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Abstract

This paper proposes a novel approach to measure and analyze the effect of tem-
perature on electricity demand. This temperature effect is specified as a function
of the density of temperatures observed at a high frequency with a functional
coefficient, which we call the temperature response function. This approach
contrasts with the usual approach to model the temperature effect as a function
of heating and cooling degree days. We further investigate how non-climate
variables, which include the price of electricity relative to that of substitutable
energy and latent variables such as preferences and technology that we proxy by
a linear time trend, affect the demand response to temperature changes. Our
approach and methodology are demonstrated using Korean electricity demand
data for residential and commercial sectors.
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1 Introduction

In households and firms in modern economies, electricity is one of the most essential goods

consumed. It is certainly no surprise that there is an extensive literature that seeks to

explain the variability of electricity demand across markets or in a given market over time.

There is a long tradition in this literature, going back at least to Engle et al. (1989),

of modeling the long-run and short-run effects of economic covariates, such as price and

income, using an error-correction model. See also Silk and Joutz (1997), Beenstock et al.

(1999), inter alia.

Because of the obvious effects of temperature on the demand for electricity in heating

and cooling, these studies typically employ some temperature-based metric to control for

short-run temperature-induced fluctuations in demand, which occur at seasonal and higher

frequencies. Controlling instead for long-run influences on electricity demand, we focus on

modeling these short-run demand fluctuations, which we may think of as the high-frequency

(HF) component of electricity demand. We may view the response of the HF component

to temperature as a temperature response function (TRF).1

In modeling temperature effects, researchers have long recognized the inadequacy of

temporally aggregated measures of temperature, such as a monthly average. A linear TRF

based on a monthly average temperature suffers from at least two major well-known defi-

ciencies: linearity fails to capture increased demand at both very high and very low tem-

peratures, and the average over a month may not adequately reflect usage during periods

of temperature extremes in a given month.

The standard method for handling these deficiencies has been to employ heating degree

days (HDD) and cooling degree days (CDD), which measure the number of degrees that

the daily average temperatures in a given period – say, a month – fall below (for HDD)

or rise above (for CDD) a threshold value, usually 18◦C or 65◦F. (See, e.g., Gupta and

Yamada, 1972; Al-Zayer and Al-Ibrahim, 1996; Sailor and Muñoz, 1997; Fan and Hyndman,

2011.) Using these metrics in an otherwise linear model replaces a linear TRF with a

piecewise linear TRF with a break point at the threshold temperature, addressing the first

deficiency, while indirectly employing intramonthly data (daily averages), addressing the

second deficiency.

Of course, piecewise linearity of the TRF and an arbitrary specification of the threshold

may still be inadequate, and there are a number of studies aimed at improving the functional

form by way of more sophisticated nonlinear parametric methods or even nonparametric

1Our approach does not explicitly model a demand response from temperature fluctuations at periodicities
longer than seasonal, because we do not differentiate between the distribution of temperatures in January
of one year from that January in another year.
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methods, including Engle et al. (1986), Filippini (1995), Pagá and Gürer (1996), Henley

and Peirson (1998), Valor et al. (2001), Pardo et al. (2002), and Moral-Carcedo and

Vincens-Otero (2005).

The second deficiency, using a temporal aggregate, seems to have received less atten-

tion. Perhaps the indirect use of daily data by way of the HDD and CDD (H/CDD)

metrics is viewed as adequate to capture intramonthly fluctuations, and perhaps the lack of

econometric methods to deal with data observed at different sampling frequencies has been

an obstacle to using intramonthly temperature data. Nonetheless, the fact that temporal

aggregation may have a deleterious effect on inference is well known.

Two examples illustrate the inadequacy of using H/CDD data. First, suppose that two

months have the same number of CDDs (20), but that one has 20 days on which the average

temperature is 19◦C with the remaining days at or below 18◦C, but the other has one day

on which the average temperature is 38◦C but with the remaining days at or below 18◦C.

A deviation from the threshold of a single degree would not likely increase electricity usage

much if at all, while a deviation of 20◦C would very likely induce a massive increase in

cooling. Introducing piecewise linearity into the TRF by way of CDDs cannot adequately

capture this difference, because the number of CDDs is the same in both months.

As a second example, suppose that temperature fluctuations within a day are substantial,

as may be the case in continental climates, such as the Midwestern US. On a given day, the

average may show 18◦C, while the fluctuation over the course of that day may be ±8◦C.2

Monthly measures of HDD and CDD would not count that day, even though automated

thermostats may switch on the heat, the air conditioning, or even both during the course

of that day.

There is a third – perhaps more subtle – deficiency of standard temperature response

functions. A TRF based only on temperature does not take into account economic or

other non-climate covariates, such as the price of electricity. The subtlety lies in the fact

that demand models typically do include these covariates. However, controlling for high-

frequency temperature fluctuations separately from these covariates means that the impact

of cold weather, for example, must be the same regardless of the price of electricity. Since

the price of electricity relative to an alternate heating source, such as city gas, may influence

an economic agent’s use of electricity at a given cold temperature, we should not expect the

TRF to be stable as relevant economic covariates evolve.

Further, the effect of price in such models must be the same regardless of season. Never-

2According to the US National Weather Service, http://www.srh.noaa.gov/ama/?n=50ranges, accessed
October 10, 2014, average fluctuations of 30◦F (16.68◦C, or roughly ±8◦C) are common for some parts of
the Midwest (High Plains region) in March.



