of 

the financial sector are not compatible with those of the other sectors. Due to the 

restrictions on the various input variables in the 1960s, we calculate 492 monthly 

portfolio returns from July 1970 to June 2011 using data from 1967 to 2011. 

A delicate but an important issue in this study is to decide the universe, i.e., 

which stocks should be included to form hedge portfolios. As our purpose is to 

investigate arbitrageurs’ behavioral biases on equity market neutral hedge portfolios, 

our universe should resemble those of actively managed hedge funds in practice.
12

 We 

first select stocks as in the academic literature by excluding stocks whose prices are less 

than a certain level, i.e., $1, at the portfolio formation time, in order to avoid the 

extreme returns associated with microstructure biases and thin trading of penny stocks. 

These non-penny stocks should have past three years’ accounting as well as market 

                                                           
12

 The choice of the universe has significant impacts on the performance of hedge portfolios. For 

example, small stocks show higher returns in momentum (Jegadeesh and Titman, 2001) or asset growth 

(Cooper, Gulen, and Schill, 2008) than large stocks. Including these stocks would certainly improve the 

performance of these hedge portfolios; however, many small stocks are too illiquid to trade or are difficult 

to short. For the effects of short-sale constraints on asset pricing, see Duffie, Garleanu, and Pedersen 

(2002), Jones and Lamont (2002), Scheinkman and Xiong (2003), Nagel (2005), and Stambaugh, Yu, and 

Yuan (2012).  
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information which is required for the formation of hedge portfolios. This universe 

typically used in many empirical academic studies includes many stocks that hedge 

fund managers do not trade. In practice, the fund managers consider many other aspects, 

such as trading strategies, costs of trading, and inventories of the prime broker for short-

selling. However, these aspects can vary widely and are difficult to consider in this 

study. Instead, we shrink the universe so that it includes only liquid and shortable stocks, 

in addition to the above academic universe; more specifically, excluding stocks whose 

sizes (number of shares outstanding times share price) and monthly average turnovers 

(the number of shares traded divided by shares outstanding) for the past two years 

belong to the bottom 10%.  

At the first portfolio formation, June 1970, the number of stocks in the universe 

is 1,113, and the minimum size and past 24-month average turnover are $2.7 million 

and 2.5% per month, respectively. At the last formation, June 2010, the total number of 

stocks is 2,268, and the minimum size and turnover are $22.9 million and 19.6% per 

month, respectively. As in Dichev, Huang, and Zhou (2011), the trading volume has 

increased significantly since 1970.
13

  

 

4.2 Construction of hedge portfolios 

Depending on the rebalancing frequency, we have seven annually rebalanced 

portfolios formed on the annual accounting variables and eight monthly rebalanced 

portfolios formed on the quarterly accounting variables or daily and monthly market 

information. Ten equally weighted portfolios are formed for each trading strategy; then, 

a hedge portfolio is calculated by the difference between the highest and the lowest 

decile portfolios.
14

 The detailed explanations on the construction of hedge portfolios 

can be found in Appendix B. 

                                                           
13

 Our universe is not excessively small for moderate sized hedge funds. For a hedge fund which invests 

in market neutral strategies with an AUM of one hundred million dollars and a gross leverage of two (the 

sum of long and short exposure divided by AUM) (Ang, Gorovyy, and Inwegen, 2011), an equal 

investment weight on the top and bottom 10% of 2,000 stocks is equivalent to 0.5 million dollars in long 

or short positions in individual stocks. This means that the positions taken by a trading strategy would not 

be larger than 2.2% of market size at the end of the sample period even for the smallest firm (i.e., $22.9 

million) in the universe. 
14

 We also calculate quintile portfolios or tertile portfolios (top and bottom 30%), and use value weights 

for these portfolios. We find similar results to those we report with equally weighted decile portfolios. 

The results other than we report in this study are available upon request.     
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The seven annually rebalanced portfolios include accruals (Acc) (Sloan, 1996), 

asset growth (AG) (Cooper, Gulen, and Schill, 2008), book-to-market ratio (BEME) 

(Rosenberg, Reid and Lanstein, 1985; Fama and French, 1992, 1993), gross profitability 

(GP) (Novy-Marx, 2010), investment to assets (IA) (Chen and Zhang, 2010), net 

operating assets (NOA) (Hirshleifer, Hou, Teoh, and Zhang, 2004), and net stocks 

issues (NSI) (Fama and French, 2008). The eight monthly rebalanced portfolios are O-

score distress (Osc) (Ohlson, 1980), return on assets (ROA) (Chen and Zhang, 2010) 

and failure probability (FP) (Campbell, Hilscher, and Szilagyi, 2008), earnings surprises 

(ESur) (Chan, Jegadeesh, and Lakonishok, 1996), liquidity (Liq) (Amihud, 2002), size 

(ME) (Banz, 1980; Fama and French, 1992, 1993), momentum (Mom) (Jegadeesh and 

Titman, 1993, 2001), and idiosyncratic volatility (IVol) (Ang, Hodrick, Xing and Zhang, 

2006; George and Hwang, 2011).
15

 These hedge portfolios may represent risk or 

anomalies; further discussions on these hedge portfolios are beyond the scope of this 

study. 

The monthly rebalanced portfolios, i.e., Liq, ME, Mom, and IVol, are formed at 

the end of every month using the data of the previous months (skipping one month), and 

are held from three months from the formation month (six months for Mom). We skip 

one month in order to avoid any interference from a short-term reversal, as in Jegadeesh 

and Titman (2001). As these portfolios are formed every month, we have three 

portfolios overlapped at any time. Overlapping would contribute to the reduction of 

volatility and turnover that arises from the monthly rebalancing. The three overlapping 

portfolios are then averaged with equal weights in order to calculate the portfolio 

returns.
16

 For the other monthly rebalanced portfolios which use quarterly accounting 

variables, i.e., Osc, FP, ESur, and ROA, the holding period is one month and we do not 

form overlapping portfolios, as in Ohlson (1980), Campbell, Hilscher, and Szilagyi, 

(2008), and Chen and Zhang (2010). As in the previous studies, the monthly returns of 

these hedge portfolios are calculated by high minus low decile portfolios for BEME, GP, 

                                                           
15

 We have considered other hedge portfolios, such as co-skewness and co-kurtosis (Kraus and 

Litzenberger, 1976; Hwang and Satchell, 1999; Harvey and Siddique, 2000), and downside beta (Bawa 

and Lindenberg, 1977; Ang, Chen and Xing, 2006); yet, we do not report the results of these hedge 

portfolios because they are not popular trading strategies in practice.  
16

 We also used one- (no overlapping) and six-month holding periods. The results are similar to those 

with the three-month holding period. 
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Osc, ROA, FP, ESur, Liq, and Mom, whereas the others are calculated by low minus 

high decile portfolios.  

The average hedge portfolio returns are similar to those reported in the 

literature. For the entire sample period from July 1970 to June 2011, Acc, AG, BEME, 

IA, NOA, NSI, ROA, ESur, and Mom show positive average returns significant at the 5% 

level, ranging from 0.66% (NSI) to 1.09% per month (ESur). Other hedge portfolios 

also convey similar results to those of the previous studies. The two distress factors, Osc 

and FP, are not significant, whereas Chen and Zhang (2010) report negative average 

returns for these two hedge portfolios at the 5% significance level. The main difference 

is that they calculate these hedge portfolio returns at the formation month, whereas we 

calculate the returns following the formation. Liq is affected significantly by our choice 

of universe. By removing small and illiquid stocks, the illiquidity premium disappears. 

According to the results of the four sub-periods, i.e., the 1970s, 1980s, 1990s, and 2000s, 

the performance of hedge portfolios changes over time. The details of the performance 

of the fifteen portfolios can be found in Appendix C.  

 

4.3 Dynamics of time-varying parameters 

The estimated alphas, betas, and idiosyncratic volatilities for the fifteen hedge 

portfolios are summarized in Table 1. The average values of alphas are close to the 

unconditional OLS estimates reported in Table A1 (CAPM alpha) in the Appendix. The 

average values of betas and idiosyncratic volatilities are also similar to those of the 

unconditional estimates of the CAPM (not reported). The standard errors of average 

alphas are all very small and thus the average alphas are significant except for Liq and 

ME. In the following, we briefly discuss the dynamics of alphas of the fifteen hedge 

portfolios.
17

 

Alphas, betas, and idiosyncratic volatilities are highly persistent. For example, 

the AR coefficients on alphas and betas are on average 0.95. The persistence of alpha 

has an important implication for arbitrageurs: a trading strategy that performed well in 

                                                           
17

 As expected, beta changes over time. For example, as in Ang and Chen (2007), BEME beta decreases 

to -0.9 in the early 2000, and then increases to 0.4 in the early 2009. The substantial changes in beta 

indicate that the dynamics of alpha might be biased when the time-variation of beta is disregarded. In 

practice, for arbitrageurs who attempt to make their hedge portfolio market risk neutral, hedge portfolios 

whose betas are less persistent, e.g., Mom, might not be attractive, because risk hedging would be more 

difficult. Detailed results of betas can be obtained from the authors upon request. 
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the past is expected to work well in the near future. We estimate the half-lives of alphas 

ranging from 7 to 23 months from the AR coefficients of 0.91 to 0.97 (4 months for GP 

from its AR coefficient of 0.84). When large AR coefficients on alphas are considered 

together with relatively small variances of the error term ( ϵ𝑝𝛼𝑡 ), these large 

unconditional variances of alphas suggest that the dynamics of alphas are smooth, but 

vary widely over time. 

The performance of hedge portfolios can be better depicted by their cumulative 

realized profits and alphas. These cumulative realized profits and alphas are presented 

in log-scale under the assumption that the initial AUM is 100 with a gross leverage of 

two and that the realized profits are reinvested. Figure 1 indicates that one hedge 

portfolio, i.e., FP, shows a negative cumulative realized profit from July 1970 to June 

2011, and three other portfolios, i.e., IVol, Liq, and Osc, report cumulative realized 

profits close to zero.  

For many hedge portfolios, temporal profits (𝜂𝑝𝑡 ) significantly affect the 

performance of these arbitrage trading strategies. The alpha does not necessarily 

indicate a similar performance to its realized profit (𝑟𝑝𝑡=𝛼𝑝𝑡 + 𝜂𝑝𝑡). Only four hedge 

portfolios (Acc, IA, NSI, and Liq) demonstrate that the cumulative realized profits and 

alphas have similar trends. The other eleven portfolios show deviations over the entire 

sample period or during sub-periods. IVol, ME, and GP show a significant difference 

between their cumulative realized profits and their corresponding cumulative alphas 

from the beginning of the sample period. The well-known ME does not show any 

sizable cumulative alpha over the entire sample period; however, its realized profits are 

significantly positive in the 1970s (Brown, Kleidon, and Marsh, 1983). On the other 

hand, the cumulative realized profits of AG, NOA, Esur, Mom, Osc, ROA, and FP show 

significant deviations from their cumulative alphas from some points in the middle of 

the sample period; for example, the bust of the high-tech bubble in the early 2000s or 

the credit crisis in 2008 appear to affect the cumulative realized profits in a negative 

way in the late 1990s and 2007-2009 for AG, NOA, Mom, and ROA.  

 

5. Overconfidence and Ambiguity Aversion 

In this section, we test the hypotheses proposed in section 2 by focusing on two 

sub-periods, i.e., the 1970s and 1980s, and the 2000s. We first explain various control 
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variables that may affect the performance of the hedge portfolios. The results of least-

squares dummy variable models (dummy variables for the fifteen hedge portfolios) are 

reported for equations (5) to (7).  

 

5.1. Sentiment, fund flows, and other control variables 

In order to investigate the effects of arbitrageurs’ overconfidence on the 

performance of equity market neutral hedge portfolios, we use various control variables 

that could affect the performance of these portfolios. The control variables include 

sentiment, performance related fund flows, alphas, and other macroeconomic variables.  

Baker and Wurgler (2006) and Stambaugh, Yu, Yuan (2012) show that 

sentiment affects the performance of equity neutral trading strategies due to the 

valuation difficulties or arbitrage restrictions in certain equities. Although both 

sentiment and overconfidence represent behavioral biases, there is no clear distinction 

between the two. Recently, Barone-Adesi, Mancini, Shefrin (2013) argue that 

overconfidence together with excessive optimism is a driving force of sentiment.  

We regard sentiment as a market-wide bias in market participants’ expectations 

relative to fundamentals, whereas overconfidence is trading strategy specific bias in 

experts’ expertise (Griffin and Tversky, 1992). Market-wide sentiment can be measured 

by aggregating behavioral biases of experts as well as novice as in Barone-Adesi, 

Mancini, Shefrin (2013), but does not necessarily represent experts’ behavioral biases. 

We use several sentiment indices, i.e., Baker and Wurgler’s (2006) index, the Investors 

Intelligence sentiment index, the American Association of Individual Investors’ 

sentiment, and a component of the Index of Consumer Sentiment, Michigan University. 

Our results are robust to these sentiments and thus we report the results with the Baker 

and Wurgler’s index.  

The behavioral biases of arbitrageurs need to be differentiated from the price 

effects of fund flows initiated by performance-chasing investors (Shleifer and Vishny, 

1997; Shleifer and Vishny, 1997; Coval and Stafford, 2007; 

Jotikasthira, Lundblad, and Ramadorai, 2012). The literature on the effects of fund 

flows on asset prices suggests immediate effects of fund flows on the performance of 

arbitrage strategies, which are then reversed with a time lag: for example, the dumb 

money effects (Frazzini and Lamont, 2008; Akbas, Armstrong, Sorescu, and 
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Subrahmanyam, 2012) or liquidity driven reversals (Jotikasthira, Lundblad, and 

Ramadorai, 2012). These results suggest that the temporal profits of trading strategies 

may respond positively to the most recent performance by performance chasing 

investors, which is subsequently reversed.  

The relationship between fund flows and the performance of hedge funds may 

not be as clear as that of mutual funds. Changes in the long and short positions are 

possible without fund flows because hedge fund managers can take advantage of 

leverage (Ang, Gorovyy, and Inwegen, 2011). In this study we use alphas and past 

returns of hedge portfolios to control the effects of performance related fund flows on 

temporal profits. 

The first variable, alphas, is specific to trading strategies. As alphas represent 

profitability of trading strategies, arbitrageurs as well as investors would increase 

(decrease) their investments in trading strategies with high (low) alphas. Therefore, by 

including alphas as control variables, we can investigate the effects of overconfidence, 

i.e., the learning bias that changes dynamically with past success or failure (Gervais and 

Odean, 2001).  

