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1 Introduction

Although the complicated mechanisms underpinning climate change and by which the effects

of climate change are propagated lies in the realm of the physical sciences, William Nord-

haus recently underscored the importance of the social sciences in studying climate change,

writing that “global warming begins and ends with human activities” (2013, pg. 15). As

evidenced by a proliferation of recent studies, econometricians and statisticians have a skill

set that is well-suited to the statistical analysis of temporal and spatio-temporal climate

data.1

Statistical models of climate change may be of interest by themselves, or they may be

a natural component of a larger model to study the economic effects of climate change, as

in Weitzman (2009) or Brock et al. (2013), for example. Questions about the permanence

or transience of global temperature changes are of central importance in measuring the

possible effects of economic activity on climate change or of climate change on economic

activity.

Analyses of persistent time series often revolve around nonstationarity and the degree

of persistence. Indeed, the evident increasing trend (nonstationarity) in the cross-sectional

means of global temperature distributions over time has given rise to the popular term

“global warming” to reflect climate change more generally. A large number of studies have

focused on trend detection and on distinguishing a linear trend from lower-order unit root-

type persistence (a stochastic trend), in particular. Studies supportive of a stochastic trend

include those by Gordon (1991), Woodward and Gray (1993, 1995), Gordon et al. (1996),

and Kärner (1996), while studies supportive of a deterministic trend with possibly highly

persistent noise include those by Bloomfield (1992), Bloomfield and Nychka (1992), Baillie

and Chung (2002), and Fomby and Vogelsang (2002).

The linearity of such a trend has been called into question, and nonlinearity has been

introduced in the form of a quadratic trend (Woodward and Gray, 1995; Zheng and Basher,

1999), exponential trend (Zheng et al., 1997), and breaks in an otherwise linear trend (Zheng

et al., 1997; Zheng and Basher, 1999; Gay-Garcia et al., 2009; Estrada et al., 2010, 2013;

Estrada and Perron, 2012, 2014; McKitrick and Vogelsang, 2013). Although Bloomfield

(1992) uses a linear trend for testing, he emphasizes the importance of using a model-based

nonlinear deterministic component. Gao and Hawthorne (2006) take nonlinearity in the

deterministic trend a step further by estimating a general deterministic trend nonpara-

1Notable works in this area to which econometricians have contributed include Baillie and Chung (2002),
Fomby and Vogelsang (2002), Gao and Hawthorne (2006), Kaufmann et al. (2006a, 2006b, 2010, 2013),
Dong et al. (2008), Estrada and Perron (2012, 2014), Brock et al. (2013), Estrada et al. (2013), and
McKitrick and Vogelsang (2013), to name a few.
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metrically. Their estimated trend appears to have such high degrees of nonlinearity and

variability that it may be approximated by a stochastic trend.

The possibility of a stochastic trend has also become important in determining a long-

run relationship between global temperature and forcing variables – particularly relating to

anthropogenic emissions of carbon dioxide and other gases. Kaufmann and Stern (2002)

find that global or hemispheric temperature series have stochastic trends (possibly in ad-

dition to deterministic trends) and therefore they use cointegration analysis to analyze the

relationship. (See also Kaufmann et al., 2006a, 2006b.) Gay-Garcia et al. (2009) argue that

the earlier findings of a stochastic trend in temperature is a statistical artifact of a broken

deterministic trend instead. In contrast, Kaufmann et al. (2010) argue that the appearance

of a broken deterministic temperature trend is inherited from the forcing variables, which

they suggest may exhibit the appearance of a break due to legislation limiting air pollu-

tion in the 1980’s. The addition of weather variability makes the stochastic trend difficult

to detect (Kaufmann et al., 2013). Estrada et al. (2013) use simulated temperatures to

eliminate weather variability, and they find a break.

While examination of cross-sectional means is useful, it ignores the global distributions

of temperatures, as Ballester et al. (2010), Donat and Alexander (2012), inter alia point

out. Moreover, Brock et al. (2013) underscore the importance in a broader economic model

of allowing for spatial heterogeneity – specifically for the observation that anomalies have

been higher in higher latitudes than near the equator (Hansen et al., 2010, and consistent

with the findings of Zheng and Basher, 1999, who attribute a failure to detect a deterministic

trend in the northern part of the Northern Hemisphere to stronger variability in that area).

Considering higher-order moments of the spatial distribution of the anomalies better allows

for such heterogeneity than only looking at the means over time.

Although persistence in higher-order moments has certainly drawn less attention than

the increase in the mean associated with global warming, the potential effects of such

changes may be no less severe. For example, suppose that a local anomaly of a certain

magnitude will melt an ice pack. Even if the global mean does not increase, an increasing

kurtosis may imply that this magnitude is more likely to occur. The resulting local melt may

have a global impact – for example, through higher albedo (reflection of light) or through

perturbations of ocean conveyor belt circulation. These “tipping points,” as Nordhaus

(2013) calls them, or “indirect carbon-cycle feedback-forcing effects,” as Weitzman (2009)

calls them, may occur through climate change even without global warming specifically.

Recent advances in time series modeling (Bosq, 2000; Park and Qian, 2012; Chang et

al., 2015) allow for the analysis and detection of stationarity or nonstationarity of cross-

sectional distributions, such as distributions of global temperature anomalies. Using these
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tools, we may detect persistence not only in the mean, but also in higher-order moments of

the global distributions of temperature anomalies.