3

theless, if the electricity price is less expensive relative to rival fuels, demand for electricity

in heating may increase during the winter time, even though the effect of changes in price

may be negligible during the spring and summer time when there is little demand for heat-

ing. Fan and Hyndman (2011) estimate price elasticities that are in fact different in the

winter and than in the summer.

In related research (Chang et al., 2014) focusing on time-varying coefficients in an error-

correction model, we employ a semiparametric functional coefficient approach to the tem-

perature response function that maps hourly and geographically disaggregated temperature

observations onto a monthly measure of the seasonal component of electricity demand.

This mixed sampling frequency functional coefficient approach easily addresses the first two

deficiencies of the standard H/CDD approach mentioned above: the semiparametric spec-

ification allows for nonlinearity in the spirit of Engle et al. (1986), inter alia, while the

functional coefficient explicitly utilizes intramonthly temperature data.

In this paper, we focus only on the HF component of demand, and our main aim

is to address the third deficiency in addition to the first two. In place of a TRF, we

introduce a new concept: the cross-temperature response function (CTRF). The CTRF

employs economic covariates directly in the component temperature response functions,

both allowing the seasonal demand component to respond to non-climate variables and

allowing the effects of non-climate variables to affect the response of the HF component of

demand to temperature.

We decompose the effect of temperature on the HF component of electricity demand

into three different components: a pure temperature effect, a price-temperature effect, and

a time-temperature effect. We investigate the effect of temperature conditional on price

and other factors proxied by time, so that the pure temperature effect can be identified.

We apply our model to Korean residential and commercial electricity demand, finding

that non-climate variables have particularly substantial effects on changes in the tempera-

ture response function of the commercial sector.

The rest of the paper is organized as follows. In the next section, we introduce the

TRF and CTRF, novel measures of seasonality using the entire intramonthly temperature

distribution for each month, and we show how they generalize extant measures of seasonality,

average temperature and H/CDD data. We discuss data for our application to Korean

electricity demand in Section 3 and our estimation results in Section 4. Section 5 concludes.
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2 Measurement of the Temperature Effect

2.1 Temperature Response Function

The temperature response function was used by subsets of the present authors in previous

work (Chang and Martinez-Chombo, 2003, and Chang et al., 2014). Because this concept

is critical in developing our analysis, we provide here all of the details for the reader’s

convenience and in fact a more extensive discussion that supersedes the discussions of the

temperature response function in those papers.

Consider a hypothetical measure y of the HF component of electricity demand observed

as often as temperature. Such a HF measure abstracts from demand changes directly due

to slowly evolving economic covariates, such long-run income changes. We will refer to this

component of demand simply as the HF component. Our main purpose is to estimate the

mean of y conditional on temperature and economic covariates that may fluctuate frequently.

Setting aside the possibility of economic covariates for now, we define the temperature

response function (TRF) g to be a possibly nonlinear function that maps the temperature

to a response of the HF component of demand.

More realistically, the measure of the HF component of electricity demand is available

only monthly, and we denote it by yt for t = 1, . . . , T . Letting ft denote the density of

temperature observations in month t, an estimator for the conditional mean of yt given ft

is given by

τt =

∫

ft(r)g(r)dr, (1)

where r is a dummy of integration, but we may think of r as representing intramonthly

temperature observations, and we are integrating over all temperatures in month t.

More formally, we may write

g(r0) =

∫

δr0(r)g(r)dr,

where δr0 is the dirac delta function at r0 – i.e., the function that has a spike at a point

r0 and integrates to 1. We may interpret the value of function g at r0 as the temperature

effect on the HF component of electricity demand when the temperature distribution is

hypothetically concentrated at r0 – i.e., when the temperature density is given by δr0 .

Note that τt captures both the inherent nonlinearity in the relationship by way of g

and the available intramonthly data by way of the functional approach. For a given TRF

g, the relationship between the density f and temperature effect τ is linear, i.e., if the

temperature densities f1 and f2 yield temperature effects τ1 and τ2, then the temperature
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effect of c1f1 + c2f2 becomes c1τ1 + c2τ2 for any constants c1 and c2. In this context, we

may simply regard the TRF g as a functional coefficient of temperature density.

Suppose instead that we aggregate the temperature data into a single average tem-

perature datum for month t, and then rely on a nonlinear function h to estimate the

temperature effect. The average temperature in a given month is
∫

rft(r)dr, so that single-

frequency parametric or nonparametric methods discussed in this literature could be used

with h
( ∫

rft(r)dr
)

to estimate h. However, h is not the TRF – it does not estimate the

response to temperature as g does, unless g and h are both (unrealistically) linear. Rather,

h estimates the aggregate response to the average monthly temperature, and a temperature

measurement of, say, 18◦C means that demand must respond as if the temperature were

constant at 18◦C for the whole month.