The second variable is past returns of equity market neutral hedge portfolios, 

which we use for the reversals following good performance. Our preliminary tests show 

that temporal profits appear to be negatively affected by several months lagged 

performance. Thus, in order to control these reversal effects, we use the lagged past 

average return (LPAR) of the three months (the (t-3, t-5) window), 
1

3
∑ 𝑟𝑡−𝜏
5
𝜏=3 ,

 18
 

where 𝑟𝑡−𝜏 is the overall performance of the portfolio of equity market neutral hedge 

portfolios, i.e., 𝑟𝑡−𝜏 =
1

15
∑ 𝑟𝑝𝑡−𝜏
15
𝑝=1 .

19
 This reversal period is shorter than those of 

                                                           
18

 The lags are chosen on the following bases. First, if past performance of a trading strategy affects fund 

flows, which in turn affect the performance of the trading strategy, the return reversal would be observed 

with several month lags after the initial past performance of the strategy. For example, Akbas, Armstrong, 

Sorescu, and Subrahmanyam (2012) use the most recent two months for the effects of past performance 

on fund flows. In addition, the return reversals from the impact of fund flows appear a few months later in 

mutual funds (Frazzini and Lamont, 2008). Second, in the preliminary tests with pooled regressions, we 

find that hedge portfolio returns are negatively and significantly autocorrelated with the time lags of 3, 4, 

or 5 months. 
19

 The overall performance of equity market neutral trading strategies is used to control the fund flow 

effects. Performance-chasing investors are not assumed to identify specific equity market neutral hedge 

portfolios that perform better than others. They are more likely to follow certain types of hedge strategies 

(emerging market, event driven, long/sort equity, managed futures, etc.) which have performed well 

recently.  
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Frazzini and Lamont (2008) or Lou (2012), and is close to the 12 weeks in the emerging 

markets (Jotikasthira, Lundblad, and Ramadorai, 2012).  

The advantage of using alphas and the LPAR is that the price effects of 

performance related fund flows can be controlled when hedge fund flow data are not 

available, e.g., during the 1970s and 1980s, or when fund flows to each trading strategy 

are not known. For robustness we have used the LPAR∗ calculated with raw returns 

(𝑟𝑝𝑡−𝜏
∗ ) and found that the results are not different from those with the LPAR.    

Other control variables include one-month Treasury bill rate, the term spread 

(the difference between the US ten year and one year Treasury bond rate), the credit 

spread (the difference between Moody's Aaa and Baa rated corporate bonds), and the 

dividend yield of S&P500. In most cases, these variables are not significant and thus are 

not reported to conserve space. 

The correlation coefficients between the overconfidence measures, i.e., 𝑐𝑝𝑡
𝑝

s 

and 𝑐𝑝𝑡
𝛼 s, and the Baker and Wurgler’s index are summarized in Table 2. As expected, 

the overconfidence levels are not always positively cross-correlated. For example, the 

correlation coefficients calculated with 𝑐𝑝𝑡
𝑝

s in the lower triangular matrix in Table 2 

show that the overconfidence levels of some trading strategies, such as IVol, Mom, and 

ROA, tend to be negatively correlated with those of other trading strategies. Moreover, 

the sentiment index is not always positively correlated with the overconfidence levels, 

except in a few cases.  

These results show that overconfidence is specific for each of the equity market 

neutral trading strategies, and that market-wide sentiment does not necessarily indicate 

overconfidence in each of these trading strategies. Overconfidence is highly persistent 

as in the literature (Kyle and Wang, 1997; Hirshleifer and Luo, 2001): their 

autocorrelation coefficients range from 0.97 (Mom) to 0.99 (ESur).  

 

5.2. Overconfidence, trading volume, and volatility of hedge portfolios 

Previous studies show that overconfident investors trade more, which 

contributes to the volatility increase (Odean 1998; DHS, 1998; Gervais, Odean 2001; 

Chuang and Lee, 2006). However, these results for individual assets may not hold for 

equity market neutral portfolios. Trading volume of a hedge portfolio would increase 

with a heterogeneity interpretation of signals (Kandel and Pearson, 1995) between 
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arbitrageurs and other traders but not necessarily with arbitrageurs’ overconfidence, and 

volatility of a hedge portfolio may even decrease when overconfident arbitrageurs try to 

exploit its profit opportunity. In this subsection we investigate the relationship between 

our overconfidence measures, trading volume, and volatility of hedge portfolios. 

Changes in trading volume by overconfidence are measured as follows. When 

overconfident arbitrageurs trade aggressively, they trade the top and bottom decile 

portfolios rather than the middle portfolios. Therefore, we calculate turnover difference 

between the top and bottom decile portfolios and the middle two decile portfolios, and 

then divide it by the total turnover of the universe to minimize the impact of the sharp 

increase in trading volume during the last four decades (Dichev, Huang, Zhou, 2011).
 20

  

The effects of overconfidence on the trading volume and log-volatility of hedge 

portfolios are investigated using least-squares dummy variable models. For control 

variables we use the four macro-variables, LPAR, 𝛼𝑝𝑡, and sentiment index. Due to the 

contemporaneous relationship between trading volume and volatility (Karpoff, 1987; 

Ross, 1989, Chuang and Lee, 2006), contemporaneous log-volatility (ℎ𝑝𝑡) from the time 

varying CAPM and turnover difference are added as a control variable for the turnover 

difference and log-volatility, respectively.  

The results of pooled regressions in Table 3 do not support the notion that 

overconfidence increases trading volume or volatility of the hedge portfolios even in the 

last subsample period. Our results also show the weak contemporaneous relationship 

between trading volume and volatility: log-volatility increases trading volume in the 

second and third sample periods only, but trading volume does not affect volatility. We 

should have a stronger relationship between trading volume and volatility of hedge 

portfolios if both of them increase with overconfidence.  

Our results indicate that the relationships between overconfidence, trading 

volume and volatility in hedge portfolios are not the same as those in individual stocks 

(Chuang and Lee, 2006). Most previous studies focus on how asset prices are distorted 

by overconfidence in general (DHS, 1998, 2001; Gervais and Odean, 2001; Chuang and 

Lee, 2006), but not on how hedge portfolios are affected by arbitrageurs’ 
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 Turnover (trading volume divided by total shares outstanding) is used to minimize the effects from 

firm size and thus is consistent with trading activity of equally weighted hedge portfolios. For Nasdaq 

stocks, the turnover is scaled by two because of the double-counting of trading volume (Anderson and 

Dyl 2005). We also use turnover difference not scaled by two, and find that the results are not different. 
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overconfidence. If arbitrage trading is designed to exploit the profit opportunities that 

have been created by other traders in the market, arbitrageurs’ overconfidence may 

reduce rather than increase volatility. Our empirical results in the 2000s weakly support 

our interpretation. 

   

5.3. Overconfidence, self-attribution bias, and reversals 

The evidence of overconfidence is strong in equity market neutral trading 

strategies. Table 4 presents the results of Equation (5) (Hypothesis 1), where 

coefficients of two overconfidence measures are positive and significant in the presence 

of the control variables.
21

 More importantly, the last row in panel A shows that the 

coefficients on overconfidence measures increase significantly in the 2000s: in the 

1970s and 1980s, when arbitrage trading was less popular, the effects of overconfidence 

are much weaker than those in the 2000s. The coefficients on the market-wide sentiment 

are not different from zero in all cases. 

The results in panel A are supported by those of long only and short only 

portfolios in panels B and C, respectively. Temporal profits of long only portfolios 

increase with overconfidence, whereas those of short only portfolios decrease with 

overconfidence. Interestingly, in the 1970s and 1980s, the temporal profits of short only 

portfolios are not much affected by overconfidence due to the unpopularity of or the 

restrictions of short-sale during the early sample period. It is in the 2000s when 

overconfidence affects both long only and short only portfolios in a similar way.  

However, we do not find conclusive evidence that arbitrageurs’ overconfidence 

asymmetrically responds to positive or negative signals. Table 5 presents the results of 

Equation (6) (Hypothesis 2). The pooled regression results in panel A of Table 5 do not 

support 𝛾𝑠𝑐
+ > 𝛾𝑠𝑐

− , in particular during the 2000s: the differences in the coefficients on 

positive and negative signals are not statistically different.  

Contrary to our expectation, the effects of overconfidence on equity market 

neutral portfolios are not subsequently reversed. Figure 2 shows the cumulative 

autoregressive coefficients on the AR(36) model for the three sub-periods. The 

cumulative coefficients tend to be negative, but none of the cumulative coefficients for 
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 In most cases of Tables 3 to 6, the likelihood ratio test rejects the null hypothesis that the fixed effects 

are redundant. However, the results of the Hausman test do not support the random effects.  
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the 36 months, i.e., -0.17, -0.33, -0.45, -0.36 for the entire period, the 1970s and 1980s, 

the 1990s, and the 2000s, respectively, are significant at the 5% level. We have tested 

more than 36 months, e.g., 48 and 60 months, but found no evidence of the reversals: 

the cumulative autoregressive coefficients tend to increase slightly after 36 months 

though the tendency is not statistically significant.  

Little evidence of subsequent reversals is not inconsistent with the theoretical 

model of DHS (1998), who demonstrate that the price impact of short-term overreaction 

is reversed in the long-run. As reasons for why the initial impact of overconfidence does 

not appear corrected, we suggest annual changes in the universe and periodic 

rebalancing of the hedge portfolios. When the universe is annually adjusted for delisted 

or new stocks, the hedge portfolios that are constructed with the equities in the new 

universe do not include the same equities over time. Moreover, the hedge portfolios are 

rebalanced on a monthly or annual basis. When the top and bottom decile portfolios are 

rebalanced, they do not necessarily include the same individual stocks in the portfolios. 

Therefore, to arbitrageurs, the initial impact does not appear to be subsequently reversed.  

Finally, our evidence of overconfidence holds after controlling the effects of 

market-wide sentiment and fund flows. The result that the coefficients on sentiment are 

not different from zero does not seem to support the empirical evidence of Stambaugh, 

Yu, and Yuan (2012) that sentiment affects the performance of equity neutral trading 

strategies due to short-sale restrictions.
22

 However, our equity neutral hedge portfolios 

are constructed with stocks that are less likely to suffer short-sale restrictions than those 

in Stambaugh, Yu, and Yuan (2012).  

The two performance-related variables show signs consistent with our 

expectation. The positive coefficients on 𝛼𝑝𝑡s support the notion that temporal profits 

of hedge portfolios increase with their alphas as arbitrageurs increase (decrease) their 

investments in trading strategies with high (low) alphas. The negative coefficients on 

LPAR support the notion that the effects of performance-chasing investors’ fund flows 

driven by past performance do have reversals three to five months later in the equity 

market neutral hedge portfolios. Despite these effects of performance related variables, 

however, the positive effects of arbitrageurs’ overconfidence on their trading strategies 
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 We also use raw returns rather than temporal profits in the pooled regression, but the coefficient on 

sentiment is not statistically significant (not reported). 
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subsist. In fact, we find that these positive effects hold regardless of these control 

variables (not reported).  

 

5.4. Ambiguity aversion and asymmetric response to signals 

The results of Equation (7) are presented in Table 6 (Hypothesis 3), which 

show evidence of ambiguity aversion in the fifteen hedge portfolios for the three sub-

periods. The pooled regression results show some evidence that arbitrageurs respond to 

more to negative signals under a worst-case scenario: the estimates of 𝛾𝜂
+− − 𝛾𝜂

−+ are 

positive and significant during the 1990s and all of them are positive regardless of 

sample periods. When responses to ambiguous and unambiguous signals are compared, 

responses to ambiguous signals are always significantly higher than those to 

unambiguous signals, i.e., 𝛾𝜂
−+ > 𝛾𝜂

++ for positive signals and 𝛾𝜂
+− > 𝛾𝜂

—
for negative 

signals. One notable result in the tests of ambiguity aversion is that the estimates of 

𝛾𝜂
−+ − 𝛾𝜂

++ and 𝛾𝜂
+− − 𝛾𝜂

−− become smaller in the 2000s than in the 1970s and 1980s. 

As the effects of overconfidence increase in the 2000s, those of ambiguity aversion tend 

to decreases, indicating a negative association between overconfidence and ambiguity 

aversion (Brenner, Izhakian, and Sade, 2011).    

However, we do not find conclusive evidence of asymmetric responses of 

temporal profits to positive and negative signals after controlling ambiguity aversion. 

The estimates of 𝛾𝜂
++ − 𝛾𝜂

−− are neither positive nor significant. Together with the 

results in Table 5 where overconfidence does not asymmetrically depend on signals, the 

empirical evidence in Table 6 indicates that arbitrageurs do not asymmetrically respond 

to signals.   

Summarizing the empirical results, we find clear evidence of overconfidence in 

the equity market neutral trading strategies; more importantly, the effects of 

overconfidence become stronger in the 2000s when arbitrage trading is active. Contrary 

to the previous studies in the literature (Odean, 1998; DHS, 1998, 2001; Gervais and 

Odean, 2001; Chuang and Lee, 2006), trading volume and volatility do not increase 

with overconfidence in the hedge portfolios. We also report empirical evidence that the 

effects of overconfidence on equity market neutral portfolios are not subsequently 

reversed, and that arbitrageurs treat signals that are inconsistent with their confidence as 
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ambiguous. The results support that overconfidence and ambiguity aversion are not 

mutually exclusive (Epstein and Schneider, 2008).  

  

6. Excessive Arbitrage Trading 

What is the impact of behavioral biases on the performance of hedge fund 

managers? In this section, we first investigate how much arbitrage opportunities have 

been eroded away in the 2000s, and then explore the effects of overconfidence on the 

performance of hedge portfolios.
23

 

 

6.1  Out-of-sample forecasting 

We perform out-of-sample forecasting tests from the arbitrageurs’ perspective 

by focusing on the changes in alphas and temporal profits. At the end of June every year, 

we decide which hedge portfolios to be traded for the next 12 months, and form equally 

weighted portfolios of the selected hedge portfolios (PHPs). The selection methods are 

kept simple, as our aim is not to compare the sophisticated forecasting methods, but to 

find changes in the common trends of alphas and temporal profits. 

We use the entire hedge portfolios (ENT) as the benchmark, and form four 

other PHPs as follows: 1) hedge portfolios whose alphas are larger than 0.5 (A5), 2) 

hedge portfolios whose monthly Sharpe ratios of alphas (i.e., 𝛼𝑝𝑡/𝜎𝑝𝑡) are larger than 

0.14 (SRA), 3) hedge portfolios whose monthly Sharpe ratio of realized profits (i.e., 

average realized profits divided by volatility of realized profits over the last 12 months) 

are larger than 0.14 (SRR), and 4) hedge portfolios whose monthly Sharpe ratio of raw 

returns (i.e., average raw return divided by volatility of raw returns over the last 12 

months) are larger than 0.14 (SRRR).  

As alphas are persistent and their half-lives are over 12 months, we use the 

most recent alpha at the formation month, i.e., at the end of June of every year. The 
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 We answer these questions by identifying the changes in the performance of multiple hedge portfolios. 