Our tests allow for much richer temporal dynamics than recent spatio-temporal cli-

mate models that assume temporal stationarity (e.g., Castruccio and Stein, 2013) or allow

for nonstationarity only in the forms of “modest” dependence (Castruccio et al., 2014) or

seasonal variations (Leeds et al., 2015). However, because we do not model any spatial

covariances, our assumptions on the spatial dimension are much stricter than the sophisti-

cated and possibly nonstationary spatial covariances in the spatial models of Jun and Stein

(2008) inter alia, and the recent spatio-temporal model of Castruccio and Stein (2013).

In this paper, we use a new methodology proposed by Chang et al. (2015) to test for

nonstationarity in distributions of global industrial-era (1850-2012) temperature anomalies.

Indeed, we extend their methodology to distinguish between persistence induced by unit

root-type nonstationarity (a stochastic trend) from that induced by a deterministic trend

or an explosive root. We find substantial nonstationarity in the first four moments of

the distributions – primarily in the mean (i.e., global warming) and in the (decreasing)

variance. However, none of the nonstationarity that we detect is more persistent than that

of a stochastic trend.

In the absence of some kind of underlying nonlinearity in the evolution of the distribu-

tions, our evidence suggests the statistical possibility of reversion in the moments of these

anomalies. As Woodward and Gray (1993) emphasize, such evidence has little to say about

whether or not the increasing trend will continue for the foreseeable future. We claim only

that the evidence casts doubt on the type of (deterministic) trend in which certain changes

in the moments – e.g., an increasing mean – are inevitable. We note that our evidence

makes no claim on the anthropogenic nature of the observed climate change. Rather our

statistical evidence may be useful in further specifying models or tests of anthropogenic

forcing, as do some of the aforementioned studies, such as Kaufmann et al. (2013) and

Estrada et al. (2013).

In Section 2, we introduce the global temperature anomaly data, and we discuss the time

series framework for analyzing state distributions and testing procedures for nonstationarity

of those distributions. We discuss step-by-step implementation of the tests and our empirical

results in Section 3, and we conclude with Section 4.

2 Data and Methodology

We first present the data set of global temperature anomalies used in our analysis. We then

review the basic time series framework and testing procedures used by Chang et al. (2015)
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to test for nonstationarity of state distributions. Since this procedure may be new to many

readers, our discussion is self-contained but necessarily abbreviated, and interested readers

are referred to that paper for additional technical details.

Although the methodology and theory of our analysis are largely based on Chang et al.

(2015), our procedure contains a novel aspect. While they consider a test for nonstationarity

against only a stationary left-hand-sided alternative, we extend their test to an explosive

or deterministically trending right-hand-sided alternative. The extension will be critical in

discerning persistence characteristic of a unit root process from much stronger persistence

in temperature anomalies.

2.1 Global Temperature Distributions

We employ the HadCRUT3 data set, well-known to climate researchers and described in

detail by Brohan et al. (2006). The data set combines marine temperature data compiled

by the Met Office Hadley Centre with land temperature data compiled by the Climatic

Research Unit of the University of East Anglia. These monthly measurements extend from

1850 to 2012 and aim to cover as much of the globe as possible.

The HadCRUT3 data show temperature anomalies in degrees Celsius from the monthly

average over the period 1961-90. Specifically, deviations are calculated for each land station

(110 - 4,098 stations per month throughout the sample), and then the deviations are aver-

aged across all stations in a given grid box of 5◦ latitude and 5◦ longitude. For marine data,

the measurements are taken from ships or buoys (1,495 - 1,648,815 marine observations per

month throughout the sample), and the anomaly is calculated based on the monthly average

over 1961-90 for each grid box. The interested reader is referred to Brohan et al. (2006)

for a very detailed discussion of data construction and known limitations, such as warming

effects from urbanization and technological changes in temperature measurement over more

than a century and a half.

The maximum number of temperature anomaly observations in each month is given

by 2, 592, the product of 36 increments of 5◦ latitude and 72 increments of 5◦ longitude.

We create an annual distribution of temperature anomaly observations from the monthly

HadCRUT3 data, providing a maximum number of 2, 592×12 = 31, 104 annual observations.

Figure 1 shows annual time series of the number of non-empty box-months for the globe

and for each hemisphere. The observations each year generally increase from about 5, 000

at the beginning of the sample to about 22, 000 in the mid-1990’s, leveling out at about

21, 000 by the end of the sample. There are three obvious dips, corresponding roughly with

the American Civil War (1861-65), World War I (1914-19), and World War II (1939-45).

Hemispheric means are often analyzed separately in studies on climate change, since
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Figure 1: Number of Annual Temperature Observations. Observations for the globe, NH,

and SH, based on 5 ◦ by 5 ◦ grid boxes. Total possible annual observations for the globe is 36× 72×
12 = 31, 104 (36 × 5 ◦ along each meridian, 72 × 5 ◦ around the Equator, 12 months per year) and

15, 552 for each hemisphere. World War I (1914-19) and World War II (1939-45) indicated.

more land in the Northern Hemisphere (NH) translates into more error from station and

other types of biases, but less land in the Southern Hemisphere (SH) translates into more

small-sample and coverage errors from fewer non-missing grid box observations. Global

means are estimated by averaging the hemispheric means. (Brohan et al., 2006.)