Using H/CDD data in place of a monthly average improves the situation. These mea-

sures may be written as

HDDt =

∫

hH

(
∫

rft(r)dr

)

ds and CDDt =

∫

hC

(
∫

rft(r)dr

)

ds

where hH and hC are functions defined as hH(z) = max(18 − z, 0) and hC(z) = max(z −

18, 0) with the commonly used threshold temperature of 18◦C, and where the integral

across r denotes a daily average of intradaily temperatures, while the integral across s

denotes a monthly sum of daily hH and hC . H/CDD data are often used directly, or else

h(HDDt, CDDt) may be estimated. Because hH and hC are piecewise linear functions, it is

possible to write τt as c1HDDt + c2CDDt for constants c1 and c2 (linear h) for a piecewise

linear V -shaped g. The coefficients c1 and c2 allow the desirable asymmetry of the V shape

often discussed in the literature.

Both of the preceding examples, monthly average and H/CDD, are very special cases.

The efforts to move away from linear functions h and/or g in favor of smooth functions –

U -shaped instead of V -shaped – without a fixed threshold temperature clearly undermine

the use of a monthly average and even undermine the use of a smooth nonlinear function

of H/CDD data.

Using intramonthly temperature data allows us to estimate (1) directly, more precisely

estimating the response g of demand to the actual temperatures observed within a given

month. To estimate the TRF g, we set

yt = τt + εt =

∫

ft(r)g(r)dr + εt, (2)

where εt is a mean-zero error term independent of ft for t = 1, . . . , T .
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We approximate the TRF g by a flexible Fourier functional (FFF) form, which decom-

poses the function g as a linear combination of a polynomial and pairs of trigonometric

functions.3 For our subsequent analysis, we normalize the temperature so that the temper-

ature densities (ft) (and also the TRF g correspondingly) are defined on the unit interval

[0, 1]. Though not absolutely necessary, the normalization will greatly simplify our presen-

tation below. If the raw temperature r is observed in an interval given by [a, b] for some

constants a and b, the required normalization may be done by setting s = (r − a)/(b − a)

and make a change of variables from r to s. For our empirical analysis, we use a = −20 and

b = 40 in degrees Celsius, because all of the temperatures in our data lie between between

−20◦C and 40◦C.

To be more explicit, we momentarily denote the densities for raw and normalized tem-

peratures respectively by (fR
t ) and (fN

t ), and the corresponding TRFs respectively by gR

and gN . If the raw temperature density fR
t is given, then we may easily obtain the corre-

sponding density for normalized temperature as fN
t (s) = (b − a)fR

t

(

a + (b − a)s
)

by the

change of variables formula for each t = 1, . . . , T . On the other hand, once we obtain the

TRF gN corresponding to (fN
t ) from our subsequent analysis, we may easily find the TRF

gR corresponding to (fR
t ) by gR(r) = gN

(

(r − a)/(b− a)
)

. Clearly, the temperature effects

(τt) defined in (1) are not affected by our normalization here. In what follows, we will simply

denote the normalized densities and the normalized TRF simply by ft(s) and g(s) instead

of ft(r) and g(r) for t = 1, . . . , T . This notational convention should cause no confusion.

Under our normalization, the TRF g is defined on the unit interval [0, 1] and therefore

it can be approximated as

g(s) =

p
∑

i=0

cis
i +

q
∑

j=1

[c1j cos(2πjs) + c2j sin(2πjs)] , (3)

where ci, c1j and c2j are unknown coefficients and p and q are the orders of the polynomial

and trigonometric terms in our approximation.4

3The FFF form (Gallant, 1981) is well known in semiparametric economic analysis, and has been used
in the energy literature – e.g., by Serletis and Shahmoradi (2008) to model interfuel substitution in a full
energy demand system for the US, by Park and Zhao (2010) to model gasoline demand, and more specifically
by Chang et al. (2014) for a TRF for electricity demand.

4We may approximate the raw TRF g using the trigonometric pairs with frequencies 2πj/(b − a) for
j = 1, 2, . . ., in place of those with frequencies 2πj for j = 1, 2, . . . used to approximate the normalized TRF
g in (3).
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It follows that

∫

ft(s)g(s)ds =

p
∑

i=0

ci

∫

sift(s)ds

+

q
∑

j=1

[

c1j

∫

ft(s) cos(2πjs)ds + c2j

∫

ft(s) sin(2πjs)ds

]

, (4)

so that we may readily derive the regression model

yt =

p
∑

i=0

cixit +

q
∑

j=1

[

c1jx1jt + c2jx2jt
]

+ εpqt (5)

from (2) and (4), where

xit =

∫

sift(s)ds, x1jt =

∫

cos(2πjs)ft(s)ds, x2jt =

∫

sin(2πjs)ft(s)ds

and εpqt differs from εt by an approximation error that vanishes as p, q → ∞. Practical

determination of p and q is discussed below. We refer to the regression model in (5) as the

TRF model.

We may estimate the regression in (5) by the conventional least squares method. Of

course, the regressors xit, i = 1, . . . , p, and x1jt and x2jt, j = 1, . . . , q, are not directly

observable. However, they can easily be computed numerically, once we obtain estimates f̂t

of the temperature densities ft for t = 1, . . . , T , which may be accomplished by the usual

nonparametric kernel method (Li and Racine, 2007, e.g.) using intramonthly (e.g., hourly)

temperature observations collected in each month t.

The TRF g can then be estimated from the least squares estimates ĉi, ĉ1j and ĉ2j of the

regression coefficients ci, c1j and c2j in (5) for i = 0, . . . , p and j = 1, . . . , q as

ĝ(s) =

p
∑

i=0

ĉis
i +

q
∑

j=1

[ĉ1j cos(2πjs) + ĉ2j sin(2πjs)] (6)

using the approximation of g in (3).