It is not easy to empirically establish the connection between the arbitrageurs’ behavioral biases and the 

profitability of equity market neutral hedge portfolios. Both the performance of hedge portfolios and 

arbitrage trading change over time, and the sources of profitability in these trading strategies are not 

clearly known in many cases. See Barberis and Thaler (2003) for example. Our approach is comparable 

with those of Fama and French (2006), who investigate the value premium in the international as well as 

in the US equity markets, or those of Rouwenhorst (1998), Griffin, Ji, and Martin (2003), Asness, Liew, 

and Stevens (1997), Bhojraj and Swaminathan (2006), and Asness, Moskowitz, and Pedersen (2009), who 

investigate the momentum in different markets or asset classes. 
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three selection methods, i.e., SRA, SRR, and SRRR, reflect a popular performance 

measure in practice, which we use to identify the profitable trading strategies.
24

 Raw 

returns are used in the SRRR because the systematic risk of SRRR is on average close 

to zero (i.e., -0.05 for the entire sample period) and is often disregarded in practice for 

equity market neutral portfolios.  

The average numbers of the hedge portfolios that are included in the five PHPs 

are 15 (ENT), 8.9 (A5), 9 (SRA), 9.8 (SRR) and 8.6 (SRRR). They do not show an 

upward or downward trend for the four decades since the early 1970s. Panel A of Table 

7 shows that the PHPs formed on alphas (i.e., A5 and SRA) perform better than the 

ENT portfolio: the Sharpe ratios of these two PHPs are higher than that of ENT. 

However, SRR and SRRR, which are calculated using the Sharpe ratios of realized 

profits and raw returns, respectively, do not outperform the PHPs formed on alphas. In 

almost all cases, the alphas and realized profits of the PHPs forecasted by A5 and SRA 

outperform those of SRR and SRRR. 

 

6.2  Has alpha been eroded away? 

Our first question asks whether the profitability of equity market neutral 

portfolios has disappeared in the 2000s or not. A decline in the alphas of the hedge 

portfolios in the 2000s could be interpreted as the erosion of profitable opportunities 

due to the market-wide increase in arbitrage trading. Panel B of Table 7 reports that in 

all cases, the average alphas in the 2000s are significantly lower than those in the 

previous sub-periods. For example, the alpha of the fifteen hedge portfolios (ENT) has 

decreased from 0.61% per month during the three decades from the 1970s to the 1990s 

to 0.5% per month during the 2000s. This is consistent with the results of the 

unconditional models in the Appendix.  

However, the average alphas in the 2000s are still significant despite the 

statistically significant decrease in the 2000s (Panel B): the alphas are still economically 

sizeable, i.e., 0.5% per month with the Sharpe ratio of 8.7 (ENT). Alphas are much 

higher than the benchmark in a few cases: for example, A5 shows that its average alpha 

is 0.86% per month with an annual Sharpe ratio of 21.6 during the 2000s. Therefore, 
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 The cutoff point, the monthly Sharpe ratio of 0.14, is equivalent to 0.5 in terms of annual Sharpe ratios. 

Our results remain robust to other various cutoff points.  
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although arbitrageurs suffer difficult times in the 2000s as in Chan, Getmansky, Haas, 

and Lo (2007) and Lo (2008), the equity market neutral trading strategies still have 

sizable alphas.  

Compared with an approximately 20% decrease in the profitability of equity 

market neutral portfolios, temporal profits appear far worse in the 2000s. The realized 

profits, which are the sum of temporal profits and alphas, decrease more than the alphas 

during the last decade. The main reason for the relatively low realized profits is the 

large negative returns of the three trading strategies, IVol, Mom, and ROA during the 

three months from March to May 2009, which are -41.7%, -61.6%, and -29.8% 

respectively. When these three months is removed from the analysis, average realized 

profits increase significantly: for example, the average realized profits of SRR and 

SRRR increase by 0.3% per month. The cumulative realized profits of the five PHPs in 

Figure 3 clearly indicate that temporal profits suffer significant negative returns in the 

early 2009, whereas alphas are still positive.  

 

6.3  Excessive arbitrage trading and anomalous profits 

Arbitrage trading has not eroded away the profit opportunities of the hedge 

portfolios, but arbitrageurs’ overconfidence has positively affected the temporal profits 

of the portfolios, which is not subsequently reversed. Therefore, it is likely that the 

excessive arbitrage trading instigated by overconfidence creates anomalous profits.  

To investigate the anomalous profits by overconfidence, we form three equally 

weighted PHPs depending on the overconfidence levels at the end of June every year, 

and then hold the PHPs for the next 12 months. The procedure is repeated from June 

1971 to June 2010. Each PHP includes five equity market neutral portfolios. The three 

PHPs, i.e., low confidence, middle confidence, and high confidence PHPs, are named as 

Low-PHP, Mid-PHP, and High-PHP, respectively. Table 8 reports the performance of 

raw returns, alphas, and temporal profits of the three PHPs and the differences between 

the High-PHP and the Low-PHP.  

The performance difference between the High-PHP and the Low-PHP is both 

economically and statistically significant. Over the entire sample period, the raw return 

difference is 1.4% per month (16.8% per year), but tends to decrease over time and is 

0.77% and 1.08% per month in the 2000s for 𝑐𝑝𝑡
𝑝

 and 𝑐𝑝𝑡
𝛼 , respectively. However, 
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when the raw returns are decomposed into alphas and temporal profits, the decrease in 

the raw return difference comes from the sharp drop in the alpha difference in the 2000s.  

Overconfidence creates anomalous profits that have not been weakened 

recently. The differences in the average temporal profits between the High-PHP and the 

Low-PHP are 0.80% and 0.94% per month (9.6% and 1.13% per year respectively) for 

𝑐𝑝𝑡
𝑝

 and 𝑐𝑝𝑡
𝛼 , respectively in the 2000s, whereas they are 0.38% and 0.67% per month 

for 𝑐𝑝𝑡
𝑝

 and 𝑐𝑝𝑡
𝛼 , respectively in the 1970s and 1980s. The differences in temporal 

profits between the High-PHP and the Low-PHP increase when arbitrage trading is 

highest in the 2000s.
25

 Note that the differences in alphas between the High and Low 

PHPs continue to decrease and become small in the 2000s, i.e., 0.07% and 0.21% per 

month for 𝑐𝑝𝑡
𝑝

 and 𝑐𝑝𝑡
𝛼 , respectively, being less than one fifth of the average temporal 

profits.  

The effects of overconfidence on the temporal profits are not confined to a 

small number of extreme hedge portfolios. The absolute average temporal profits of the 

Low-PHP are similar to those of the High-PHP, and thus both High- and Low-PHPs are 

responsible for the anomalous profits. Moreover, our results do not come from a few 

hedge portfolios that consistently belong to the High- or Low-PHP over time: for 

example, the probability that a hedge portfolio belongs to the High-PHP is between 28% 

and 38% over the 40 years since 1971.  

We also find that the difference in temporal profits between the High-PHP and 

the Low-PHP is not well explained by the fund flow variable (LPAR), sentiment, Fama-

French three factors and momentum, or the four macroeconomic variables which we 

have considered in this study. For example, when differences of raw returns, alphas, and 

temporal profits between High and Low-PHPs (sorted by 𝑐𝑝𝑡
𝑝

) are regressed on these 

variables, we find that the estimates of the constant become 0.94% (with t-statistic of 

1.03), -0.25% (with t-statistic of -0.94), and 1.49% (with t-statistic of 1.86), respectively. 

When these are compared with the estimates with those in the “Entire Sample Period” 
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 Average temporal profits appear to be highest in the 1990s; yet, these high average temporal profits are 

due to the abnormal temporal profits during the burst of the High-tech bubble in the late 1990s. As 

indicated by the study of Hwang and Rubesam (2014), the High-tech bubble during the late 1990s is 

likely to have substantial effects on these hedge portfolios. For example, after excluding these abnormal 

temporal profits from November 1999 to June 2000, both of the average temporal profits are less than 1% 

per month in the second sub-period. 
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of panel A, Table 8, we find that the difference in temporal profits is still not explained 

by these control variables. Moreover, considering that all these variables are not 

significant, we conclude that overconfidence create anomalous profits in PHPs.
26

  

Proponents of the behavioral approach often argue that profitable opportunities 

from mispricing may not be exploited because arbitrage trading can be both risky and 

costly and thus, are unattractive to investors (Barberis and Thaler, 2005). What we find 

in this study is that despite noise-traders’ risk (Shleifer and Vishny, 1997), arbitrage 

opportunities are indeed excessively exploited by overconfident investors who do not 

know how much of these profitable opportunities can be exploitable. Excessive 

arbitrage trading by overconfidence creates an anomalous profit opportunity.  

Theories do not tell us if overconfident traders can make more profits than 

rational investors. The models of DHS (1998, 2001) and Gervais and Odean (2001) 

suggest that overconfident traders have lower gains on average, whereas Kyle and 

Wang (1997) argue that a higher profit is possible. Although we demonstrate that 

overconfident arbitrageurs can make extra profits, the reason for the extra profits is 

different from those suggested in the literature: arbitrageurs’ overconfidence creates 

profitable opportunities that are not reversed subsequently. Arbitrage trading expected 

to exploit mispricing opportunities and thus improve market efficiency creates another 

anomaly due to arbitrageurs’ own overconfidence. 

 

 

7  Conclusions 

Over the last two decades, the size of investment funds managed by 

sophisticated investors such as hedge funds has grown dramatically. In 1990, the total 

assets under management of hedge funds are less than $50 billion, but become almost 

$2 trillion in the middle of the 2000s. This spectacular rise in the size of those funds, 

along with their aggressive investment strategies, has significant effects on asset returns. 

The conventional view is that arbitrage opportunities erode quickly as the arbitrage 

activity increases and thus, asset prices move closer to its true fundamental value. 
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 In addition, the average temporal profits of the High-Minus-Low-PHPs change little by the abnormal 

temporal profits of IVol, Mom, and ROA during the three months from March to May 2009: excluding 

these months, the difference in the average temporal profits of the High-Minus-Low-PHPs is 0.72% per 

month for 𝑐𝑝𝑡
𝑝

 and 0.79% per month for 𝑐𝑝𝑡
𝛼  in the 2000s. 
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However, market efficiency may not have been necessarily improved despite increasing 

the number of arbitrageurs, because these experts are more likely overconfident than 

inexperienced investors (De Long et al., 1991; Griffin and Tversky, 1992; and Odean, 

1998). The effects of their overconfidence on asset prices may have increased as the 

trading volume by institutional investors increase dramatically in the 2000s. It is an 

empirical question as to whether or not assets are priced efficiently due to increased 

arbitrage trading.  

In this study, we investigate whether the effects of arbitrage trading on cross-

sectional asset returns can be attributed to arbitrageurs who are overconfident or 

ambiguity averse, or have self-attribution bias. Using the conditional CAPM, we 

decompose the alpha and idiosyncratic payoffs, which represent the unbiased estimate 

of profit opportunity as well as the temporal profit that arbitrageurs experience in 

practice, respectively.   

Using fifteen equity market neutral portfolios, our results demonstrate that 

overconfidence plays an important role in the performance of arbitrageurs. During the 

2000s when arbitrage trading is active, overconfidence has led to excessive arbitrage. 

Despite the erosion of alphas in the 2000s, we find strong evidence that profit 

opportunities in the equity market neutral strategies still exist: the average alpha of 

fifteen hedge portfolios are 0.5% and its Sharp ratio is 8.7. Interestingly, we find that 

the performance of arbitrage trading strategies can be further improved by exploiting 

overconfidence of arbitragers, because their excessive arbitrage positively affects 

temporal profits which are not subsequently reversed. We show that the average return 

is 9.6% per month in the 2000s if the arbitrageurs’ overconfidence were exploited.  

This could be evidence explaining that arbitrage trading actually damages rather 

than improves market efficiency. The sharp increase in the trading volume by 

institutional investors, reported by Hendershott, Jones, and Menkveld (2011) and 

Dichev, Huang, and Zhou (2011), indicate that the market may become more inefficient 

due to experts’ behavioral biases.  
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Appendix A Bayesian Computation (Monte Carlo Markov Chain Sampling) 

 
The conditional CAPM that we estimate can be represented as follows using state 

space form: 

𝑟𝑝𝑡 = 𝐻𝑝𝑡�̅�𝑝 +𝐻𝑝𝑡(𝐵𝑝𝑡 − �̅�𝑝) + 𝑒0.5ℎ𝑝𝑡𝜀𝑝𝑡, 

where 𝐻𝑝𝑡 = (1 𝑟𝑚𝑡), 𝐵𝑝𝑡 = (𝛼𝑝𝑡 𝛽𝑝𝑡)′ , �̅�𝑝 = (𝜇𝛼 𝜇𝛽)′ , and 𝜀𝑝𝑡~𝑖. 𝑖. 𝑑.𝑁(0, 1) . For 

the dynamics of market beta (𝛽𝑝𝑡)  and market risk-adjusted return (𝛼𝑝𝑡) , we use the 

autoregressive process of order one, AR(1). 

𝐵𝑝𝑡 − �̅�𝑝 = Φ(𝐵𝑝𝑡−1 − �̅�𝑝) + ϵ𝑝𝑡 , 

where Φ = (
𝜙𝛼 0
0 𝜙𝛽

) , ϵ𝑝𝑡 = (
ϵ𝛼𝑡
ϵ𝛽𝑡

) , and (
ϵ𝛼𝑡
ϵ𝛽𝑡

)~𝑖. 𝑖. 𝑑.𝑁 ((
0
0
) , (

𝜎𝛼
2 𝜎𝛼𝛽

𝜎𝛼𝛽 𝜎𝛽
2 )) . Note that 

𝑐𝛼 = 𝜇𝛼(1 − 𝜙𝛼) and 𝑐𝛽 = 𝜇𝛽(1 − 𝜙𝛽). To model the heteroskedasticity of idiosyncratic 

volatility, we use a stochastic volatility model as follows: 

ℎ𝑝𝑡 − 𝜇ℎ = 𝛾1(ℎ𝑝𝑡−1 − 𝜇ℎ) + 𝜐𝑝𝜎𝑡, 

where 𝜐𝑝𝜎𝑡~𝑖. 𝑖. 𝑑.𝑁(0, 𝜎𝑝𝜎
2 ) and 𝛾0 = 𝜇ℎ(1 − 𝛾1). Therefore, the set of parameters we need 

to estimate is {𝐵𝑝𝑡}, {ℎ𝑝𝑡}, 𝛾0, 𝛾1, 𝜎𝑝𝜎
2 , 𝐹 = (𝑐𝛼 , 𝜙𝛼 , 𝑐𝛽 , 𝜙𝛽)

′
, and 𝑄 = (

𝜎𝛼
2 𝜎𝛼𝛽

𝜎𝛼𝛽 𝜎𝛽
2 ). 