Working with densities requires a more complicated averaging strategy. We obtain the

temperature distributions from the monthly temperature anomaly data pooled over each

year in the NH and SH. We estimate the densities of temperature anomalies for the NH and

SH separately. Then, for each year and each temperature, we average the estimated NH

and SH densities to obtain a global density. Each hemisphere receives an equal weight to

avoid giving too much weight to the NH, where there are more non-empty grid boxes. We

omit approximately 5% extreme outliers and make the supports of these densities compact.2

2The compact supports avoid the well-known empty bin problem in nonparametric density estimation.
We note that the HadCRUT3 data already omits extreme temperature anomalies in its construction (Brohan
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Specifically, we set the supports [−2.62, 2.50], [−3.46, 3.06] and [−2.26, 1.78] for the global

distribution, the NH distribution, and the SH distribution, respectively. We utilize the

typical nonparametric density estimator with a normal kernel and Silverman bandwidth to

estimate the densities.

Figures 2-4 show the densities and time series plots of the first four moments of the

temperature anomalies in each year. Specifically, Figure 2 shows the global densities and

sample moments, Figure 3 shows those for the NH, and Figure 4 shows those for the SH. The

estimated densities are regarded as the data that we subsequently analyze. We may well

expect that estimation errors in the temperature anomaly densities have a negligible effect on

our analysis, since the number of cross-sectional observations each year is very large relative

to the number of years. The estimation errors decrease with the cross-sectional dimension,

but they are expected to accumulate as the time dimension increases. Therefore, we treat

the densities as being observable in our subsequent discussions.

Let ft(s) denote the value of a temperature anomaly density at time t and ordinate

s (temperature anomaly), for t = 1, . . . , T and s ∈ R. We define the temporal mean of

a time series (ft) of temperature anomaly densities as f̄T (s) = T−1
∑T

t=1 ft(s) for s ∈ R,
and the cross-sectional mean as µt =

∫
sft(s)ds for t = 1, . . . , T .3 The top left panel of

each of Figures 2-4 shows the annual temperature anomaly densities (ft(s)). The tempo-

rally demeaned temperature anomaly densities – (wt(s)) in our subsequent notation – are

shown in the top right panels. We may interpret the latter as deviations from the average

probability of observing a temperature anomaly over the sample time span. For example,

in all of the figures, the probability of observing a +1◦C temperature anomaly appears to

be below average in 1850 but above average in 2012, whereas the probability of observing

−1◦C appears to be the reverse. Clearly, these are neither constant over time, as a flat

graph would imply, nor do they appear to be generated by random noise.

The remaining panels of Figures 2-4 show the time paths of the estimated cross-sectional

moments of the distributions (ft). Specifically, the means (middle left panels), variances

(middle right panels), skewnesses (bottom left panels), and kurtoses (bottom right panels)

are plotted. The cross-sectional mean is defined above as µt =
∫
sft(s)ds. Furthermore,

the cross-sectional variance is given by σ2
t =

∫
(s−µt)

2ft(s)ds, the cross-sectional skewness

is given by τ3t =
∫
(s − µt)

3ft(s)ds/σ
3
t and the cross-sectional kurtosis is given by κ4t =∫

(s− µt)
4ft(s)ds/σ

4
t for t = 1, . . . , T .

Casual inspection suggests that the means have been increasing since about 1975 and

et al., 2006). We do not believe that our omission should substantially affect our qualitative results, since
our aim is to describe global rather than local anomalies.

3We may, of course, compute the cross-sectional mean as a Riemann sum using a fine enough partition
over the support of the given density function.
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Figure 2: Global Temperature Anomaly Densities and Moments. Annual temperature

anomalies measured on a 5 ◦ by 5 ◦ grid box. Undemeaned densities (top left panel) and temporally

demeaned global densities (top right panel). Sample mean (middle left panel), variance (middle

right panel), skewness (bottom left panel), and kurtosis (bottom right panel) of annual anomalies

over time.
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Figure 3: NH Temperature Anomaly Densities and Moments. Annual temperature anoma-

lies measured on a 5 ◦ by 5 ◦ grid box. Undemeaned densities (top left panel) and temporally

demeaned global densities (top right panel). Sample mean (middle left panel), variance (middle

right panel), skewness (bottom left panel), and kurtosis (bottom right panel) of annual anomalies

over time.
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Figure 4: SH Temperature Anomaly Densities and Moments. Annual temperature anoma-

lies measured on a 5 ◦ by 5 ◦ grid box. Undemeaned densities (top left panel) and temporally

demeaned global densities (top right panel). Sample mean (middle left panel), variance (middle

right panel), skewness (bottom left panel), and kurtosis (bottom right panel) of annual anomalies

over time.
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perhaps since as early as 1910 in the SH, roughly consistent with the break dates identified

by Gay-Garcia et al. (2009). While the means have increased, the skewnesses appear

to have decreased from positive to negative, suggesting that although the probabilities of

observing moderately positive temperature anomalies have increased, the probabilities of

observing extremely positive temperature anomalies (up to the maxima of our supports)

may have decreased. The variances appear to have decreased, while the kurtoses have

increased. Such movement suggests that the distributions have become more peaked around

their (increasing) means, but without associated decreases in the probabilities of outliers.

Instead, the probabilities of observing moderate temperature anomalies may have decreased.

In order to explore the persistence of the moments, we now turn to a more formal

analysis of the stationary and nonstationary spaces of the temporally demeaned temperature

anomaly densities.

2.2 Basic Framework for Time Series Analysis

We analyze the temperature densities obtained above as a time series of functional obser-

vations. As defined above, (ft) denotes the temperature anomaly density at time t, and we

define

wt(s) = ft(s)− f̄T (s) (1)

to be the temporally demeaned temperature density for t = 1, . . . , T and s ∈ K, where K

is a compact subset of R. Clearly, we have
∫
K ft(s)ds = 1 for all t = 1, 2, . . ., and therefore,

(wt) may be regarded as elements in the Hilbert space H given by

H =

{
w

∣∣∣∣∫
K
w(s)ds = 0,

∫
K
w2(s)ds < ∞

}
, (2)

with inner product ⟨v, w⟩ =
∫
K v(s)w(s)ds for v, w ∈ H.