2.2 Cross-Temperature Response Function

Naturally, we may expect that non-climate variables (economic covariates), such as en-

ergy price, preference, technology, and policy, affect not only energy demand but also the

temperature effect on demand. These variables change over time.
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We can modify the TRF accordingly by letting it vary over time, more generally mod-

eling it as

gt(s) =
m
∑

k=0

wk
t g

k(s), (7)

where, by setting w0
t ≡ 1, g0 signifies the time-invariant component of the TRF, and gk

denotes the TRF measuring the temperature-dependent effect of covariate wk
t on electricity

demand for k = 1, . . . ,m. We refer to g0 as the base TRF and to gk as the TRF with respect

to wk
t . More specifically, in our application using time and relative electricity prices, we

refer to these as the time TRF and price TRF respectively. In general, we refer to gt(s) as

the cross-temperature response function (CTRF).

With the CTRF in (7), the total temperature effect becomes

∫

ft(s)gt(s)ds =
m
∑

k=0

wk
t

∫

ft(s)g
k(s)ds. (8)

In particular, if we set ft = δs0 , where as before δs0 denotes the dirac-delta function at s0,

then we have
∫

δs0(s)gt(s)ds =

m
∑

k=0

wk
t g

k(s0),

which shows the effect of a spike at temperature s0 on energy demand. The corresponding

temperature effect is therefore given by a linear function of the covariates wk
t with coefficients

given by gk(s0) and an intercept of g0(s0). Note that these intercept and coefficients are

functions of temperature.

By approximating the TRF gk as

gk(s) =

pk
∑

i=0

cki s
i +

qk
∑

j=1

[

ck1j cos(2πjs) + ck2j sin(2πjs)
]

for k = 0, . . . ,m as in (3), we may write

∫

ft(s)gt(s)ds =

m
∑

k=0

pk
∑

i=0

ckiw
k
t

∫

sift(s)ds

+

m
∑

k=0

qk
∑

j=1

[

ck1jw
k
t

∫

ft(s) cos(2πjs)ds + ck2jw
k
t

∫

ft(s) sin(2πjs)ds

]
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similarly to (4). We may now construct a regression given by

yt =

m
∑

k=0

pk
∑

i=0

cki x
k
it +

m
∑

k=0

qk
∑

j=1

[

ck1jx
k
1jt + ck2jx

k
2jt

]

+ εpkqkt , (9)

where

xkit = wk
t

∫

sift(s)ds, xk1jt = wk
t

∫

ft(s) cos(2πjs)ds, xk2jt = wk
t

∫

ft(s) sin(2πjs)ds,

similarly to the model in (5). We refer to the regression model in (9) as the CTRF model.

As with the TRF model in (5), the CTRF model in (9) can be estimated by least squares,

given orders pk and qk of the polynomial and trigonometric terms in the TRF with respect

to the k-th covariate for k = 0, . . . ,m and given estimates of the temperature densities ft

for t = 1, . . . , T .

Once we fit the regression in (9), the TRFs with respect to each covariate is readily

estimated. Specifically, if we denote the resulting least squares estimates by ĉki , ĉ
k
1j and ĉk

2j

for k = 0, . . . ,m, i = 0, . . . , pk and j = 1, . . . , qk, then we may use

ĝk(s) =

pk
∑

i=0

ĉki s
i +

qk
∑

j=1

[

ĉk1j cos(2πjs) + ĉk2j sin(2πjs)
]

(10)

for k = 0, . . . ,m to estimate the TRF gk with respect to the k-th covariate in (6).

We may set the support of some TRF to be a proper subset of the unit interval [0, 1].

In fact, there is a good reason to restrict the support of the price TRF. The reason is that

gas is used extensively in heating but not as much in cooling. Therefore, we do not expect

the HF component of electricity demand to respond to the price of electricity relative to

city gas at temperatures warmer than some threshold r̄. This implies that the normalized

TRF has support contained in [0, s̄] with s̄ = (r̄ − a)/(b − a) < 1. With this restriction in

place, we may estimate the price TRF using the terms

(s

s̄

)i

1 {0 ≤ s ≤ s̄} and

(

cos

(

2πj

s̄
s

)

1 {0 ≤ s ≤ s̄} , sin

(

2πj

s̄
s

)

1 {0 ≤ s ≤ s̄}

)

,

instead of si and
(

cos(2πjs), sin(2πjs)
)

, where 1 {0 ≤ s ≤ s̄} denotes the indicator function

taking value 1 if 0 ≤ s ≤ s̄ and 0 otherwise.
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3 Data

Our temperature distribution and measure of the HF demand component are identical

to those used in our previous work (Chang et al., 2014). We use distributions of hourly

temperatures sampled from 5 geographically distributed cities in Korea. Because demand

data are available only in 21 overlapping billing cycles, rather than monthly, the monthly

national temperature density is given by ft(s) =
∑

5

a=1

∑

21

b=1
watwbfabt(s), where wat and

wb are weights assigned to each city and each billing cycle, and fabt(s) is the density for

each city a in each billing cycle b ending in month t.