We first estimate the time-varying market beta, market risk-adjusted return, and 

idiosyncratic volatility for each portfolio; then, conditional on the simulated series of these 

time-varying parameters, the other parameters are updated using standard conjugate draws. The 

Gibbs sampler takes the following steps: 

a. Initialize {𝐵𝑝𝑡}, {ℎ𝑝𝑡}, 𝛾0, 𝛾1, 𝐹and𝜎𝑝𝜎
2 , 𝑄. 

b. Generate {𝐵𝑝𝑡} from 𝑝({𝐵𝑝𝑡}|{𝑟𝑝𝑡}, {ℎ𝑝𝑡}, 𝛾0, 𝛾1, 𝐹, 𝜎𝑝𝜎
2 , 𝑄). 

c. Generate {ℎ𝑝𝑡} from 𝑝({ℎ𝑝𝑡}|{𝑟𝑝𝑡}, {𝐵𝑝𝑡}, 𝛾0, 𝛾1, 𝐹, 𝜎𝑝𝜎
2 , 𝑄). 

d. Generate 𝛾0, 𝛾1 from 𝑝(𝛾0, 𝛾1|{𝑟𝑝𝑡}, {𝐵𝑝𝑡}, {ℎ𝑝𝑡}, 𝐹, 𝜎𝑝𝜎
2 , 𝑄). 

e. Generate 𝐹 from 𝑝(𝐹|{𝑟𝑝𝑡}, {𝐵𝑝𝑡}, {ℎ𝑝𝑡}, 𝛾0, 𝛾1, 𝜎𝑝𝜎
2 , 𝑄). 

f. Generate 𝜎𝑝𝜎
2 , 𝑄 from 𝑝(𝜎𝑝𝜎

2 , 𝑄|{𝑟𝑝𝑡}, {𝐵𝑝𝑡}, {ℎ𝑝𝑡}, 𝛾0, 𝛾1, 𝐹). 

Repeat the procedure from b to f until convergence. 

 

A.1. Generating {𝑩𝒑𝒕}|{𝒓𝒑𝒕}, {𝒉𝒑𝒕}, 𝜸𝟎, 𝜸𝟏, 𝑭, 𝝈𝒑𝝈
𝟐 , 𝑸 

To generate the {𝐵𝑝𝑡}, we use the algorithm of forward filtering and backward 

sampling, described in Carter and Kohn (1994). 

 

A.2. Generating {𝒉𝒑𝒕}|{𝒓𝒑𝒕}, {𝑩𝒑𝒕}, 𝜸𝟎, 𝜸𝟏, 𝑭, 𝝈𝒑𝝈
𝟐 , 𝑸 

Given the generated parameters, the observation equation and the state equation are 

represented as follows: 

𝑟𝑝𝑡 −𝐻𝑝𝑡𝐵𝑝𝑡 = 𝜎𝑝𝑡𝜀𝑝𝑡 = exp(ℎ𝑝𝑡/2)𝜀𝑝𝑡, 

ℎ𝑝𝑡 − 𝜇ℎ = 𝛾1(ℎ𝑝𝑡−1 − 𝜇ℎ) + 𝜐𝑝𝜎𝑡. 

To generate the series of unobserved volatilities, we use the algorithm of the multi-move 

sampler following Shephard and Pitt (1997) and Watanabe and Omori (2004). 

 

A.3. Generating 𝜸𝟎, 𝜸𝟏|{𝒓𝒑𝒕}, {𝑩𝒑𝒕}, {𝒉𝒑𝒕}, 𝑭, 𝝈𝒑𝝈
𝟐 , 𝑸 

We use the normal distribution as a prior for 𝛾0; however, by allowing a large 

variance on the normal distribution, we set 𝛾0 to have a nearly diffuse prior. 

To draw 𝛾1, we assume that (𝛾1 + 1)/2 ~ Beta(𝛼ℎ , 𝛽ℎ) in order to guarantee the 

stationary condition, |𝛾1| < 1 , where 𝛼ℎand𝛽ℎ are matched to the first two moments of 𝛾1 

(mean and variance), which are estimated by using the series of ℎ𝑝𝑡 obtained from the 12-

month rolling OLS regressions. The conditional posterior distribution of 𝛾1 is given by 

π(𝛾1|{𝑟𝑝𝑡}, {ℎ𝑝𝑡}, 𝛾0, 𝜎𝑝𝜎
2 ) ∝ 
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π(𝛾1)√1 − 𝛾1
2exp {−

∑ (ℎ𝑝𝑡−ℎ̅𝑝)
𝑇
𝑡=2

2𝜎𝑝𝜎
2 (𝛾1 −

∑ (ℎ𝑝𝑡−ℎ̅𝑝)(ℎ𝑝𝑡+1−ℎ̅𝑝)
𝑇−1
𝑡=1

∑ (ℎ𝑝𝑡−ℎ̅𝑝)
𝑇
𝑡=2

)
2

}. 

Because the posterior is not standard, we use the Metropolis-Hasting algorithm (e.g., Chib and 

Greenberg (1995)). We use 𝑇𝑁(−1,1)(𝛾1̂, 𝑠𝛾1
2 ) as a proposal density, where TN refers to the 

truncated normal distribution on the −1 < 𝛾1 < 1 and 

𝛾1̂ =
∑ (ℎ𝑝𝑡−ℎ̅𝑝)(ℎ𝑝𝑡+1−ℎ̅𝑝)
𝑇−1
𝑡=1

∑ (ℎ𝑝𝑡−ℎ̅𝑝)
𝑇
𝑡=2

,     𝑠𝛾1
2 =

𝜎𝑝𝜎
2

∑ (ℎ𝑝𝑡−ℎ̅𝑝)
𝑇
𝑡=2

. 

 

A.4. Generating 𝝈𝒑𝝈
𝟐 |{𝒓𝒑𝒕}, {𝑩𝒑𝒕}, {𝒉𝒑𝒕}, 𝜸𝟎, 𝜸𝟏, 𝑭,𝑸 

We update the 𝜎𝑝𝜎
2  using the inverse Wishart standard conjugate distribution with less 

informative prior elicitation. 

𝜎𝑝𝜎
2 ~𝐼𝑊(𝑣𝜀�̂�𝑝𝜎𝑂𝐿𝑆

2 , 𝑣𝜀), 

where �̂�𝑝𝜎𝑂𝐿𝑆
2  is obtained using the series of logarithm scaled variance from the 12-month 

rolling OLS regressions. We give less informative prior belief by setting 𝑣𝜀 = 4 (Gelman, 

2007). 

The conditional posterior distribution is of the same form as the prior distribution: 

𝜎𝑝𝜎
2 |{𝑟𝑝𝑡}, {ℎ𝑝𝑡}, 𝛾0, 𝛾1~𝐼𝑊(𝜎𝑝𝜎

2
, 𝑣𝜀),  

where 

𝜎𝑝𝜎
2

= 𝑣𝜀�̂�𝑝𝜎𝑂𝐿𝑆
2 + (1 − 𝛾1

2)(ℎ𝑝1
2 − ℎ̅𝑝)

2
+ ∑ (ℎ𝑝𝑡+1 − ℎ̅𝑝 − 𝛾1(ℎ𝑝𝑡 − ℎ̅𝑝))

2
𝑇−1
𝑡=1 , 

𝑣𝜀 = 𝑣𝜀 + 𝑇. 

A.5. Generating 𝑭,𝑸|{𝒓𝒑𝒕}, {𝑩𝒑𝒕}, {𝒉𝒑𝒕}, 𝜸𝟎, 𝜸𝟏, 𝝈𝒑𝝈
𝟐 , 𝑸 

Given the simulated parameters, the state equation for the process of 𝑩𝒑𝒕 becomes a 

simple variant of the Seemingly Unrelated Regression (SUR) model: 

𝑦𝑡 = 𝑋𝑡𝐹 + ϵ𝑡 

where 𝑋𝑡 = (
1 𝛼𝑝𝑡−1
0 0

0 0
1 𝛽𝑝𝑡−1

) , 𝑦𝑡 = (𝛼𝑝𝑡 , 𝛽𝑝𝑡)
′

, 𝜀𝑡 = (ϵ𝛼𝑡, ϵ𝛽𝑡)
′

, 

𝐹 = (𝑐𝛼 , 𝜙𝛼 , 𝑐𝛽 , 𝜙𝛽)
′
. We use the normal distribution as a prior for 𝐹 and inverse Wishart 

prior distribution for Q: 

𝐹~𝑁(𝐹, 𝑉), 𝑄~𝐼𝑊 (𝜐, 𝑄), 

where 𝐹 is prior mean for F, 𝑉 is prior variance-covariance matrix for F, 𝑄 is set to have 

𝜐 (
var(𝛼𝑝𝑡)(1 − 𝜙𝛼

2) 0

0 var(𝛽𝑝𝑡)(1 − 𝜙𝛽
2)
) under the stationary condition, where var(𝛼𝑝𝑡) 

and var(𝛽𝑝𝑡) are from the results of equating the unconditional variances of 𝛼𝑝𝑡, and 𝛽𝑝𝑡 

(e. g. , var(𝛼𝑝𝑡) = 𝜎𝛼
2/(1 − 𝜙α

2)) to the variances of unconditional series of estimated 𝛼𝑝𝑡, and 

𝛽𝑝𝑡 from a 12-month rolling OLS, and 𝜐 = 4 implying less informative prior on 𝑄. 

Using this prior, we can derive the conditional posterior 𝑝(𝐹|𝑦, 𝑄)  in a 

straightforward fashion, 

𝐹|𝑦, 𝑄~𝑁(𝐹, 𝑉), 

where 𝑉 = (𝑉−1 + ∑ 𝑋𝑡′𝑄
−1𝑇

𝑡=1 𝑋𝑡)
−1  and 𝐹 = 𝑉(𝑉−1𝐹 + ∑ 𝑋𝑡′𝑄

−1𝑇
𝑡=1 𝑦𝑡).  The posterior 

for 𝑄 conditional on 𝐹 is inverse-Wishart: 

𝑄|𝑦, 𝐹~𝐼𝑊(𝜐,𝑄), 

where 𝜐 = 𝑇 + 𝜐 and 𝑄 = 𝑄 + ∑ (𝑦𝑡 − 𝑋𝑡𝐹)(𝑦𝑡 − 𝑋𝑡𝐹)′
𝑇
𝑡=1 . 
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Appendix B Equity Market Neutral Hedge Portfolios 
 

The data for the construction of hedge portfolios are from the CRSP data file, the Compustat 

and CRSP merged data file, and Kenneth French’s data library from 1963 through 2011. We use 

all NYSE, Amex, and NASDAQ, except for illiquid stocks which are not tradable for 

arbitrageurs and financial firms whose fundamentals are not directly comparable with those of 

other firms. For each hedge portfolio, firms are assigned to one of 10 decile portfolios based on 

firm characteristics in order to form equally weighted decile portfolios; then, we take long 

minus short positions with the long leg being higher-performing extreme decile and the short 

leg being the lower-performing extreme decile.  

We also calculate the turnover for the hedge portfolios in order to compare the trading costs for 

the hedge portfolios. Turnover is calculated by changes in both long and short positions, 

assuming the gross leverage of two; thus, the theoretical maximum turnover is 400% when all 

existing long and short positions are cleared and new positions are taken on different stocks. 

Detailed explanations for the construction of these portfolios are as follows. 

Monthly rebalanced portfolios 

When information is updated every month, arbitragers attempt to use the new information in 

order to maximize the performance of their trading strategies. Typically, for the hedge portfolios 

formed on market data (for example, price, volume, returns), portfolios are rebalanced every 

month. For these portfolios, we construct overlapping portfolios, as in Jegadeesh and Titman 

(2001), in order to reduce the volatility of portfolio returns as well as transaction costs. At 

month t, portfolios are formed and held for the following h months (holding period), and in the 

following month (month t+1), we follow the same procedure again. When this procedure is 

repeated every month, then at any month (except for the first h-1 and last h-1 months), we have 

h portfolios formed at t-h, t-h+1, …,t-1. These portfolios are then equally weighted to calculate 

hedge portfolio returns. The holding period depends on the trading strategies. In our study, we 

try h=1, 3, and 6 for each of the trading strategies, and use the holding period that provides the 

best Sharpe ratio for the trading strategy. 

Momentum (Mom):In order to minimize the effects of the bid-ask bounce, at the end of each 

month t, we sort stocks into decile portfolios based on their past eleven month returns from t-11 

to t-1, skipping month t (formation period: twelve months), as in Cooper, Gutierrez and Hameed 

(2004).  

Liquidity (Liq): We calculate the measure of illiquidity at the end of every month using daily 

return and daily trading volume in US dollar. We follow Amihud (2002) for illiquidity measure, 

𝛾𝑖,𝑚: 

𝛾𝑖,𝑚 =
1

𝐷𝑖,𝑚
∑

|𝑟𝑖,𝑑.𝑚|

𝑣𝑖,𝑑.𝑚

𝐷𝑖,𝑚

𝑑=1 , 

where 𝐷𝑖,𝑚 is the number of days for which data are available for stock i over the past one year 

from month m, 𝑟𝑖,𝑑.𝑚 is the daily stock return of firm i on day d over the past one year from 

month m, and 𝑣𝑖,𝑑.𝑚 is the daily trading volume in US dollar for stock i on day d over the past 

one year from month m. As in Amihud (2002), a stock must have return and volume data for at 

least 200 days.  

Idiosyncratic Volatility (IVol): Following Ang, Hodrick, Xing and Zhang (2006) and George 

and Hwang (2011), we measure the idiosyncratic volatility of a security i at the end of every 

month using one prior month of daily returns and Fama-French three factors. It is measured by 

the standard deviation of the residuals, which is the result of regression for security i’s excess 

return on Fama-French (1992, 1993) three factors. 
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Market Equity (ME): Market equity is the price times shares outstanding, both of which come 

from the monthly CRSP data file. 

Return on assets (ROA): Return on assets (ROA), defined as in Chen and Zhang (2010), is 

income before extraordinary (Compustat quarterly IBQ) divided by last quarter’s total assets 

(Compustat quarterly ATQ). 

Earnings Surprises (ESur): Following Chan et al. (1996), Standardized Unexpected Earnings 

(Esur) is defined as the change in quarterly earnings per share (Compustat quarterly EPSPIQ) 

from its value four quarters ago divided by the standard deviation of the change in quarterly 

earnings over the prior eight quarters. 

Ohlson’s O (Osc): We calculate the O-score distress measure, following Ohlson (1980, Model 

One in Table 4). 

Failure Probability (FP): We construct the failure probability, following Campbell et al. (2008, 

the third column in Table 4). 