In our analysis, we assume that the global temperature densities (ft) are random, not

deterministic, and consequently, the centered global temperatures densities (wt) defined in

(1) become random elements taking values in the Hilbert space H, or H-valued random

elements. For an introduction to random elements taking values in a Hilbert space, the

reader is referred to Bosq (2000). For each t = 1, . . . , T , ft is a random function and we

may define its moments. In particular, we let its mean be given by the expectation Eft,
and define its variance to be the expected tensor product E(ft − Eft) ⊗ (ft − Eft) of the

demeaned ft with itself.4 The mean and variance of ft therefore become a function and

4Essentially, tensor products of finite dimensional vectors yield matrices. In contrast, tensor products of
functions become infinite dimensional and they are formally interpreted as operators in a Hilbert space of
functions.
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an operator respectively for t = 1, . . . , T . On the other hand, since each element ft of the

sequence (ft) represents a density, we may also define its moments. We have already defined

these as cross-sectional moments µt, σ
2
t , etc., of ft. Note that the cross-sectional moments

of ft are random variables for each t = 1, . . . , T .

We assume that there exists an orthonormal basis (vi) of H such that the i-th coordinate

process ⟨vi, wt⟩ is nonstationary, having a stochastic or deterministic trend, for each i =

1, . . . , n, while it is stationary for each i ≥ n + 1.5 By convention, we let n = 0 if all of

the coordinate processes are stationary. Using the symbol
∨

to denote span, we may write

H = HN ⊕HS with

HN =

n∨
i=1

vi and HS =

∞∨
i=n+1

vi,

which will respectively be referred to as the nonstationarity and stationarity subspaces of

H. Subsequently, we define ΠN and ΠS to be the projections on HN and HS , and let

wN
t = ΠNwt and wS

t = ΠSwt,

where (wN
t ) and (wS

t ) signify respectively the nonstationary and stationary components of

(wt). Since ΠN +ΠS equals the identity operator in H, we have wt = wN
t + wS

t .

We say that (ft) is (weakly) stationary if it has time invariant mean and variance that

are finite and well defined. In this case, we have n = 0, since the coordinate processes

are all stationary. Under stationarity, we may expect that f̄T (s) ≈ Eft(s) and wt(s) ≈
ft(s)−Eft(s) for all t = 1, . . . , T and s ∈ K if T is large. Consequently, we may effectively

let

wt(s) = ft(s)− Eft(s) (3)

if T is large, in place of our definition in (1). In our subsequent analysis, we do not

distinguish between any stationary time series defined from (wt) in (3) and (wt) in (1).

Once we fix an arbitrary orthonormal basis (ϕi) of H, we may write any function w in

H as a linear combination of (ϕi) as in w =
∑∞

i=1 ciϕi with a numerical sequence (ci). In

implementing our approach, we use an orthonormal wavelet basis (ϕi) to represent vectors

in H as their finite linear combinations of M leading basis elements for some large M . This

yields the correspondence w ↔ (c1, . . . , cM )′ between w ∈ H and (c1, . . . , cM )′ ∈ RM , which

allows us to regard a function in H essentially as a large dimensional vector in Euclidean

space. Under this convention, the inner product ⟨v, w⟩ becomes the usual Euclidean inner

5Of course, there exists a wide variety of nonstationary processes that do not have any trends, stochastic
or deterministic. In the paper, however, we only consider nonstationary processes with trends increasing
either stochastically or deterministically.
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product of two vectors in RM corresponding respectively to v and w in H, and the tensor

product v ⊗ w reduces to the conventional Euclidean outer product of two vectors in RM

corresponding respectively to v and w in H.

2.3 Testing for Nonstationarity

The test for nonstationarity of the global temperature anomaly distributions we use in the

paper is based on the sample operator

QT =

T∑
t=1

wt ⊗ wt, (4)

which yields the quadratic form

⟨v,QT v⟩ =
∑T

t=1
⟨v, wt⟩2 (5)

for any v ∈ H.

The magnitude of quadratic form (5) in v ∈ H defined by QT differs primarily depending

upon whether v is in HN or in HS . For v ∈ HS , the coordinate process (⟨v, wt⟩) becomes

stationary and T−1
∑T

t=1⟨v, wt⟩2 →p E⟨v, wt⟩2, and the quadratic form is of order T . In

contrast, the magnitude of the quadratic form in v ∈ HN is of order bigger than T , since we

assume that for all v ∈ HN the coordinate process (⟨v, wt⟩) has a stochastic or deterministic

trend. We may therefore extract the principle components of QT in (4) and use them to

test for nonstationarity in the temperature anomaly distributions.

The exact magnitude of the quadratic form in v ∈ HN defined by QT further depends on

what type of nonstationarity the coordinate process (⟨v, wt⟩) exhibits. The quadratic form

is of order T 2 if the coordinate process has unit root nonstationarity (a stochastic trend).

On the other hand, it is of order T 3 if the coordinate process has a linear deterministic

trend, and it diverges at an exponential rate if the coordinate process has an explosive root.