There are consequently 105 densities of hourly temperature observations for each month

in the sample. Issues relating to the use of billing cycle data were discussed by Train et

al. (1984), and our geographic weighting of temperature data is similar to that of Moral-

Carcedo and Vicéns-Otero (2005) for Spain. However our approach using temperature

distributions is quite a bit different from these approaches.

We obtain Korean residential and commercial electricity sales in megawatt hours (MWh)

from Korea Electric Power Corporation (KEPCO). The billing cycle issue naturally pertains

to the construction of our measure of HF component of electricity demand, and the rather

involved construction of this measure attempts to take into account calendar effects from

HF cycles in a workday and throughout a week, but with different numbers of weeks and

workdays in each billing cycle and in each month. The problems of different loads on such

days in constructing demand measures have been addressed by Pardo et al. (2002) and

Moral-Carcedo and Vicéns-Otero (2005), inter alia.

Once a monthly demand measure is constructed, we take natural logs and subtract out

the 12-month moving average of the series in logs in order to eliminate any stochastic or

deterministic trends and thus isolate the HF component. The interested reader is referred

to Chang et al. (2014) for a more complete discussion of how these series were constructed.

Figure 1 shows the resulting HF components of electricity demand for the residential

and commercial sectors. If the HF component was created in such a way to be uncorrelated

with the low-frequency trends proxied by the 12-month moving average, we could interpret

a unit change in the HF component as an approximation to a percentage change in monthly

demand, because the demand measure is in logs. Instead, we interpret a unit change to be

an approximation to a percentage change in the HF component.

In our analysis of Korean electricity demand, we set w1
t ≡ t/T , so that the first covari-

ate is given by time. We include time as a proxy for changes in preferences, technology,

government energy policy, among other latent variables, as many previous authors have

done, including Watts and Quiggin (1984), Jones (1994), Hunt et al. (2003), and Halicioglu
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Figure 1: HF Component of Electricity Demand in the Korean Residential and Com-

mercial Sectors. Data constructed as deviations from a twelve-month moving average of a measure

of monthly national sectoral electricity demand (Chang et al., 2014).
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(2007).

For additional covariates in our application, we consider w2
t = PRt lnRPt, where RPt is

the relative price of electricity to city gas, and PRt is the penetration rate of city gas. We

also estimated a less parsimonious model with w2
t = lnRPt and w3

t = PRt, we but do not

report the results.

In Korea, city gas is the closest substitute for electricity, so these variables are expected

to play important roles in determining electricity demand. The functional form implies

that if the price of electricity relative to city gas increases by 1%, for instance, the effect

on electricity demand is given by the fraction of 1% equal to the penetration rate. If

penetration rate goes up, then there will be higher substitutability in gas consumption

(instead of electricity), so the effect of the relative price of electricity on the HF component

of electricity demand should increase. However, because of the substitutability, the effect

of cold temperatures on the HF component should decrease with both penetration and

electricity price.

We obtain electricity and city gas price indices from the Korean Statistical Information

Service (KOSIS) and relative price is constructed as the electricity price index divided by the

gas price index. The penetration rate of city gas is from the Korea City Gas Association.

These series are displayed in Figure 2. City gas penetration relative to electricity has

increased dramatically over the sample period, while the relative price of electricity has

decreased dramatically.

Gas cooling equipment is less inefficient by 30-40% than electric cooling equipment, so

gas cooling systems are currently used only for some public buildings to lower the summer

peak of electricity demand in Korea. Therefore, we do not model any substitutional price

effect in cooling demand.

Our final data set includes T = 276 monthly observations running from 1991:01 to

2013:12, since penetration rate data are available from 1991.

4 Estimation Results

4.1 Residential Temperature Response Function

We first analyze the temperature effect in residential electricity demand in Korea using the

TRF model. To determine the orders p and q of the polynomial and trigonometric terms in

our approximation of the TRF g in (3), we use the cross-validation criterion suggested by

Burman et al. (1994) and choose p and q over the ranges of p ∈ {1, 2} and q ∈ {0, 1}. The

results suggest the choice of p = 2 and q = 1, i.e., the use of second order polynomial with

one pair of trigonometric functions.



13

0.5

1

1.5

2

2.5

3

3.5

4

Jan-91 Jan-94 Jan-97 Jan-00 Jan-03 Jan-06 Jan-09 Jan-12

Relative Price

0

0.2

0.4

0.6

0.8

1

Jan-91 Jan-94 Jan-97 Jan-00 Jan-03 Jan-06 Jan-09 Jan-12

Penetration Rate

Figure 2: Relative Price of Electricity (RP) and Penetration Rate of City Gas (PR).

RP constructed as electricity price index divided by gas price index from the Korean Statistical

Information Service (KOSIS). PR from the Korea City Gas Association.
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Est. t-value
Coeff. g(s)

c0 0.699 2.219
c1 −4.695 −2.776
c2 5.404 3.202
c11 −0.272 −2.370
c21 0.225 16.880

R2 0.825
R̄2 0.822

Table 1: Estimation Results for the Residential Sector TRF Model. Using least squares

with robust standard errors on the regression in (5) with temperature densities estimated using a

normal kernel with plug-in bandwidth.

The least squares estimates for the regression coefficients are reported in Table 1, and

the corresponding estimate of the TRF is presented in Figure 3. The estimated TRF has a

shape that we normally expect. It is U-shaped taking values increasing as the temperature

gets below and above a comfortable range. The temperature effects caused by heating and

cooling needs appear to be asymmetric, the latter generating substantially more demand

than the former.