Annually rebalanced portfolios  

For the hedge portfolios which use annual accounting information, we follow Fama and French 

(1992) by allowing at least a six-month gap between the fiscal year end and portfolio formation. 

We form portfolios at the end of June of year t using previous years’ accounting information 

and hold equally weighted portfolios from July of year t to June of year t+1.  

Book to Market Equity (BEME): Book to Market equity is calculated as in Fama and French 

(1993).  

Accruals (Acc): Following Sloan (1996), accrual component is measured as the change in 

operating working capital divided by total assets. 

Asset Growth (AG): Following Cooperr, Gulen, and Schill (2008), the firm asset growth rate 

for year t is calculated as the percentage change in total assets (Compustat AT) from fiscal year 

ending in calendar year t-2 to fiscal year ending in calendar year t-1 as below: 

AG(t) =
Totalassets(t−1)−Totalassets(t−2)

Totalassets(t−2)
. 

To compute this measure, a firm must have nonzero total assets in both years, t-1 and t-2.  

Gross profitability premium (GP): Gross profits is defined as total revenue (Compustat REVT) 

minus cost of goods sold (Compustat COGS), following Novy-Marx (2010).  

Net operating assets (NOA): Net operating assets (NOA) are calculated as in Hirshleifer, Hou, 

Teoh, and Zhang (2004). 

NOA = (OperatingAssets − OperatingLiabilities)/LaggedTotalAssets. 

Net stock issues (NSI): Following Fama and French (2008), we measure net stock issues as the 

natural log of the ratio of the split-adjusted shares outstanding at the fiscal year-end t-1 divided 

by the split-adjusted shares outstanding at the fiscal year-end in t-2.  

Investment to assets (IA): We define investment-to-assets (IA), as in Chen and Zhang (2010). 

Investment-to-assets is the annual change in gross property, plant and equipment (Compustat 

PPEGT) plus the annual change in inventories (Compustat INVT) divided by the lagged book 

value of assets (Compustat AT). 
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Appendix C Performance of Equity Market Neutral Hedge Portfolios 
Table A1 shows that the average hedge portfolio returns are similar to those reported in 

the literature. For the entire sample period from July 1970 to June 2011, Acc, AG, BEME, IA, 

NOA, NSI, ROA, ESur and Mom show positive average returns significant at the 5% level, 

ranging from 0.66% per month (NSI) to 1.09% per month (ESur). As claimed by the authors 

who investigate these factors, the alphas from the CAPM and the Fama-French three factor 

model with momentum are not much different from the average returns of these factors. 

Other hedge portfolios also show similar results to those of the previous studies. IVol 

shows a slightly lower average returns than those reported in Harvey and Siddique (2000) and 

George and Hwang (2011) respectively. As in George and Hwang (2011), the average return of 

IVol is not significant when the portfolios are equally-weighted; yet, it tends to increase after 

controlling for risk. The two distress factors, Osc and FP, are not significant, whereas Chen and 

Zhang (2010) report negative average returns for these two hedge portfolios at the 5% 

significance level. The main difference is that they calculate these hedge portfolio returns at the 

formation month, whereas we calculate the returns following the formation. Liq is affected 

significantly by our choice of universe. By removing the small and illiquid stocks, illiquidity 

premium disappears.  

Annual rebalancing requires far less turnover than monthly rebalancing. At the bottom 

of Table A1, it is reported that all seven annually rebalanced hedge portfolios need 10% to 26% 

of turnover, whereas the monthly rebalanced portfolios require a minimum of 53.5% (Osc) to 

240.7% (IVol) turnover a month. The hedge portfolios which require more than 100% of 

turnover are IVol, Mom, and ESur. Although the direct fee to the prime broker is quite small, 

other trading costs, such as slippage, are not negligible for these hedge portfolios. 

Many hedge portfolio returns are highly correlated with others. For example, the 

correlation coefficient between Liq and ME is 0.84, which is not surprising because small firms 

are illiquid. We find that ME is closely related to IVol, although IVol is not entirely driven by 

size (George and Hwang, 2011). The negative correlations between the ROA factor and two 

distress factors (Osc and FP) and the positive correlation between ME and the two distress 

factors are consistent with the results reported by Chen, Novy-Marx, and Zhang (2011). Less 

distressed firms are more profitable with higher expected ROA; therefore, they should earn 

higher average returns. The positive correlation between ME and the two distress factors 

indicates that small firms are more distressed. Finally, as expected, the two investment measure, 

AG and IA, have a high correlation (Chen and Zhang, 2010). 

The results of the four sub-periods, i.e., the 1970s, 1980s, 1990s, and 2000s in Tables 

A2 to A5, respectively, show that the performance of hedge portfolios changes over time. For 

example, AG shows the highest average monthly return of 1.6% per month in the 1990s, 

whereas it shows the lowest average monthly return of 0.56% per month in the 1980s. The two 

distress factors demonstrate dramatic changes: in the 1980s, both show significant negative 

average returns; however, in the 2000s, they show large positive average returns. Their alphas 

also show similar patterns.  

In order to obtain the overall trend in the performance of our hedge portfolios, we 

count the numbers of hedge portfolios that show significant average returns. These are 8, 12, 6, 

and 4 in the 1970s, 1980s, 1990s, and 2000s, respectively. The numbers of significant alphas 

also show similar patterns. Roughly speaking, the performance of hedge portfolios has been 

decreasing for the last four decades. Interestingly, for the four sub-periods, the numbers of high 

correlation coefficients, i.e., larger than 0.5, remain similar, i.e., 31, 29, 35, and 26, respectively. 

Although different classes of arbitrage trading (Event Driven, Global Macro, Emerging Market, 

Equity Market Neutral, Fixed Income, etc.) are more correlated in the 2000s than in the 1990s 

(Lo, 2008), the equity market neutral trading strategies do not show a tendency for stronger 

correlation in the 2000s within this class. 
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Descriptive Statistics and OLS Alphas from CAPM, 4-Factor Model for Various Hedge Portfolios. 
The basic statistical properties of fifteen hedge portfolios formed on various firm characteristics are reported for the whole periods from July 1970 to June 2011 as well as for the four sub-periods. The data for 

the construction of hedge portfolios are from the Compustat and CRSP merged data file. For the construction of hedge portfolios, we use all stocks listed in the NYSE, Amex, and NASDAQ, except for the 
illiquid stocks which are not tradable for arbitrageurs and financial firms whose fundamentals are not directly comparable with those of other firms. For each of the 15 hedge portfolios, we calculate 10 deciles 

of equal-weighted portfolio returns and then take long-short positions with the long leg being the higher-performing decile and short leg being the lower performing decile. The four factor alpha is calculated 

with the Fama-French three factors and momentum, which are obtained from Kenneth French’s data library. When we estimate alphas with the Fama-French three factors with momentum, we exclude size, 

book-to-market, and momentum factors for ME, BEME, and Mom, respectively. Monthly turnover for the portfolios that require annual rebalancing at the beginning of July every year is calculated by dividing 

the annual turnover by 12. 

A1. July 1970 - June 2011 

  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 
Acc AG BEME GP IA NOA NSI Osc ROA FP Esur Liq ME Mom IVol 

Means 0.628 1.067 1.077 0.277 0.790 0.747 0.656 0.086 0.818 -0.131 1.093 0.207 0.485 0.956 0.078 

t-statistics 6.345 7.307 5.259 1.706 6.515 4.224 4.577 0.445 3.723 -0.408 9.111 0.997 1.877 3.324 0.237 

Alpha 
0.645 1.092 1.187 0.261 0.832 0.706 0.787 0.044 0.927 -0.608 1.123 0.133 0.419 1.014 0.469 

(CAPM) 

t-statistics 6.055 6.181 5.047 1.410 6.387 3.397 5.583 0.225 4.052 -2.647 11.046 0.665 1.652 3.697 1.670 

Alpha 
0.547 0.795 1.298 0.269 0.662 0.794 0.473 -0.246 0.729 -0.058 0.968 -0.073 0.552 1.323 0.274 

(4 factors) 

t-statistics 4.559 4.851 5.871 1.600 4.932 4.091 3.901 -1.418 3.384 -0.238 8.453 -0.546 1.973 5.006 1.130 

Monthly Turnover 0.259 0.259 0.161 0.100 0.254 0.186 0.249 0.535 0.782 0.789 1.134 0.558 0.702 1.985 2.407 

Spearman Rank Correlation 

(2) 0.478 
              (3) 0.256 0.500 

             (4) -0.192 -0.172 -0.046 
            (5) 0.401 0.750 0.352 -0.057 

           (6) 0.324 0.435 -0.100 -0.126 0.512 
          (7) 0.096 0.238 0.453 0.358 0.269 -0.109 

         (8) 0.139 0.440 0.439 -0.212 0.239 0.063 -0.031 
        (9) -0.159 -0.375 -0.127 0.429 -0.230 -0.324 0.324 -0.509 

       (10) 0.170 0.397 0.170 -0.240 0.241 0.329 -0.305 0.679 -0.764 
      (11) -0.018 -0.114 -0.102 0.181 -0.048 -0.041 0.080 -0.319 0.540 -0.428 

     (12) -0.018 0.245 0.150 0.040 0.204 0.159 -0.169 0.606 -0.303 0.512 -0.073 
    (13) 0.094 0.449 0.318 -0.013 0.340 0.264 -0.121 0.723 -0.457 0.672 -0.164 0.839 

   (14) 0.066 -0.044 -0.173 0.142 0.015 -0.031 0.129 -0.288 0.474 -0.487 0.489 -0.080 -0.273 
  (15) -0.137 -0.263 0.028 0.069 -0.163 -0.344 0.424 -0.523 0.559 -0.773 0.204 -0.662 -0.744 0.264 
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A2. July 1970 - June 1980 

  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 
Acc AG BEME GP IA NOA NSI Osc ROA FP Esur Liq ME Mom IVol 

Means 0.870 0.963 1.038 -0.172 0.837 0.399 0.844 0.108 1.387 -0.629 1.397 0.720 0.989 1.100 -0.401 

t-statistics 4.403 3.483 2.308 -0.626 3.136 1.871 3.715 0.218 3.808 -1.114 5.188 1.418 1.503 2.078 -0.637 

Alpha 
0.909 0.974 0.995 -0.271 0.852 0.394 0.857 0.076 1.394 -0.650 1.430 0.610 0.823 1.158 -0.138 

(CAPM) 

t-statistics 5.594 3.710 2.308 -0.932 3.295 1.657 3.561 0.181 5.187 -1.391 8.675 1.425 1.509 2.612 -0.287 

Alpha 
0.561 0.412 0.671 -0.130 0.403 0.252 0.343 -0.836 1.562 -1.242 1.537 -0.298 0.607 1.516 0.675 

(4 factors) 

t-statistics 4.031 1.917 1.854 -0.572 1.765 0.996 1.800 -3.320 6.670 -3.566 9.287 -1.265 1.070 3.313 2.503 

Turnover 0.261 0.253 0.149 0.088 0.261 0.185 0.246 0.484 0.842 0.779 1.039 0.539 0.608 1.950 2.421 

Spearman Rank Correlation 

(2) 0.469 
              (3) 0.197 0.634 

             (4) -0.035 -0.214 -0.071 
            (5) 0.474 0.856 0.592 -0.108 

           (6) 0.464 0.446 0.250 0.282 0.518 
          (7) 0.372 0.543 0.522 0.176 0.520 0.347 

         (8) 0.048 0.366 0.653 0.016 0.338 0.041 0.342 
        (9) 0.064 -0.382 -0.555 0.330 -0.268 0.060 -0.094 -0.410 

       (10) 0.022 0.327 0.622 0.296 0.323 0.178 0.327 0.768 -0.449 
      (11) 0.145 -0.192 -0.370 0.132 -0.091 0.048 -0.014 -0.465 0.657 -0.477 

     (12) -0.013 0.307 0.565 0.264 0.329 0.161 0.315 0.726 -0.236 0.680 -0.257 
    (13) -0.003 0.317 0.632 0.301 0.323 0.158 0.296 0.768 -0.354 0.761 -0.337 0.922 

   (14) 0.279 0.007 -0.189 -0.037 0.014 -0.029 0.210 -0.198 0.543 -0.419 0.483 -0.172 -0.313 
  (15) -0.057 -0.227 -0.523 -0.375 -0.238 -0.210 -0.188 -0.700 0.264 -0.778 0.281 -0.793 -0.883 0.256 
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A3. July 1980 - June 1990 

  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 
Acc AG BEME GP IA NOA NSI Osc ROA FP Esur Liq ME Mom IVol 

Means 0.295 0.559 0.931 0.879 0.832 0.517 0.896 -0.738 2.055 -1.463 1.660 0.017 -0.124 1.861 1.233 

t-statistics 1.582 2.576 2.970 3.708 4.242 3.465 4.737 -2.629 7.612 -4.074 9.271 0.049 -0.310 5.189 3.135 

Alpha 
0.366 -0.669 1.176 0.791 0.927 0.600 0.994 -0.722 1.987 -1.497 1.602 -0.021 -0.043 1.750 1.493 

(CAPM) 

t-statistics 2.032 2.749 3.877 3.230 4.126 3.643 5.586 -2.199 6.584 -4.087 10.825 -0.052 -0.092 5.419 3.979 

Alpha 
0.148 0.363 1.259 0.998 0.660 0.469 0.656 -0.990 2.022 -1.353 1.454 0.031 0.147 2.111 1.122 

(4 factors) 

t-statistics 0.744 1.840 4.178 3.713 3.241 3.020 3.466 -3.907 6.556 -4.088 9.950 0.145 0.273 7.304 4.111 

Turnover 0.255 0.252 0.157 0.101 0.258 0.190 0.250 0.493 0.814 0.716 1.145 0.527 0.618 1.957 2.401 

Spearman Rank Correlation 

(2) 0.496 
              (3) 0.423 0.666 

             (4) -0.445 -0.349 -0.455 
            (5) 0.424 0.825 0.542 -0.213 

           (6) 0.302 0.535 0.375 -0.127 0.557 
          (7) 0.264 0.502 0.529 0.164 0.428 0.315 

         (8) 0.164 0.456 0.368 -0.255 0.325 0.081 0.107 
        (9) -0.236 -0.478 -0.427 0.478 -0.328 -0.177 -0.067 -0.564 

       (10) 0.153 0.438 0.235 -0.283 0.278 0.070 -0.005 0.776 -0.715 
      (11) -0.108 -0.078 -0.153 0.267 0.000 0.055 0.006 -0.204 0.457 -0.369 

     (12) -0.206 0.153 -0.041 0.198 0.200 0.120 -0.004 0.539 -0.128 0.413 0.068 
    (13) -0.037 0.448 0.244 -0.042 0.398 0.190 0.101 0.702 -0.386 0.610 -0.013 0.819 