To separately identify these different types of nonstationarity in the global temperature

distributions, we define the unit root subspace HU of H to be the m-dimensional sub-

subspace of an n-dimensional subspace HN such that (⟨v, wt⟩) is a unit root process for all

v ∈ HU . For completeness, we also defined the deterministic and explosive subspace HX of

H such that HN = HU⊕HX and H = HS⊕HU⊕HX . There is no unit root nonstationarity

if m = 0, whereas the entire nonstationarity is unit root nonstationarity if m = n. In fact,

we find that m = n in our empirical results on temperature anomalies below. However, we

also consider the case m < n here to introduce our testing procedure to determine m as

well as n.
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Denote by v1(QT ), v2(QT ), . . . the orthonormal eigenvectors of operator QT in (4) with

associated eigenvalues λ1(QT ) ≥ λ2(QT ) ≥ · · · . It follows that

λi(QT ) = ⟨vi(QT ), QT vi(QT )⟩ =
∑T

t=1
⟨vi(QT ), wt⟩2.

Therefore, it is natural to estimate HN by the span of v1(QT ), . . . , vn(QT ) – i.e., n orthonor-

mal eigenvectors of QT associated with n largest eigenvalues of QT . Chang et al. (2015)

establish the consistency of the estimator for the case in which we only have unit root non-

stationarity. The extension of their proof to allow for more general types of nonstationarity

is straightforward. Under our setup, if normalized by T 2, λn−m+1(QT ), . . . , λn(QT ) have

well defined limit distributions as T → ∞, while λ1(QT ), . . . , λn−m(QT ) diverge faster than

the rate T 2. In particular, the unit root subspace HU can be consistently estimated by the

span of m-orthonormal eigenvectors vn−m+1(QT ), . . . , vn(QT ) of QT .

We find the values of n and m by successive testing procedures for the null hypothesis

of unit root nonstationarity against the alternative hypotheses of stationarity, and then

against the alternative hypothesis of deterministic/explosive nonstationarity. We expect the

eigenvalues (λi(QT )) to have discriminatory powers for such tests. However, they cannot

be used directly, since their limit distributions are dependent upon nuisance parameters.

Therefore, we need to construct tests based on eigenvalues with limit distributions free of

nuisance parameters.

To this end, we define (zt) by either

zt = (⟨v1(QT ), wt⟩, . . . , ⟨vp(QT ), wt⟩)′ (6)

(vp is the eigenvector associated with the p-th largest eigenvalue) or

zt = (⟨vn−q+1(QT ), wt⟩, . . . , ⟨vn(QT ), wt⟩)′ (7)

(vn is the eigenvector inHN associated with the smallest eigenvalue) for t = 1, . . . , T , and we

use the index r to denote p or q depending upon whether (zt) is given by (6) or (7). Moreover,

we define the product sample moment QT
r =

∑T
t=1 ztz

′
t, and the long-run variance estimator

ΩT
r =

∑
|k|≤ℓϖℓ(k)ΓT (k) of (zt), where ϖℓ is the weight function with bandwidth parameter

ℓ and ΓT is the sample autocovariance function defined as ΓT (k) = T−1
∑

t∆zt∆z′t−k.

Our test statistics are given by

τTp = T−2λmin

(
QT

p ,Ω
T
p

)
(8)



14

τTp p = 1 2 3 4 5

1% 0.0274 0.0175 0.0118 0.0103 0.0085
5% 0.0385 0.0223 0.0154 0.0127 0.0101
10% 0.0478 0.0267 0.0175 0.0139 0.0111

σT
q q = 1 2 3 4 5

99% 0.7487 1.0073 1.2295 1.4078 1.5952
95% 0.4660 0.6787 0.8645 1.0336 1.1892
90% 0.3494 0.5399 0.7066 0.8574 1.0092

Table 1: One-sided Critical Values for the Test Statistics τTp and σT
q .

and

σT
q = T−2λmax

(
QT

q ,Ω
T
q

)
, (9)

where λmin

(
QT

p ,Ω
T
p

)
and λmax

(
QT

q ,Ω
T
q

)
are respectively the smallest and the largest gen-

eralized eigenvalues of QT
r with respect to ΩT

r for r = p or q.

The test statistics τTp and σT
q introduced in (8) and (9) are used with the critical values

obtained under the null hypothesis that (zt) defined in (6) or (7) is a unit root process in

order to determine n and m. Under very general conditions, Chang et al. (2015) show that

the statistic τTp has a well-defined nondegenerate limit distribution that is free of nuisance

parameters and depends only on p, as long as n−m+ 1 ≤ p ≤ n (for m,n ≥ 1). We may

extend their result and establish that it is also true for the statistic σT
q under the same

conditions if 1 ≤ q ≤ m (for m,n ≥ 1). We compute the critical values of the statistic σT
q

up to q = 5 and tabulate them in Table 1 together with the critical values of the statistic

τTp for easy reference.

Note that the statistic τTp converges to 0 for all p > n. Therefore, we may use τTp

to determine n as follows.6 We start from a value of p large enough to be bigger than n

and test the null hypothesis H0 : dim (HN ) = p against the alternative hypothesis H1 :

dim (HN ) ≤ p − 1 successively downward, until we reach p = 1. For each test, we reject

the null hypothesis if the value of τTp is smaller than the respective critical values provided

in Table 1. We proceed as long as we reject the null hypothesis in favor of the alternative

hypothesis, and set our estimate for n to be the largest value pmax, for which we fail to

reject the null hypothesis. By such a successive testing procedure employing a consistent

test, we may find the true value of n with asymptotic probability of virtually one by making

the size of the test small enough.