The estimate of the TRF can be useful in many different contexts. First, the TRF

itself provides some useful information on the intensities of the heating and cooling energy

demands. If we look at 18◦C, 23◦C, and 28◦C, the estimated values of the TRF are −0.09,

−0.05, and 0.10. A 5◦C increase in temperature from 18◦C to 23◦C increases (the HF

component of) demand by 0.04, or 4%.

However, an increase in the same magnitude from 23◦C to 28◦C drives an increase in

the HF component of demand of 15%. If the temperature instead drops from 13◦C to

8◦C, the increase is only 6%. These examples show both the asymmetry in the slopes

and the nonlinearity both above and below the threshold temperature. Clearly, demand

responses to otherwise equal temperature changes depend on the current temperature in a

more complicated way than can be handled using H/CDD data.

Second, we may identify the temperature effect as in (1) using the estimated TRF and

temperature densities. Analysis of the temperature effect in energy demand is very critical

in forecasting peak load and deciding how to optimally employ a mix of power plants in

electricity supply.

Third, we may perform some informative counterfactual analysis on temperature-related

electricity demand. For instance, we may forecast the temperature effect assuming the

temperature distribution will be the same as the average of temperature distributions in
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Figure 3: Estimated Residential Sector TRF Model with 95% Confidence Bands. Using

the coefficient estimates in Table 1 and the TRF in equation (6) with rescaling. Confidence bands

calculated according to Park (2010).

past years, or we may predict the effect of an increase in temperature. If the temperature

distribution at time t is shifted to the right by u units of normalized temperature, we

would have an increase in the temperature effect of
∫

ft(s− u)g(s)ds−
∫

ft(s)g(s)ds. Note

that ft(· − u) denotes the temperature distribution with mean temperature increased by

u, compared to the temperature distribution represented by ft(·), since
∫

sft(s − u)ds =
∫

(s+ u)ft(s)ds =
∫

sft(s)ds + u.

We also estimated a CTRF for the residential sector using the methodology described

below for the commercial sector. We found that the confidence bands for the time TRF and

price TRF contained a zero demand response for every temperature, suggesting that only

the base TRF is useful in explaining the HF component of electricity demand. In light of the

facts that residential electricity prices are kept artificially low and residential consumers are

too small to warrant demand charges, the insignificance of the price TRF is not surprising.

The residential time TRF exhibits a declining pattern similar to the commercial time TRF

discussed below, but with much larger uncertainty.
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4.2 Commercial Cross-Temperature Response Function

4.2.1 Estimation and Empirical Analysis of the CTRF Model

We first estimate the TRF model to find the threshold temperature r̄ to use in estimating

the price TRF. We determine p and q using cross-validation for the TRF, and then we set

r̄ = 14.2◦C, where the estimated TRF is minimized. Note that s̄ = (14.2+20)/60 = 0.57 for

the price TRF. Next, we choose pk and qk for each TRF. In doing so, we consider pk ∈ {1, 2}

and fix qk = 1, and the cross-validation criterion selects p0 = 2, p1 = 1, and p2 = 1.

To compare the results of the TRF and CTRF models, we include a time trend and

PRt lnRPt as covariates alongside the TRF in the TRF model. In other words, to estimate

the TRF, we are actually restricting the CTRF model by setting p1 = p2 = 0 and q1 = q2 =

0, with the convention that qk = 0 means no trigonometric terms, but letting p0 and q0 (in

the base TRF) exceed zero. Fixing p1 = p2 = 0 means that only a constant ck
0
is allowed in

the TRFs with respect to time and price, and these constants become coefficients of these

covariates in (9), since
∑r

k=0
ck
0
xk
0
=

∑r
k=0

ck
0
wk
t . With the addition of the covariates, we

refer to this as the TRF+ model.

The estimated results of TRF+ and CTRF models for commercial demand are sum-

marized in Table 2, and the TRFs in the TRF+ and CTRF models are given in Fig-

ures 4 and 5 respectively. A Wald test allows a formal comparison of the two models.

Using the values of R2 for each model in the table, a Wald test may be constructed as

(0.920 − 0.771)/(1 − 0.920) × (276 − 13) = 489.84, easily beating the χ2
7
critical value of

14.07 for a size-0.05 test. The TRF+ model is thus rejected in favor of the CTRF model.

The shapes of the estimated TRF in Figure 4 and analogous base TRF in Figure 5 are

both U-shaped in the range of temperatures with the scale reflecting the fluctuations of the

HF component of electricity demand. The only noticeable difference between the TRF and

base TRF of the CTRF is that the latter appears to flatten out rather than continue to

increase at the lowest temperatures.

As we can see in Table 2, the effect of time in the TRF+ model is estimated to be

insignificant. Keeping in mind that the HF component of demand is detrended, this finding

is not surprising. In the CTRF model, the effects of time are estimated to be significant.

The time TRF and confidence intervals in Figure 5 better illustrate the effects.