   (14) -0.080 -0.223 -0.223 0.406 -0.101 0.038 0.128 -0.318 0.559 -0.562 0.529 -0.019 -0.244 
  (15) 0.125 -0.092 0.242 -0.106 -0.033 0.118 0.229 -0.529 0.267 -0.625 0.003 -0.650 -0.657 0.209 
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A4. July 1990 - June 2000 

  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 
Acc AG BEME GP IA NOA NSI Osc ROA FP Esur Liq ME Mom IVol 

Means 0.788 1.623 0.609 -0.213 1.049 1.769 0.369 0.050 -0.131 0.568 0.860 -0.040 0.372 1.773 -0.530 

t-statistics 3.865 4.841 1.506 -0.519 4.568 3.347 1.126 0.124 -0.232 0.993 4.344 -0.083 0.699 3.274 -0.675 

Alpha 
0.962 1.761 1.161 -0.258 1.194 1.579 0.701 0.177 0.195 0.405 0.876 -0.181 0.481 1.405 0.190 

(CAPM) 

t-statistics 4.325 4.709 2.607 -0.572 5.028 2.707 2.182 0.387 0.325 0.702 5.062 -0.348 0.781 3.250 0.256 

Alpha 
0.764 1.470 1.502 0.033 0.972 1.351 0.503 0.119 0.011 0.753 0.652 -0.027 0.703 1.712 -0.201 

(4 factors) 

t-statistics 3.189 4.572 3.694 0.081 4.329 3.755 2.012 0.322 0.023 1.552 2.980 -0.089 1.096 4.450 -0.373 

Turnover 0.257 0.260 0.166 0.106 0.253 0.190 0.249 0.549 0.757 0.819 1.154 0.581 0.787 1.945 2.254 

Spearman Rank Correlation 

(2) 0.474 
              (3) 0.212 0.235 

             (4) -0.222 -0.291 -0.139 
            (5) 0.484 0.778 0.170 -0.145 

           (6) 0.300 0.581 -0.316 -0.149 0.530 
          (7) 0.069 -0.094 0.423 0.329 -0.019 -0.354 

         (8) 0.183 0.464 0.319 -0.438 0.229 0.109 -0.337 
        (9) -0.127 -0.427 0.199 0.423 -0.227 -0.434 0.626 -0.627 

       (10) 0.169 0.521 0.034 -0.412 0.269 0.357 -0.590 0.803 -0.837 
      (11) -0.113 -0.220 0.029 0.270 -0.112 -0.055 0.157 -0.379 0.563 -0.442 

     (12) 0.086 0.376 -0.091 -0.199 0.272 0.381 -0.680 0.619 -0.618 0.765 -0.168 
    (13) 0.119 0.505 0.093 -0.197 0.367 0.411 -0.526 0.717 -0.621 0.807 -0.205 0.910 

   (14) 0.062 -0.010 -0.391 0.061 0.050 0.178 -0.065 -0.324 0.235 -0.323 0.317 -0.119 -0.278 
  (15) -0.045 -0.371 0.231 0.192 -0.228 -0.451 0.747 -0.576 0.787 -0.833 0.331 -0.847 -0.833 0.191 
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A5. July 2000 - June 2011 

  
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 
Acc AG BEME GP IA NOA NSI Osc ROA FP Esur Liq ME Mom IVol 

Means 0.567 1.119 1.668 0.585 0.471 0.345 0.528 0.850 0.040 0.801 0.514 0.136 0.685 -0.740 0.017 

t-statistics 2.796 3.482 3.686 1.683 1.758 0.888 1.466 2.406 0.086 1.025 1.857 0.441 1.506 -0.990 0.023 

Alpha 
0.544 1.108 1.686 0.618 0.475 0.316 0.586 0.829 0.111 0.693 0.537 0.127 0.659 -0.661 0.152 

(CAPM) 

t-statistics 2.771 2.725 3.081 1.858 1.638 0.788 1.950 2.336 0.279 1.172 2.122 0.398 1.344 -0.863 0.270 

Alpha 
0.461 0.706 1.601 0.362 0.322 0.592 0.326 0.344 0.107 0.539 0.599 -0.074 0.686 -0.464 0.221 

(4 factors) 

t-statistics 2.272 2.208 2.914 1.211 1.190 1.645 1.371 1.282 0.436 1.557 3.611 -0.254 1.473 -0.694 0.644 

Turnover 0.264 0.269 0.171 0.103 0.247 0.180 0.250 0.600 0.756 0.821 1.153 0.584 0.789 2.078 2.541 

Spearman Rank Correlation 

(2) 0.463 
              (3) 0.217 0.479 

             (4) -0.066 0.078 0.298 
            (5) 0.275 0.597 0.180 0.159 

           (6) 0.308 0.262 -0.452 -0.383 0.456 
          (7) -0.181 0.131 0.432 0.632 0.218 -0.443 

         (8) 0.168 0.467 0.411 -0.175 0.173 0.064 -0.085 
        (9) -0.317 -0.262 0.125 0.531 -0.171 -0.592 0.587 -0.409 

       (10) 0.314 0.323 -0.004 -0.400 0.181 0.520 -0.541 0.468 -0.869 
      (11) 0.020 0.047 0.072 0.095 -0.010 -0.146 0.106 -0.156 0.414 -0.377 

     (12) 0.056 0.136 0.136 -0.051 0.029 0.003 -0.224 0.519 -0.212 0.253 0.094 
    (13) 0.284 0.521 0.300 -0.101 0.308 0.284 -0.240 0.702 -0.445 0.556 -0.065 0.651 

   (14) -0.023 -0.001 0.067 0.186 0.032 -0.228 0.213 -0.251 0.544 -0.587 0.610 0.062 -0.226 
  (15) -0.464 -0.308 0.122 0.387 -0.132 -0.595 0.662 -0.333 0.762 -0.814 0.169 -0.367 -0.606 0.369 
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Table 1 Estimates of time-varying CAPM  

This table reports the estimates of the time-varying model in equations (8) and (9), which we estimate using the Bayesian Markov Chain Monte Carlo Gibbs sampler. 

The estimated time series of alphas, betas, and idiosyncratic volatilities represent the posterior means of 10,000 draws, which we take after 10,000 burn-in iterations. 

The average represents the average values of the time-series of alphas, betas, and idiosyncratic volatilities, and their standard errors are reported in Standard Error. 

Constant, AR Coefficient, and Variance of Error Term represent the average values of the 10,000 draws of constants, AR parameters, and idiosyncratic volatility of 

AR(1) processes for alpha, beta, and idiosyncratic volatility, respectively. 

  Acc AG BEME GP IA NOA NSI Osc ROA FP Esur Liq ME Mom IVol 

Alpha 

Average 0.640 0.890 1.024 0.384 0.752 0.457 0.823 -0.126 1.202 -0.952 1.273 0.002 0.030 1.422 0.957 

Standard Error 0.010 0.025 0.021 0.005 0.017 0.018 0.006 0.031 0.023 0.026 0.012 0.022 0.031 0.022 0.029 

Constant 0.022 0.030 0.046 0.064 0.030 0.024 0.055 -0.005 0.033 -0.049 0.036 0.000 0.001 0.125 0.034 

AR Coefficient 0.965 0.964 0.954 0.835 0.959 0.944 0.933 0.971 0.972 0.949 0.971 0.968 0.965 0.913 0.965 

Variance of Error Term 0.014 0.056 0.071 0.047 0.035 0.055 0.017 0.063 0.039 0.098 0.011 0.046 0.113 0.170 0.092 

Unconditional Variance 0.195 0.791 0.788 0.154 0.440 0.506 0.131 1.112 0.700 0.993 0.193 0.734 1.638 1.018 1.346 

Beta 

Average -0.045 -0.090 -0.294 0.037 -0.111 0.082 -0.280 0.026 -0.110 0.237 0.015 0.071 0.030 0.045 -0.612 

Standard Error 0.007 0.005 0.012 0.008 0.002 0.008 0.010 0.005 0.012 0.010 0.002 0.004 0.004 0.016 0.011 

Constant -0.002 -0.002 -0.007 0.000 -0.013 0.002 -0.003 0.001 -0.002 0.004 0.001 0.005 0.002 0.006 -0.013 

AR Coefficient 0.949 0.972 0.974 0.986 0.881 0.982 0.988 0.975 0.986 0.980 0.938 0.923 0.931 0.864 0.978 

Variance of Error Term 0.004 0.001 0.006 0.001 0.002 0.002 0.002 0.002 0.003 0.003 0.001 0.004 0.004 0.066 0.004 

Unconditional Variance 0.039 0.025 0.124 0.043 0.010 0.050 0.062 0.031 0.093 0.076 0.006 0.027 0.033 0.262 0.101 

Idiosyncratic Volatility 

Standard Error 0.019 0.046 0.071 0.054 0.036 0.097 0.044 0.062 0.095 0.105 0.042 0.069 0.090 0.122 0.128 

Constant 0.186 0.242 0.241 0.223 0.185 0.120 0.169 0.382 0.269 0.510 0.285 0.360 0.534 0.271 0.457 

AR Coefficient 0.820 0.864 0.886 0.890 0.874 0.923 0.890 0.835 0.881 0.804 0.800 0.857 0.817 0.898 0.843 

Variance of Error Term 0.216 0.241 0.292 0.183 0.218 0.270 0.207 0.319 0.341 0.580 0.382 0.277 0.393 0.350 0.452 

Unconditional Variance 0.660 0.952 1.357 0.882 0.923 1.830 0.996 1.054 1.524 1.641 1.064 1.040 1.181 1.806 1.566 

Noise-Signal Ratio 48.730 17.005 19.076 18.931 26.000 33.445 58.461 16.742 39.426 16.686 97.566 22.494 10.476 10.613 17.064 
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Table 2 Correlation coefficients between confidence measures 
The table reports Spearman rank correlation coefficients between confidence of hedge portfolios (𝑐𝑝𝑡

𝑝
 in the lower triangular matrix and 𝑐𝑝𝑡

𝛼  in the upper triangular 

matrix) and Baker and Wurgler’s (2006) market-wide sentiment for the period from July 1970 to June 2011. All of these confidence measures are standardized to have 

mean zero with unit variance. The first order autocorrelation coefficients are reported in the last row of the table. 

 

 

 

Acc AG BEME GP IA NOA NSI IVol Liq ME Mom Osc ROA FP Esur Sent_BW 

Acc 1.000 0.642 0.130 -0.065 0.679 0.400 0.024 -0.503 0.073 0.324 -0.250 0.186 -0.468 0.420 0.120 0.520 

AG 0.674 1.000 0.396 0.101 0.806 0.564 0.204 -0.568 0.257 0.606 -0.294 0.335 -0.627 0.683 0.012 0.756 

BEME 0.161 0.364 1.000 0.191 0.381 -0.063 0.470 -0.173 0.338 0.501 -0.366 0.516 -0.263 0.331 -0.333 0.563 

GP -0.033 0.039 0.125 1.000 0.139 0.208 0.584 -0.006 0.179 0.151 0.036 -0.015 0.242 -0.083 0.107 0.441 

IA 0.743 0.720 0.266 0.142 1.000 0.525 0.191 -0.364 0.078 0.447 -0.283 0.155 -0.518 0.519 -0.051 0.682 

NOA 0.451 0.582 -0.024 0.102 0.441 1.000 0.120 -0.213 0.111 0.197 0.173 -0.186 -0.198 0.210 0.297 0.551 

NSI 0.005 0.054 0.312 0.501 0.181 0.105 1.000 0.060 0.157 0.135 -0.118 0.013 0.100 -0.025 -0.178 0.482 

Osc -0.493 -0.541 -0.034 0.377 -0.257 -0.213 0.241 1.000 -0.585 -0.803 0.240 -0.684 0.479 -0.657 -0.104 -0.501 

ROA 0.203 0.301 0.187 -0.310 0.062 0.151 -0.201 -0.664 1.000 0.791 -0.050 0.691 -0.183 0.340 0.033 0.563 

FP 0.354 0.484 0.331 -0.233 0.325 0.108 -0.149 -0.700 0.831 1.000 -0.287 0.797 -0.473 0.671 -0.014 0.711 

Esur -0.289 -0.344 -0.250 0.023 -0.172 0.083 -0.003 0.405 -0.329 -0.423 1.000 -0.385 0.430 -0.405 0.397 -0.052 

Liq 0.244 0.340 0.369 -0.428 0.020 -0.059 -0.180 -0.740 0.695 0.715 -0.459 1.000 -0.376 0.599 -0.180 0.437 

ME -0.320 -0.487 -0.197 0.242 -0.274 -0.075 0.375 0.414 -0.241 -0.314 0.418 -0.508 1.000 -0.706 0.343 -0.256 

Mom 0.357 0.564 0.197 -0.142 0.219 0.073 -0.270 -0.538 0.315 0.461 -0.442 0.593 -0.739 1.000 -0.167 0.488 

IVol 0.147 -0.025 -0.088 0.028 0.089 0.272 0.130 0.012 0.123 0.137 0.298 -0.186 0.604 -0.450 1.000 0.171 

Sent_BW 0.084 0.071 0.151 0.459 0.119 0.090 0.250 0.449 -0.452 -0.353 0.136 -0.447 0.113 -0.095 0.020 1.000 

Autocorrelation 0.986 0.985 0.983 0.977 0.985 0.986 0.987 0.988 0.989 0.989 0.973 0.985 0.988 0.988 0.993 0.983 
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Table 3 Overconfidence, trading volume and volatility 
This table represents the results of the least-squares dummy variable model for the effect of 

overconfidence on the trading volume and the log of idiosyncratic volatilities of the fifteen equity market 

neutral hedge portfolios. Turnover represents turnover difference between the top and bottom decile 

portfolios and the middle two decile portfolios, which is divided by the total turnover of the universe. 

Log-volatility (ℎ𝑝𝑡) is obtained from the time varying CAPM in equation (9). Two overconfidence 

measures (𝑐𝑝𝑡
𝛼 , 𝑐𝑝𝑡

𝑝
) for individual equity market neutral trading strategies are used: 𝑐𝑝𝑡

𝛼  is the change in 

alpha over the past 12 months, whereas 𝑐𝑝𝑡
𝑝

 is the number of successful forecasts during the past 12 

months. Sentiment represents the Baker and Wurgler (2006) index. The sentiment index and the 

overconfidence measures are standardized to have mean zero and unit variance. LPAR, which we use to 

control the effects of fund flows on hedge fund returns, represents the average return over the third to fifth 

months prior to the current month (the (t-3, t-5) window), i.e., 
1

3
∑ (𝛼𝑝𝑡−𝜏 + 𝜂𝑝𝑡−𝜏
5
𝜏=3 ).  In all cases, the 

least-squares dummy variable model is estimated in the presence of the four control variables, which 

include one-month Treasury bill rate, term spread (difference between the US ten year and one year 

Treasury bond rate), credit spread (difference between Moody's Aaa and Baa rated corporate bonds), and 

dividend yield (dividend yield of S&P500 Index). To conserve space, the estimates on the four control 

variables and the dummy variables for the fifteen portfolios are not reported. The numbers in parentheses 

are t-statistics using White cross-section standard errors. The bold numbers represent significance at the 5% 

level. 