Once n is found, we may use the statistic σT
q to determine m. Note that the statistic

6Our testing procedure here is entirely analogous to the sequential procedure in Johansen (1995), which
is commonly used to determine the cointegration ranks in error correction models.
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σT
q diverges to infinity for all m < q ≤ n. We start from q = n and test the null hypothesis

H0 : dim (HU ) = q against the alternative hypothesis H1 : dim (HU ) ≤ q − 1 successively

downward, until we reach q = 1. For the test, we reject the null hypothesis if σT
q takes a

value larger than the respective critical value reported in Table 1, in contrast to the test

based on τTp . As above, we proceed as long as the null hypothesis is rejected in favor of

the alternative hypothesis and set our estimate for m to be the largest value qmax of q, for

which we fail to reject the null hypothesis. Again, we may find the true value of m with

asymptotic probability arbitrarily close to one.

2.4 Nonstationarity in Cross-Sectional Moments

Once we determine n and estimate the nonstationary subspace HN , we may determine the

nonstationary proportion of each cross-sectional moment. Similarly to Chang et al. (2015),

we define a function

µi(s) = si − 1

|K|

∫
K
sids

for i = 1, 2, . . . and Lebesgue measure |K| of K, and note that

⟨µi, wt⟩ = ⟨µi, ft⟩ − E⟨µi, ft⟩

represents the fluctuations over time of the i-th moments of the distributions with densities

(ft) around their expected values.

The function µi may be decomposed as µi = ΠNµi + ΠSµi with ΠN and ΠS defined

as projections respectively on the nonstationary and stationary subspaces HN and HS , so

that

∥µi∥2 = ∥ΠNµi∥2 + ∥ΠSµi∥2 =
n∑

j=1

⟨µi, vj⟩2 +
∞∑

j=n+1

⟨µi, vj⟩2, (10)

where (vj) for j = 1, 2, . . . is an orthonormal basis of H such that (vj)1≤j≤n spans HN and

(vj)j≥n+1 spans HS .

The proportion of the component of µi lying in HN is given by

πN
i =

∥ΠNµi∥
∥µi∥

=

√∑n
j=1⟨µi, vj⟩2∑∞
j=1⟨µi, vj⟩2

(11)

with the convention that πN
i = 0 when n = 0 (µi is entirely in HS). On the other hand, µi

is entirely in HN if πN
i = 1. πN

i represents the proportion of the nonstationary component

in the i-th moment, which we call the nonstationary proportion of the i-th moment. As

πi approaches zero, the i-th moment is predominantly stationary, but it is predominantly
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nonstationary as πi tends to unity.

To supplement πN
i , we propose the addition of a new ratio given by

πU
i =

∥ΠUµi∥
∥µi∥

=

√∑n
j=n−m+1⟨µi, vj⟩2∑∞

j=1⟨µi, vj⟩2
, (12)

where ΠU is the projection on the unit root subspace HU , with the convention that πU
i = 0

when m = 0. When m = n, πU
i = πN

i so that the component of µi in HN is entirely

in HU . Alternatively, when m = 0 and πU
i = 0, all of the proportion in HN is in the

deterministic and explosive subspace HX . We call πU
i the unit root proportion of the i-th

moment. Generally, it is more difficult to predict the i-th moment if πU
i is closer to unity.

In contrast, the i-th moment is easier to predict if πU
i is small – either because ∥ΠSµi∥ is

relatively large due to stationarity or because ∥(ΠN − ΠU )µi∥ is relatively large due to a

deterministic trend.

3 Persistent Features in Temperature Anomalies

We now discuss how to implement the tests and create the proportions discussed above us-

ing actual data, and we present the results for the temperature anomaly distributions. We

then show unit root proportions and graphical representations of the stationary and non-

stationary components, and we interpret the evident persistent features in the temperature

anomaly data.

3.1 Empirical Implementation of the Tests and Proportions

To implement our methodology, we need to deal with cross-sectional densities that we regard

as functional observations on the Hilbert space H introduced in (2). In our analysis, H is

assumed to have a countable basis. This implies that any w ∈ H can be represented as

an infinite linear combination of the basis elements, and that the representation is unique.

Therefore, there is a one-to-one correspondence between H and R∞ and the correspondence

is uniquely defined, once the basis elements are fixed.

For instance, once a basis (ϕ1, ϕ2 . . .) is given, we may write any w ∈ H as w = c1ϕ1 +

c2ϕ2+ · · · and the correspondence becomes w ↔ (c1, c2, . . .). We use this correspondence in

our analysis of functional observations. Of course, the correspondence becomes operational

only if we replace R∞ by RM for some large M . Subsequently, we let [w] = (c1, . . . , cM )′

and define a correspondence

w ↔ [w] (13)
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between H and RM , in place of R∞. In our analysis, we use a Daubechies wavelet basis

and set M = 1, 037, which we believe to be sufficiently large.

Under the correspondence between H and RM defined in (13), we have the correspon-

dences

⟨v, w⟩ ↔ [v]′[w] and v ⊗ w ↔ [v][w]′

for any v, w ∈ H. In fact, under the correspondence in (13), a linear operator Q on H

generally corresponds to a square matrix of dimension M denoted by [Q], and we have in

particular

⟨v,Qw⟩ ↔ [v]′[Q][w]

for any v, w ∈ H. We use these correspondences throughout our analysis.

For ease of reference and clarity of exposition, and because our procedure is new, we

briefly outline seven steps utilized to create the test statistics τTp and σT
q using actual data

from a finite sample.

1. Obtain wt. We regard wt as an M -dimensional vector [wt] for each t.

2. Create QT . Implement QT =
∑T

t=1wt ⊗ wt as [QT ] =
∑T

t=1[wt][wt]
′ for each t.