The time TRF takes positive values in the range of 1◦C or less, close to zero in the range

of 1-24◦C, most of the temperature spectrum, and negative values in the range exceeding

24◦C. Consider for example the temperatures of −4◦C and 34◦C, at which ĝ1 is about 0.16

and −0.18. A change of ten years (a change in t/T of 120/276) increases the response of

the HF component at −4◦C by 7.0% but decreases the response at 34◦C by 7.8%. These
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TRF+ Model CTRF Model
Est t-value Est. t-value

Coeff. g(s) g0(s)

c0 −0.339 −3.184 −2.549 −5.585
c1 0.885 4.607 10.245 5.114
c2 −7.966 −4.416
c11 0.217 11.999 0.686 5.424
c21 0.255 6.667 0.576 7.128

t g1(s)

c0 −0.002 −0.131 0.662 2.912
c1 −1.161 −2.757
c11 0.123 3.115
c21 −0.178 −1.942

PRt logRPt g2(s)

c0 0.027 0.962 0.004 6.689
c1 −0.334 −3.775
c11 0.300 6.795
c21 −0.059 −0.580

R2 0.771 0.920
R̄2 0.767 0.917

Table 2: Estimation Results for the Commercial TRF and CTRF Models. Using least

squares with robust standard errors on the regression in (9) with temperature densities estimated

using a normal kernel with plug-in bandwidth.

compare with base responses (from the base TRF) of 11.7% and 43.5% at −4◦C and 34◦C

respectively.

These results suggest that, over a long span of time, the seasonality of commercial

electricity demand in South Korea has increased in the winter time, but decreased in the

summer. That is, the growth rate of heating demand has exceeded that of the average load,

which is mainly due to a rapid increase in the supply of electric heating appliances in recent

years so that consumers have switched their heating systems to electricity. However, the

growth rate of the cooling demand is lower than that of the average load, which reflects

the technical progress in electric cooling appliances so that consumers have replaced their

cooling appliances by more energy efficient ones.

We can also see in Table 2 that the (short-run) price elasticity is estimated to be (in-

significantly) positive in the TRF+ model – certainly the opposite sign of what we should

expect. However, the CTRF model estimates a more sensible range of price elasticities. As

shown in Figure 5, the price TRF is estimated to be significantly negative at temperatures

under approximately 7.5◦C – that is, 95% confidence interval does not include zero below
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Figure 4: Estimated Commercial Sector TRF with 95% Confidence Bands. Using the

coefficient estimates from the TRF+ model in Table 2 with the base TRF defined by g0(r) in

equation (10) with rescaling. Confidence bands calculated according to Park (2010).

approximately 7.5◦C. Above this temperature, electricity price relative to that of city gas

has no significant impact on commercial consumption of electricity, since city gas is not

needed for heating.

A more interesting result is that the magnitude of the price TRF increases as temper-

ature decreases below 7.5◦C, which means that the substitution effect in heating demand

becomes clearer as the temperature becomes lower. Indeed, this result helps to explain the

flattening of the base TRF discussed above: commercial consumers respond less to cold

temperatures when accounting for the price of electricity relative to that of city gas.

In fact, electricity sales to the commercial sector of January 2012 increased by 39.0%

compared with that of January 2006, whereas natural gas sales for the commercial sector

grew by 0.7% during the same period. Meanwhile the electricity price index increased by

10.7% and gas price index grew by 61.5% between January 2006 and January 2012. The

estimated price TRF clearly reflects this shift to electric heating from gas heating.

We illustrate in more detail how one can interpret the estimated price TRF in Figure

5. The relative price elasticity of the HF component of demand is given by ĝ2PRt. For

example, if PRt = 1 and we look at −4◦C and 10◦C, the estimated values of ĝ2PRt are

approximately −0.46 and −0.03 respectively. Hence, if temperature changes from 10◦C

to −4◦C, then the relative price elasticity of the HF component will change from nearly
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Figure 5: Estimated Commercial Sector CTRF with 95% Confidence Bands. Using the

coefficient estimates from the CTRF model in Table 2 and TRFs defined by gk(r) in equation (10)

with rescaling. Confidence bands calculated according to Park (2010).
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zero (completely price inelastic) to −0.46. Moreover, if the electricity price index decreases

by 10% and the natural gas index is unchanged (a change in PRt lnRPt of 0.10), the HF

component of electricity demand for the commercial sector would increase by 4.6% at −4◦C

but only by 0.3% at 10◦C, which shows quite different substitution patterns at the different

temperature levels. These compare with base responses (from the base TRF) of 11.7% and

−10.4% at −4◦C and 10◦C respectively.

Looking at the whole CTRF in the CTRF model as the sum of the individual TRFs, we

can make another comparison with the TRF+ model. For example, at the counterfactual

temperature of −4◦C in January 2002 the sum of the base TRF and time-weighted time

TRF is 11.7% + 7.0% × (133/276) = 15.1%. At a penetration rate of PRt = 1, a relative

price decrease of 10% increases the response of the HF component by an additional 4.6%, so

that the total response is 19.7% more than that of the response at an average temperature

with no price change. In contrast, the TRF+ model suggests a response of 12.8%− 0.2%×

(133/276) = 12.7% at −4◦C in January 2002, but that a relative price decrease of 10%

decreases the response of the HF component by 0.3% (but not significantly). The aggregate

response is therefore predicted to be only 12.4% above an average temperature with no

price change.