 

  
Turnover Log-volatility 

 
 

𝑐𝑝𝑡
𝑝

  𝑐𝑝𝑡
𝛼   𝑐𝑝𝑡

𝑝
  𝑐𝑝𝑡

𝛼   

1970-

1990 

Constant 0.163 (1.547) 0.161 (1.536) 0.059 (2.029) 0.055 (1.895) 

Turnover 
    

0.005 (1.982) 0.005 (1.971) 

Turnover (-1) 0.722 (38.871) 0.721 (38.866) 
    

Log-volatility 0.071 (1.588) 0.069 (1.537) 
    

Log-volatility 

(-1)     
0.947 (51.249) 0.947 (50.959) 

Overconfidence  0.000 -(0.022) -0.009 -(0.738) 0.005 (2.138) 0.001 (0.614) 

Sentiment 0.065 (3.132) 0.064 (3.117) 0.001 (0.092) 0.001 (0.143) 

Alpha -0.014 -(0.476) -0.008 -(0.312) -0.004 -(0.801) 0.002 (0.559) 

LPAR -0.008 -(0.418) -0.008 -(0.412) -0.010 -(1.524) -0.009 -(1.473) 

1990-

2000 

Constant 0.310 (1.731) 0.366 (2.093) 0.114 (1.970) 0.115 (2.016) 

Turnover 
    

0.000 -(0.005) 0.000 (0.005) 

Turnover (-1) 0.651 (25.090) 0.652 (25.117) 
    

Log-volatility 0.231 (2.993) 0.223 (2.919) 
    

Log-volatility 

(-1)     
0.971 (42.833) 0.970 (43.306) 

Overconfidence -0.049 -(2.329) -0.020 -(1.405) 0.002 (0.760) 0.003 (1.374) 

Sentiment -0.171 -(2.233) -0.170 -(2.207) -0.050 -(2.496) -0.050 -(2.476) 

Alpha 0.087 (1.431) 0.010 (0.188) 0.003 (0.351) 0.004 (0.558) 

LPAR -0.055 -(1.860) -0.056 -(1.873) -0.022 -(2.217) -0.022 -(2.218) 

2000-

2011 

Constant 0.132 (0.419) 0.117 (0.366) 0.056 (0.583) 0.053 (0.556) 

Turnover 
    

0.001 (0.364) 0.001 (0.364) 

Turnover (-1) 0.720 (33.913) 0.720 (33.931) 
    

Log-volatility 0.163 (2.985) 0.161 (2.925) 
    

Log-volatility 

(-1)     
0.930 (37.118) 0.930 (37.250) 

Overconfidence 0.017 (0.734) 0.010 (0.503) -0.005 -(1.227) -0.005 -(1.860) 

Sentiment -0.043 -(1.263) -0.042 -(1.214) -0.003 -(0.222) -0.002 -(0.191) 

Alpha 0.150 (2.817) 0.167 (4.018) 0.004 (0.451) 0.002 (0.273) 

LPAR -0.033 -(1.302) -0.032 -(1.290) 0.000 (0.021) 0.000 (0.001) 
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Table 4 Empirical results for overconfidence 

This table reports the results of the least-squares dummy variable model for the temporal profits of the 

fifteen equity market neutral hedge portfolios, long only portfolios, and short only portfolios. Two 

overconfidence measures (𝑐𝑝𝑡
𝛼 , 𝑐𝑝𝑡

𝑝
) for individual equity market neutral trading strategies are used: 𝑐𝑝𝑡

𝛼  

is the change in alpha over the past 12 months, whereas 𝑐𝑝𝑡
𝑝

 is the number of successful forecasts during 

the past 12 months. Sentiment represents the Baker and Wurgler (2006) index. The sentiment index and 

the overconfidence measures are standardized to have mean zero and unit variance. LPAR, which we use 

to control the effects of fund flows on hedge fund returns, represents the average return over the third to 

fifth months prior to the current month (the (t-3, t-5) window), i.e., 
1

3
∑ (𝛼𝑝𝑡−𝜏 + 𝜂𝑝𝑡−𝜏
5
𝜏=3 ).  In all cases, 

the least-squares dummy variable model is estimated in the presence of the four control variables, which 

include one-month Treasury bill rate, term spread (difference between the US ten year and one year 

Treasury bond rate), credit spread (difference between Moody's Aaa and Baa rated corporate bonds), and 

dividend yield (dividend yield of S&P500 Index). To conserve space, the estimates on the four control 

variables and the dummy variables for the fifteen portfolios are not reported. The numbers in parentheses 

are t-statistics using White cross-section standard errors. The bold numbers represent significance at the 5% 

level. 

 

 

A. Hedge portfolios 

 
 

𝑐𝑝𝑡
𝑝  𝑐𝑝𝑡

𝛼  

1970-1990 

Confidence (A) 0.448 (3.245) 0.380 (3.624) 

Sentiment -0.016 -(0.108) 0.020 (0.138) 

Alpha 0.510 (1.844) 0.821 (3.241) 

LPAR -0.248 -(1.786) -0.223 -(1.626) 

1990-2000 

Confidence 0.824 (2.492) 0.585 (3.068) 

Sentiment 0.040 (0.118) 0.083 (0.257) 

Alpha 1.534 (1.832) 2.571 (2.348) 

LPAR -0.635 -(4.943) -0.628 -(5.028) 

2000-2011 

Confidence (B) 1.128 (3.709) 0.987 (5.031) 

Sentiment -0.255 -(1.163) -0.276 -(1.314) 

Alpha 0.251 (0.554) 1.080 (2.650) 

LPAR -0.351 -(2.415) -0.322 -(2.289) 

  B-A (p-value) 0.680 (0.025) 0.608 (0.002) 

B. Long only portfolios 

1970-1990 

Confidence 0.309 (2.752) 0.237 (2.626) 

Sentiment -0.181 -(0.606) -0.156 -(0.528) 

Alpha 0.265 (1.435) 0.498 (3.090) 

LPAR -0.545 -(2.127) -0.528 -(2.069) 

2000-2011 

Confidence 0.370 (2.463) 0.455 (3.881) 

Sentiment 0.010 (0.020) -0.033 -(0.066) 

Alpha 0.395 (1.118) 0.575 (1.894) 

LPAR -0.633 -(2.159) -0.622 -(2.142) 

C. Short only portfolios 

1970-1990 

Confidence -0.040 -(0.439) -0.083 -(1.201) 

Sentiment -0.159 -(0.785) -0.164 -(0.798) 

Alpha -0.272 -(1.866) -0.262 -(2.101) 

LPAR -0.324 -(1.824) -0.325 -(1.827) 

2000-2011 

Confidence -0.553 -(2.470) -0.388 -(2.646) 

Sentiment 0.194 (0.339) 0.177 (0.316) 

Alpha 0.085 (0.249) -0.425 -(1.767) 

LPAR -0.388 -(1.273) -0.399 -(1.301) 
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Table 5  Self-attribution bias with respect to signs of signals 

The results of the least-squares dummy variable model for the temporal profits of the fifteen equity market neutral hedge portfolios are reported. ‘Pos Signal’ and ‘Neg 

Signal’ represent positive and negative signals respectively. Two overconfidence measures (𝑐𝑝𝑡
𝛼 , 𝑐𝑝𝑡

𝑝
) for individual equity market neutral trading strategies are used: 

𝑐𝑝𝑡
𝛼  is the change in alpha over the past 12 months, whereas 𝑐𝑝𝑡

𝑝
 is the number of successful forecasts during the past 12 months. Sentiment represents the Baker and 

Wurgler (2006) index. The sentiment index and the overconfidence measures are standardized to have mean zero and unit variance. LPAR, which we use to control the 

effects of fund flows on hedge fund returns, represents the average return over the third to fifth months prior to the current month (the (t-3, t-5) window), i.e., 
1

3
∑ (𝛼𝑝𝑡−𝜏 + 𝜂𝑝𝑡−𝜏
5
𝜏=3 ).  In all cases, the least-squares dummy variable model is estimated in the presence of the four control variables, which include one-month 

Treasury bill rate, term spread (difference between the US ten year and one year Treasury bond rate), credit spread (difference between Moody's Aaa and Baa rated 

corporate bonds), and dividend yield (dividend yield of S&P500 Index). To conserve space, the estimates on the four control variables and the dummy variables for the 

fifteen portfolios are not reported. The numbers in parentheses are t-statistics using White cross-section standard errors. For the difference between two estimates, the 

numbers in parentheses represent p-values. The bold numbers represent significance at the 5% level. 

 

    𝑐𝑝𝑡
𝑝  𝑐𝑝𝑡

𝛼  

1970-1990 

Pos Signal 0.032 (5.582) 0.036 (3.983) 

Neg Signal 0.003 (0.309) 0.028 (2.183) 

Sentiment 0.053 (2.980) -0.039 -(1.411) 

Alpha 1.306 (46.072) 0.701 (12.393) 

LPAR 0.079 (3.337) 0.036 (0.996) 

Pos-Neg signal (p-value) 0.029 (0.003) 0.008 (0.597) 

1990-2000 

Pos Signal 0.021 (3.962) 0.033 (3.209) 

Neg Signal 0.008 (1.113) 0.008 (1.031) 

Sentiment -0.111 -(2.887) -0.233 -(4.103) 

Alpha 1.963 (20.980) 0.994 (7.040) 

LPAR 0.034 (2.972) 0.026 (1.500) 

Pos-Neg signal (p-value) 0.013 (0.094) 0.025 (0.005) 

2000-2011 

Pos Signal 0.021 (2.892) 0.039 (3.592) 

Neg Signal 0.024 (3.995) 0.035 (3.470) 

Sentiment 0.225 (10.672) 0.282 (9.417) 

Alpha 1.449 (37.977) 0.783 (9.773) 

LPAR 0.029 (1.790) 0.005 (0.213) 

Pos-Neg signal (p-value) -0.003 (0.752) 0.004 (0.717) 
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Table 6 Signals, Ambiguity Aversion and Overprecision 
Equation (7) is used to estimate the least-squares dummy variable model for the temporal profits of the 

fifteen equity market neutral hedge portfolios. ‘Pos_Con Pos_Sig’ represents positive confidence - 

positive signal, ‘Neg_Con Neg_Sig’ negative confidence - negative signal, ‘Neg_Con Pos_Sig’ negative 

confidence - positive signal, and ‘Pos_Con Neg_Sig’ positive confidence - negative signal. Two 

overconfidence measures (𝑐𝑝𝑡
𝛼 , 𝑐𝑝𝑡

𝑝
) for individual equity market neutral trading strategies are used: 𝑐𝑝𝑡

𝛼  

is the change in alpha over the past 12 months, whereas 𝑐𝑝𝑡
𝑝

 is the number of successful forecasts during 

the past 12 months. Sentiment represents the Baker and Wurgler (2006) index. The sentiment index and 

the overconfidence measures are standardized to have mean zero and unit variance. LPAR, which we use 

to control the effects of fund flows on hedge fund returns, represents the average return over the third to 

fifth months prior to the current month (the (t-3, t-5) window), i.e., 
1

3
∑ (𝛼𝑝𝑡−𝜏 + 𝜂𝑝𝑡−𝜏
5
𝜏=3 ).  In all cases, 

the least-squares dummy variable model is estimated in the presence of the four control variables, which 

include one-month Treasury bill rate, term spread (difference between the US ten year and one year 

Treasury bond rate), credit spread (difference between Moody's Aaa and Baa rated corporate bonds), and 

dividend yield (dividend yield of S&P500 Index). To conserve space, the estimates on the four control 

variables and the dummy variables for the fifteen portfolios are not reported. The numbers in parentheses 

are t-statistics using White cross-section standard errors. For the difference between two estimates, the 

numbers in parentheses represent p-values. The bold numbers represent significance at the 5% level.  

 

    𝑐𝑡
𝑝
  𝑐𝑝𝑡

𝛼   

1970-1990 

Pos_Con Pos_Sig 0.938 (96.044) 0.951 (91.654) 

Neg_Con Neg_Sig 0.909 (94.052) 0.937 (73.045) 

 Neg_Con Pos_Sig 1.031 (160.598) 0.994 (147.703) 

Pos_Con Neg_Sig 1.039 (96.737) 1.000 (110.986) 

Sentiment  0.002 (0.347) 0.022 (2.479) 

LPAR -0.019 -(3.008) -0.046 -(4.234) 

Pos_Neg - Neg_Pos (p-value) 0.008 (0.373) 0.006 (0.519) 

 Neg_Pos - Pos_Pos (p-value) 0.093 (0.000) 0.043 (0.000) 

Pos_Neg - Neg_Neg  (p-value) 0.131 (0.000) 0.063 (0.000) 

Pos_Pos - Neg_Neg  (p-value) 0.030 (0.000) 0.014 (0.198) 

1990-2000 

Pos_Con Pos_Sig 0.970 (184.404) 0.972 (238.924) 

Neg_Con Neg_Sig 0.977 (180.980) 0.982 (231.465) 

 Neg_Con Pos_Sig 1.015 (267.275) 1.002 (213.196) 

Pos_Con Neg_Sig 1.031 (255.846) 1.013 (152.127) 

Sentiment  0.067 (2.329) 0.055 (1.796) 

LPAR -0.014 -(1.822) -0.026 -(2.899) 

Pos_Neg - Neg_Pos (p-value) 0.015 (0.001) 0.012 (0.039) 

 Neg_Pos - Pos_Pos (p-value) 0.045 (0.000) 0.030 (0.000) 

Pos_Neg - Neg_Neg  (p-value) 0.054 (0.000) 0.031 (0.000) 

Pos_Pos - Neg_Neg  (p-value) -0.007 (0.024) -0.010 (0.001) 

2000-2011 

Pos_Con Pos_Sig 0.962 (115.565) 0.974 (155.978) 

Neg_Con Neg_Sig 0.975 (127.155) 0.981 (161.033) 

 Neg_Con Pos_Sig 1.018 (205.171) 0.992 (171.478) 

Pos_Con Neg_Sig 1.033 (127.566) 1.002 (170.361) 

Sentiment  0.026 (1.293) 0.021 (1.024) 

LPAR -0.007 -(0.566) -0.013 -(0.936) 

Pos_Neg - Neg_Pos (p-value) 0.015 (0.149) 0.009 (0.259) 

 Neg_Pos - Pos_Pos (p-value) 0.055 (0.000) 0.019 (0.017) 

Pos_Neg - Neg_Neg  (p-value) 0.058 (0.000) 0.021 (0.027) 

Pos_Pos - Neg_Neg  (p-value) -0.012 (0.002) -0.007 (0.104) 
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Table 7  Out-of-sample forecasting performance comparison of portfolios of hedge portfolios 
At the end of June every year, we form five equally weighted portfolios from the fifteen hedge portfolios. These portfolios of hedge portfolios are constructed using the 

entire fifteen hedge portfolios (ENT), hedge portfolios whose alphas are positive at the end of June (A0), hedge portfolios whose alphas are larger than 0.5 at the end of 

June (A5), hedge portfolios whose annual Sharpe ratios of alphas at June are larger than 0.5 (SRA), and hedge portfolios whose annual Sharpe ratio of realized profits 

(i.e., average realized profits divided by volatility of realized profits over the last 12 months) are larger than 0.5 at the end of June (SRR). The bold numbers represent 

significance at the 5% level.  