3. Calculate vi(QT ). We identify these as [vi(QT )], which are M orthonormal eigen-

vectors of the M -dimensional square matrix [QT ].

4. Create zt from (6) or (7). Inner products ⟨vi(QT ), wt⟩ are computed as [vi(QT )]
′[wt]

for each i and t.

5. Create QT
r and ΩT

q . Implement QT
r =

∑T
t=1 ztz

′
t and ΩT

r =
∑

|k|≤ℓϖℓ(k)ΓT (k) using

the Parzen window with Andrews plug-in bandwidth.

6. Calculate λ
(
QT

r ,Ω
T
r

)
. These are generalized eigenvalues of QT

r with respect to ΩT
r

for r = p or q.

7. Calculate Test Statistics τTp and σT
q from (8) and (9).

Once these test statistics have been calculated, the ranks of the respective spaces are chosen

using the sequential procedure described above.

The nonstationary and unit root proportions of the i-th moment defined in (11) and

(12) cannot be calculated directly, since HN and HU are unknown. Instead, we may use

the sample nonstationary and unit root proportions of the i-th cross-sectional moment

π̂N
iT =

√∑n
j=1⟨µi, vj(QT )⟩2∑m
j=1⟨µi, vj(QT )⟩2

and π̂U
iT =

√∑n
j=n−m+1⟨µi, vj(QT )⟩2∑m

j=1⟨µi, vj(QT )⟩2
(14)



18

p, q = 1 2 3 4

Global τTp 0.0531 0.0289 0.0105 0.0097

σT
q 0.0531 0.0536

NH τTp 0.0387 0.0379 0.0119 0.0105

σT
q 0.0387 0.0407

SH τTp 0.0611 0.0219 0.0097 0.0089

σT
q 0.0611

Table 2: Test Statistics τTp and σT
q . Global, NH, and SH temperature anomaly distributions.

to estimate πN
i and πU

i . Chang et al. (2015) show that the sample nonstationarity pro-

portion π̂N
iT is a consistent estimator of the original nonstationarity proportion πN

i and it

follows by extension that π̂U
iT consistently estimates πU

i .

3.2 Test Results

Table 2 shows the τTp and σT
q test statistics for the global, NH, and SH temperature anoma-

lies up to p = 4. Starting with τTp for the global distribution and comparing the statistic

with the critical values in Table 1 we reject p = 4 against the alternative p ≤ 3, and then we

reject p = 3 against the alternative p ≤ 2, both with a size of 1%. We cannot reject p = 2

against p ≤ 1 even with 10%. We obtain the same results for the NH distribution, only

with a size of 5%. The NH distribution is actually marginal for p = 1 against p = 0, but

we stop at 2, because we fail to reject p = 2 against p = 1. The SH distribution strongly

rejects p = 4 and p = 3 at 1% size and rejects p = 2 at 5% size, but p = 1 is not rejected

against p = 0.

We therefore choose the dimension of the nonstationary subspace dim (HN ) to be n = 2

for the NH and the globe, but n = 1 for the SH. We may interpret the nondegenerate

dimension of the nonstationary subspace to mean that all three series of distributions have

some persistence that is strong enough to be permanent in the sense that shocks to the

temperature anomaly distributions are accumulating over time. Changes in the temperature

anomaly distributions are not entirely transitory.

Is the persistence of the unit root type, exhibiting mean reversion over a long horizon,

or is the persistence explosive or deterministic? To answer this question, we now examine

σT
q . Looking first at the global distribution, q = n = 2 is not rejected at any reasonable

significance level against q ≤ 1, and neither is q = 1 against q = 0. We thus choose dim (HU )

to be m = n = 2 for the global distribution. The same outcome m = n = 2 is obtained

for the NH distribution, while that for the SH distribution is similarly m = n = 1. The

fact that m = n is chosen in every case suggests that all of the nonstationarity is better
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π̂N
1T π̂N

2T π̂N
3T π̂N

4T π̂N
5T π̂N

6T π̂N
7T

Global 0.516 0.270 0.235 0.188 0.151 0.142 0.117
NH 0.409 0.205 0.160 0.129 0.101 0.094 0.078
SH 0.633 0.199 0.331 0.168 0.212 0.140 0.157

Table 3: Sample Nonstationary Proportions in the First Seven Moments. Global, NH,

and SH temperature anomaly distributions.

characterized by unit-root-type persistence, suggestive of stochastic trends in the moments

of the distributions, than by higher-order persistence associated with explosive roots or

linear deterministic trends.

Our results for the mean better agree with those of Gordon (1991) inter alia, who

found evidence for a unit root in the mean global temperature, than with the linear trend

used by many authors. We hasten to add that our results do not imply random walks

in the moments. A random walk is a very special case of a unit root process that has

completely unpredictable increments. A unit root process may have increments with strong

but stationary persistence, meaning that changes in the mean global temperature may

have long-lasting effects. Such persistent changes yield a stochastic trend that may indeed

increase over a long period of time, giving the appearance of a linear trend or a broken

linear trend.

3.3 Estimated Proportions

We now turn to the proportions of the subspaces defined above in each cross-sectional

moment of temperature anomalies. Note that we set πU
i = πN

i – i.e., the unit root space

spans the entire nonstationary space – because we do not find evidence of any higher-order

persistence. Table 3 shows consistent estimates π̂N
iT for i = 1, ..., 7 of the proportion of the

nonstationary subspace πN
i in each of the first seven cross-sectional moments of temperature

anomalies. The remaining proportions are in the stationary subspace πS
i .