4.2.2 Seasonal and Temporal Analyses

Figure 6 shows the mean absolute error (MAE) of estimated residuals by months, and it

shows that the CTRF model outperforms the TRF+ model in all months except April when

MAE’s for the two models are very close. The MAE’s of January, February, March and

August of CTRF model are 61%, 65%, 55% and 55% smaller than those of TRF+ model

respectively, which shows rather clear price- and time-dependent temperature effects in the

commercial sector in those months. We can deduce from our above results that time affects

the temperature response in both winter and summer, while relative price also affects the

temperature response in the winter.

The CTRF model enables us to decompose the monthly temperature effects into a

price-dependent factor and a time trend-dependent factor, allowing us to better identify the

aggregate changes in temperature effects due to time and relative price. The temperature

effects in (8) may be written as

∫

ft(r)gt(r)dr =

∫

ft(r)g
0(r)dr +

t

T

∫

ft(r)g
1(r)dr + PRt lnRPt

∫

ft(r)g
2(r)dr

using our covariates w0
t = 1, w1

t = t/T and w2
t = PRt lnRPt.

Consider temperature effects for each month M = 1, ..., 12 constructed from this CTRF
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Figure 6: Mean Absolute Error by Months.

using:

1. TEM0 : the time index for month M in 1991 and the penetration rate and relative

price for month M in 1991,

2. TEM1 : the time index for month M in 1991 and the penetration rate and relative

price for month M in 2013, and

3. TEM2 : the time index for month M in 2013 and the penetration rate and relative

price for month M in 2013.

The difference TEM2 − TEM0 indicates the total change between 1991 and 2013. A com-

ponent of the total change, TEM1 − TEM0 is the change in the temperature effect due to

the change in PRt logRPt between 1991 and 2013 while holding constant other temporal

drivers proxied by a time trend. Similarly, TEM2 − TEM1 is the change caused by these

other drivers, while holding the price covariate constant.

To estimate these effects, we estimate gk and ft as described above, except we pool

observations in month M across all 23 years in the sample to estimate fM for M = 1, ..., 12.

By using the same temperature density for the same month in all years, the changes that

we identify over time given by TEM2 − TEM1 can be attributed to temporal drivers other

than possible long-run temperature changes.



22

Month TEM0 TEM1 TEM2 TEM2 − TEM0 TEM1 − TEM0 TEM2 − TEM1

January −0.018 0.045 0.135 0.153 0.062 0.091
February −0.013 0.044 0.124 0.137 0.058 0.079
March −0.027 0.022 0.037 0.064 0.049 0.015
April −0.085 −0.065 −0.088 −0.002 0.021 −0.023
May −0.109 −0.105 −0.135 −0.026 0.004 −0.029
June −0.046 −0.046 −0.075 −0.028 0.000 −0.028
July 0.044 0.044 0.010 −0.034 0.000 −0.034

August 0.128 0.128 0.080 −0.048 0.000 −0.048
September 0.047 0.047 0.012 −0.035 0.000 −0.035
October −0.085 −0.083 −0.110 −0.025 0.001 −0.027
November −0.102 −0.087 −0.112 −0.009 0.015 −0.024
December −0.036 0.006 0.028 0.064 0.043 0.022

Table 3: Decompositions of Monthly Temperature Effects.

Table 3 shows the decompositions between 1991 and 2013 and their differences. The

total change in temperature effect over the sample is positive in the winter months of

December, January, February, and March, but negative in all other months.

The breakdown of the positive changes in the winter months are 66% price and 34%

other factors proxied by time for December, 41% and 59% for January, 42% and 58% for

February, and 76% and 24% for March. We may interpret this to mean that the overall

increases in the HF component of demand in winter months may be attributed to both

increases due to price and penetration changes over the sample and those due to changes

in other temporally varying non-climate, non-price variables. The increases due to price

during these months given by TEM1 − TEM0 have roughly the same magnitudes (4.3%-

6.2%), but the change from the other factors is less important in the warmer months of

December and March (2.2% and 1.5%) than in January or February (9.1% and 7.9%).

Looking at the summer months of June, July, August and September, we see no effect on

the HF component from price changes. This result is an artifact of our modeling strategy,

since we set the price TRF to zero at temperatures above 14.2◦C. Those four months

are unlikely to have enough temperature observations below this threshold to make any

substantial difference. We are essentially imposing that there will be no long-run effect

of relative prices in summer months, except possibly through the time TRF if the price

covariate has a time trend.

The remaining spring and fall months, April, May, October, and November show de-

creases in the temperature effect overall, but driven primarily by negative effects from non-

climate, non-price factors and countervailed by increases due to price changes. In other
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words, relative price changes have led to only small increases (0.1%-2.1%) in the HF com-

ponent of electricity demand in those months – due to decreases in the relative price from

increases in natural gas prices – while other factors have driven more substantial decreases

(2.3%-2.9%).

5 Conclusions

In this paper, a general model is proposed in order to estimate and identify temperature

effects in a short-run electricity demand function. We adopt a new approach using tem-

perature densities to estimate a cross temperature response function, which exploits the

fact that the non-climate variables have different effects on electricity demand at different

temperatures.

We fit our proposed model (CTRF) and a benchmark model (TRF+) to the Korean

commercial electricity demand data over 1991:01-2013:12. The effect of relative price is

shown to be significant for heating demand. Moreover, technical progress in electric ap-

pliances and changes in consumption habits (proxied by the time trend) has lowered the

growth rate of the cooling demand and has increased the growth rate of the heating demand.
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