 

 All (ENT)  

Alphas 

 

Realized Profits 

 

Raw Returns 

 

 
Alpha>0.5 (A5) 

 
Annual Sharpe Ratio>0.5 

(SRA) 

 

Annual Sharpe Ratio>0.5 (SRR) 

 

Annual Sharpe Ratio>0.5 (SRRR) 

 

Raw 

Return 
Alpha 

Realized 

Profits  

Raw 

Return 
Alpha 

Realized 

Profits  

Raw 

Return 
Alpha 

Realized 

Profits 

 

Raw 

Return 
Alpha 

Realized 

Profits 

 

Raw 

Return 
Alpha 

Realized 

Profits 

 

A. Performance of portfolios of hedge portfolios (PHPs) 

                Entire Sample Period (July 1971 - June 2011) 

                Mean 0.596 0.588 0.631 

 

0.999 1.053 1.044 

 

0.992 0.986 1.029 

 

0.775 0.888 0.789 

 

0.819 0.868 0.823 

Standard Error 0.059 0.007 0.053 

 

0.100 0.008 0.085 

 

0.088 0.008 0.076 

 

0.116 0.014 0.103 

 

0.129 0.016 0.115 

Annual Sharpe Ratio 1.588 13.236 1.891 

 

1.580 20.531 1.941 

 

1.779 19.380 2.136 

 

1.055 10.199 1.215 

 

1.004 8.821 1.134 

July 1971 - June 1981 

                  Mean 0.721 0.613 0.702 

 

1.260 1.055 1.199 

 

1.131 1.006 1.076 

 

1.141 1.015 1.066 

 

1.101 0.976 1.030 

Standard Error 0.139 0.010 0.131 

 

0.171 0.011 0.140 

 

0.169 0.010 0.140 

 

0.184 0.015 0.156 

 

0.179 0.016 0.154 

Annual Sharpe Ratio 1.636 18.715 1.689 
 

2.331 29.352 2.715 
 

2.120 31.658 2.428 
 

1.960 21.741 2.167 
 

1.942 18.827 2.116 

 July 1981 - June 1990 

                  Mean 0.545 0.579 0.612 

 

1.222 1.226 1.283 

 

1.066 1.101 1.139 

 

0.899 1.087 1.009 

 

0.909 1.106 1.019 

Standard Error 0.094 0.014 0.083 
 

0.141 0.011 0.123 
 

0.129 0.010 0.110 
 

0.143 0.020 0.127 
 

0.148 0.023 0.130 
Annual Sharpe Ratio 1.841 13.270 2.335 

 

2.738 34.230 3.294 

 

2.623 34.306 3.274 

 

1.987 17.156 2.512 

 

1.948 15.200 2.481 

July 1991 - June 2001 

                  Mean 0.646 0.658 0.728 

 

0.954 1.070 1.116 

 

1.093 1.030 1.214 

 

0.741 0.854 0.890 

 

1.032 0.888 1.155 

Standard Error 0.104 0.008 0.089 

 

0.151 0.009 0.136 

 

0.169 0.013 0.148 

 

0.181 0.021 0.172 

 

0.274 0.025 0.260 

Annual Sharpe Ratio 1.967 27.673 2.594 

 

2.001 38.030 2.587 

 

2.045 25.461 2.603 

 

1.296 12.579 1.634 

 

1.191 11.093 1.403 

July 2001 - June 2011 

                  Mean 0.473 0.504 0.483 

 

0.562 0.861 0.580 

 

0.675 0.807 0.686 

 

0.319 0.594 0.190 

 

0.234 0.504 0.087 

Standard Error 0.132 0.018 0.112 

 

0.294 0.013 0.246 

 

0.224 0.017 0.196 

 

0.357 0.028 0.309 

 

0.367 0.028 0.312 

Annual Sharpe Ratio 1.131 8.708 1.364 
 

0.603 21.557 0.745 
 

0.952 15.427 1.105 
 

0.283 6.805 0.194 
 

0.202 5.736 0.088 
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All (ENT) 

 
Alphas 

 
Realized Profits 

 
Raw Returns 

 
 

Alpha>0.5 (A5) 
 

Annual Sharpe Ratio>0.5 (SRA) 

 

Annual Sharpe Ratio>0.5 (SRR) 

 

Annual Sharpe Ratio>0.5 (SRRR) 

 

Raw 

Return 
Alpha 

Realized 

Profits  

Raw 

Return 
Alpha 

Realized 

Profits  

Raw 

Return 
Alpha 

Realized 

Profits 

 

Raw 

Return 
Alpha 

Realized 

Profits 

 

Raw 

Return 
Alpha 

Realized 

Profits 

 

B. Tests of PHP performance difference between sub-periods 

Between the 1970s and 2000s 

                  Mean Difference -0.248 -0.109 -0.219 

 

-0.698 -0.194 -0.618 

 

-0.822 -0.422 -0.876 

 

-0.456 -0.199 -0.391 

 

-0.867 -0.472 -0.942 

t-stat -14.120 -56.721 -13.879 

 

-22.473 -124.779 -23.923 

 

-22.423 -147.617 -27.730 

 

-17.801 -112.374 -17.755 

 

-23.234 -160.407 -29.666 

Between the 1980s and 2000s 

                  Mean Difference -0.072 -0.075 -0.129 

 

-0.660 -0.365 -0.703 

 

-0.580 -0.493 -0.819 

 

-0.391 -0.294 -0.453 

 

-0.675 -0.602 -0.932 

t-stat -4.868 -35.830 -10.122 

 

-22.146 -235.415 -27.956 

 

-16.541 -158.498 -26.845 

 

-16.565 -166.159 -22.062 

 

-18.672 -182.777 -30.191 

Between the 1990s and 2000s 

                  Mean Difference -0.172 -0.154 -0.245 

 

-0.392 -0.209 -0.536 

 

-0.423 -0.261 -0.700 

 

-0.418 -0.223 -0.529 

 

-0.797 -0.384 -1.068 

t-stat -11.219 -85.401 -18.787 

 

-12.991 -148.090 -20.841 

 

-11.572 -81.648 -21.664 

 

-16.288 -116.863 -23.597 

 

-19.058 -111.896 -28.778 
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Table 8 Effects of Overconfidence on the Performance of Hedge Portfolios 
At the end of June every year, we form three equally weighted portfolios using the fifteen equity market neutral hedge portfolios, each of which includes five hedge portfolios depending on 

the levels of the confidence measures, 𝑐𝑝𝑡
𝛼  and 𝑐𝑝𝑡

𝑝
. These portfolios of hedge portfolios (PHPs) are held for the following one year. The procedure is repeated from June 1971 to June 2010. 

The bold numbers represent significance at the 5% level.  

 

A. Probability of Successful Forecasts during the Past 12 Months (𝒄𝒑𝒕
𝒑

) 

 

 Low Overconfidence  Middle Overconfidence  High Overconfidence  

 

 High - Low 

Overconfidence  

 

Raw 

Return 
Alpha 

Temporal 

Profits 

Raw 

Return 
Alpha 

Temporal 

Profits 

Raw 

Return 
Alpha 

Temporal 

Profits 

 

Raw 

Return 
Alpha 

Temporal 

Profits 

Entire Sample Period (July 1971 - June 2011) 

Mean -0.177 0.245 -0.404 0.765 0.610 0.158 1.237 0.929 0.385 

 
1.414 0.684 0.788 

Standard Error 0.153 0.022 0.134 0.102 0.014 0.095 0.134 0.020 0.120 

 

0.245 0.038 0.220 

Annual Sharpe Ratio -3.997 39.304 -10.427 25.943 146.784 27.890 32.061 164.674 11.124 

 

19.997 62.638 12.432 

Proportions to Raw Returns 

          

48% 56% 

July 1971 - June 1981 

Mean -0.244 -0.051 -0.141 0.817 0.696 0.116 1.412 1.184 0.235 

 
1.656 1.236 0.376 

Standard Error 0.154 0.030 0.140 0.122 0.021 0.113 0.171 0.024 0.150 

 

0.250 0.049 0.220 

Annual Sharpe Ratio -5.503 -5.857 -3.471 23.263 113.400 24.991 28.685 172.901 5.445 

 

22.991 87.068 5.919 

Proportions to Raw Returns 

          

75% 23% 

July 1981 - June 1991 

Mean -0.234 0.565 -0.812 0.800 0.589 0.262 1.359 0.817 0.752 

 

1.593 0.251 1.564 

Standard Error 0.429 0.025 0.394 0.258 0.021 0.249 0.351 0.029 0.325 

 

0.746 0.051 0.689 

Annual Sharpe Ratio -1.889 77.644 -7.142 10.733 97.378 11.849 13.424 96.484 8.019 

 

7.398 17.194 7.866 

Proportions to Raw Returns 

          

16% 98% 

July 2001 - June 2011 

Mean 0.009 0.488 -0.496 0.629 0.468 0.132 0.782 0.556 0.301 

 
0.773 0.069 0.797 

Standard Error 0.298 0.021 0.216 0.198 0.028 0.177 0.208 0.025 0.178 

 

0.363 0.032 0.286 

Annual Sharpe Ratio 0.101 81.000 -7.952 11.013 56.932 11.765 13.050 76.124 5.862 

 

7.373 7.510 9.639 

Proportions to Raw Returns 

          

9% 103% 
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B. Change in Alpha over the Past 12 Months (𝒄𝒑𝒕
𝜶 )  

 

 Low Overconfidence  Middle Overconfidence  High Overconfidence  

 

 High - Low 

Overconfidence  

 

Raw 

Return 
Alpha 

Temporal 

Profits 

Raw 

Return 
Alpha 

Temporal 

Profits 

Raw 

Return 
Alpha 

Temporal 

Profits 

 

Raw 

Return 
Alpha 

Temporal 

Profits 

Entire Sample Period (July 1971 - June 2011) 

Mean -0.103 0.413 -0.482 0.622 0.531 0.123 1.301 0.844 0.487 

 

1.404 0.430 0.969 

Standard Error 0.144 0.022 0.126 0.114 0.014 0.095 0.133 0.020 0.121 

 

0.235 0.038 0.213 

Annual Sharpe Ratio -2.472 65.330 -13.222 18.976 127.151 4.491 33.883 145.220 13.940 

 

20.734 38.752 15.759 

Proportions to Raw Returns 

          

31% 69% 

July 1971 - June 1981 

Mean 0.047 0.384 -0.282 0.518 0.467 0.083 1.405 0.985 0.387 

 

1.358 0.602 0.669 

Standard Error 0.141 0.037 0.123 0.131 0.020 0.114 0.173 0.035 0.157 

 

0.252 0.069 0.223 

Annual Sharpe Ratio 1.162 35.943 -7.967 13.759 81.417 2.508 28.132 97.295 8.541 

 

18.701 30.290 10.386 

Proportions to Raw Returns 

          

44% 49% 

July 1981 - June 1991 

Mean -0.475 0.448 -0.828 1.067 0.747 0.301 1.345 0.779 0.737 

 

1.819 0.331 1.565 

Standard Error 0.391 0.035 0.360 0.282 0.022 0.235 0.318 0.026 0.307 

 

0.665 0.054 0.634 

Annual Sharpe Ratio -4.209 44.886 -7.957 13.115 119.426 4.438 14.646 105.840 8.310 

 

9.474 21.303 8.554 

Proportions to Raw Returns 

          

18% 86% 

July 2001 - June 2011 

Mean -0.016 0.434 -0.515 0.375 0.439 0.023 1.060 0.639 0.429 

 

1.076 0.205 0.944 

Standard Error 0.303 0.034 0.241 0.233 0.028 0.190 0.247 0.020 0.202 

 

0.411 0.041 0.330 

Annual Sharpe Ratio -0.181 43.659 -7.407 5.578 54.187 0.422 14.871 110.677 7.373 

 

9.069 17.161 9.904 

Proportions to Raw Returns 

          

19% 88% 
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Figure 1 Cumulative alphas and realized profits of hedge portfolios 

Cumulative realized profits and alphas are presented in log-scale under the assumptions that the initial 

AUM is 100 with a gross leverage of two, and that the returns are reinvested. 
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Figure 2 Cumulative Autoregressive Coefficients of Temporal Profits 

The temporal profits of the fifteen equity market neutral hedge portfolios are regressed on their own lagged variables in the least-squares dummy variable model. As 

control variables, we use LPAR and four macroeconomic variables. LPAR represents the average return over the third to fifth months prior to the current month (the (t-

3, t-5) window), i.e., 
1

3
∑ (𝛼𝑝𝑡−𝜏 + 𝜂𝑝𝑡−𝜏
5
𝜏=3 ), which we use to control the effects of fund flows. The four macroeconomic variables include the one-month Treasury bill 

rate, term spread (difference between the US ten year and one year Treasury bond rate), credit spread (difference between Moody's Aaa and Baa rated corporate bonds), 

and dividend yield (dividend yield of S&P500 Index). The coefficients on the lags are then cumulated. TP represents ‘temporal profit’ and the numbers in the round 

brackets represent lags. 
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Figure 3 Cumulative alphas and realized profits of the five out-of-sample portfolios of hedge portfolios 

At the end of June every year, we form equally weighted portfolios from the fifteen hedge portfolios. These portfolios of hedge portfolios are constructed using the 

entire fifteen hedge portfolios (ENT), hedge portfolios whose alphas are larger than 0.5 at the end of June (A5), hedge portfolios whose annual Sharpe ratio of realized 

profits (i.e., average realized profits divided by volatility of realized profits over the last 12 months) are larger than 0.5 at the end of June (SRR), and hedge portfolios 

whose annual Sharpe ratio of raw returns (i.e., average raw return divided by volatility of raw returns over the last 12 months) are larger than 0.5 at the end of June 

(SRRR). 
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