For the entire globe, just over half (51.6%) of the persistence in the mean is strong

enough to be unit-root-type persistence. Curiously, the persistence in the mean appears

to be stronger in the SH than the NH, in the sense that 63.3% of the persistence in the

Southern mean is of the unit root type, while only 40.9% of that north of the Equator. The

global, NH, and SH variances are 27.0%, 20.5%, and 19.9% respectively, suggesting that

nonstationary proportions in the variance are lower than those in the mean and roughly

similar in both hemispheres.

The proportion of unit root persistence in the skewness for the globe is 23.5%. Like the

mean, the skewness appears to be less persistent in the NH (16.0%) than in the SH (33.1%).
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The persistence appears to be declining in the remaining four moments for the globe and

NH, while it remains roughly 15-20% in the SH.

3.4 Estimated Components

Because the concepts of stationarity and nonstationarity of densities are quite new, we

present some further illustrations of these components. The left panels of Figure 5 show the

time series of demeaned densities (wt) (same as the top right panels of Figures 2-4) for the

globe, NH, and SH. The right panels show the time series of stationary components of the

respective densities (wS
t ). These are calculated by subtracting the estimated nonstationary

(unit root) components (wN
t ), calculated as wN

t = ΠNwt, from the densities (wt). Recall

that the dimension of n (= m) was estimated to be two for the globe and NH and one for

the SH. In all three cases – but especially in the first two – the stationary components of the

densities appear to be more like random noise, showing very little evidence for persistence

in any of the moments. Evidently, the temporal patterns in the densities are driven by their

nonstationary components rather than by their stationary components.

The concept of nonstationarity will be more familiar to readers in a simple time series

context. To this end, Figure 6 shows the nonstationary components more clearly. First,

we plot the normalized mean process. The mean process is given by µt above (middle left

panels of Figures 2-4), but we normalize the series to unit length with a Euclidean norm

since the eigenvectors used to compute the nonstationary coordinate processes have unit

length. We then plot the two estimated nonstationary coordinate processes ⟨v1, wt⟩ and

⟨v2, wt⟩ – which could be written as (c1t) and (c2t) using the correspondence in (13) – for

the globe and NH and the one ⟨v1, wt⟩ for the SH. Clearly, the estimated nonstationary

coordinate processes exhibit more persistence compared to the time series of cross-sectional

means that include both stationary and nonstationary components. In other words, the

time series plots of the nonstationary coordinate processes better resemble sample paths of

unit root processes than those of stationary process – or those of trend stationary processes,

for that matter. We see stronger evidence for the globe and NH, but less so for the SH,

which is not surprising given that we have only a one-dimensional unit root space for the

SH and the unit root proportion of the mean process is over 60%, capturing a substantial

portion of nonstationarity in the time series of SH temperature distributions.

4 Concluding Remarks

The means and kurtoses of global and hemispheric temperature anomalies appear to be

increasing, while the variances and skewnesses appear to be decreasing. Our analysis of the
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Figure 5: Densities and Stationary Components. Temporally demeaned densities (wt) (left)

and stationary components (wS
t ) (right) for the globe (top), NH (middle), and SH (bottom).
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Figure 6: Mean and Nonstationary Components. Normalized mean processes and estimated

nonstationary coordinate processes for the globe (top), NH (middle), and SH (bottom).
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persistence of these moments suggests stochastically trending movement toward warmer

temperatures on average, but with lower dispersion and more outliers. Since the distribu-

tions are estimated on the same support over time, more outliers do not mean more extreme

temperatures. Rather, more outliers mean that existing extremes are more likely observed.

Moreover, the negative skewness means that colder outliers are increasingly less likely, while

warmer outliers are more likely than colder. (A decreasing variance has a countervailing

effect on warmer outliers, so we cannot say for sure if warmer outliers are more likely over

time.)

There are permanent and long-run fluctuations in the moments of the distributions of

temperature anomalies over this period – and most notably in the mean and variance of

all of the distributions and in the skewness of the SH distributions. The NH distributions

appear to be more stable over time, in the sense than even with the unit root persistence in

the mean and variance, the proportion of this type of persistence in almost every moment is

smaller than that in the SH. From a purely statistical point of view, if the level of persistence

is unchanged, we may expect that all of these moments will revert to their long-run averages,

but possibly after a very long period of time. We should not expect that they will never

revert.

We acknowledge two important limitations of our approach: data and structure. Bro-

han et al. (2006) extensively discuss limitations of these data. Differences in measuring

temperature in the NH and SH could explain some of the variation in our results across

the hemispheres. The SH has fewer non-missing grid box observations. But with relatively

more marine observations in the SH, these observations have less land bias. In spite of these

limitations, our main results on unit root behavior should not be substantially affected, be-

cause we do not expect that measurement error associated with these data should create or

alter long-run properties of the distributions.

Second, although our approach employs new and sophisticated statistical tools to de-

scribe the evolution of temperature anomalies, it certainly has structural limitations. One

could envision a plausible scenario in which the slowly increasing mean warms enough po-

lar ice to substantially affect the ocean circulation, which could have a large nonlinear

effect on the future mean – an “indirect carbon-cycle feedback-forcing effect.” Such nonlin-

ear feedback could substantially alter the persistence features of the temperature anomaly

distributions. In the absence of a richer structural model, a structural break model for

higher-order moments of the distributions, along the lines of Gay-Garcia et al. (2009) inter

alia for the means, could provide some useful insight. We leave this for future research.
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