
Negative Income Shocks and Asset Pricing

Steven Kou† and Seyoung Park‡

Abstract

Rare but large negative income shocks can occur due to pandemics, technological

disruption, etc. We study the impact of these shocks on asset pricing by adding them

to the classic Friedman’s permanent income hypothesis. Our model yields analytical

solutions for the equilibrium interest rate and state price density. The income shocks

can lead to interesting phenomenon that the equilibrium interest rate is a decreasing

function of the risk aversion, helping to disentangle the risk-free rate and equity

premium. As a result, the model can fit both low risk-free rate and high equity

premium by using a small number of parameters.

Keywords: Income Shock, Incomplete Market, General Equilibrium, Asset Pricing

JEL Codes: D15, D58, G11, G12

†Questrom School of Business, Boston University, E-mail: kou@bu.edu

‡Nottingham University Business School, University of Nottingham, E-mail: seyoung.park@nottingham.ac.uk



Negative Income Shocks and Asset Pricing∗

Steven Kou and Seyoung Park

Abstract

Rare but large negative income shocks can occur due to pandemics, technological

disruption, etc. We study the impact of these shocks on asset pricing by adding them

to the classic Friedman’s permanent income hypothesis. Our model yields analytical

solutions for the equilibrium interest rate and state price density. The income shocks

can lead to interesting phenomenon that the equilibrium interest rate is a decreasing

function of the risk aversion, helping to disentangle the risk-free rate and equity

premium. As a result, the model can fit both low risk-free rate and high equity

premium by using a small number of parameters.

Keywords: Income Shock, Incomplete Market, General Equilibrium, Asset Pricing

JEL Codes: D15, D58, G11, G12

∗The authors are grateful for the helpful discussions with Darrell Duffie, Paul Glasserman, Jussi Keppo,

Karl Schmedders, Alan Morrison, David Bell, Hato Schmeiser, Abhay Abhyankar, Alain Bensoussan, Al-

istair Milne, Chiaki Hara, Eckhard Platen, Paul Embrechts, Hyeng Keun Koo, Phillip Yam, Huainan

Zhao, Jiro Akahori, and the seminar participants at the 55th Annual Meeting of the Eastern Finance

Association (EFA), the 4th World Risk and Insurance Economics Congress (WRIEC), ETH Zurich, Seoul

National University, Yonsei University, Korea University, Korean Advance Institute of Science and Tech-

nology (KAIST), Pohang University of Science and Technology (POSTECH), Ulsan National Institute

of Science and Technology (UNIST), Pusan National University, Ajou University, Kyung Hee University,

Sookmyung Women’s University for helpful comments. All errors are the authors’ own responsibility.



1 Introduction

1.1 Background

Potentially catastrophic loss of income is now an omnipresent risk. The impact of the

COVID-19 pandemic has exposed working members of society to large and negative in-

come shocks, driving increased concerns about employment loss risk, and more generally

about discontinuities in income flow.1 Insecurity and volatility levels around earnings are

expected to increase due to this pandemic and affect many more individuals over their life

cycle.2 Equally, half of jobs in the world are susceptible to becoming automated in the

future (Frey and Osborne, 2017). This is another risk to labor markets which is expected to

significantly disrupt a large cross-section of our society. Considering such potentially catas-

trophic income losses, a very clear need has arisen to research risk management strategies

to alleviate potential discontinuities in the income stream.3

To cope with disastrous income shocks arising from rare events by understanding op-

timal risk management practices, our focus is to generalize Friedman’s (1957) permanent

income hypothesis (PIH) with a large, negative income shock (LNIS) and then to evaluate

whether the generalized framework can explain how people would respond to the LNIS to

increase their resilience to it.4 Having generalized the PIH with the LNIS, we then examine

1The current COVID-19 pandemic has increased the possibility of losing substantial part of individuals’

income resulting from potential bankruptcies of firms which they work for.
2In the US, 44% of households could not cover an emergency expense of only $400, so they will struggle

if they experience an unexpected hardship (Federal Reserve report, 2017). For more details, refer to

“Report on the Economic Well-Being of U.S. Households in 2016” published by Board of Governors of

the Federal Reserve System on May 2017. In the European Union, approximately 218 million people are

experiencing earnings insecurity and volatility and struggling to ensure that future consumption needs can

be met (European Commission statistics, 2017). For more details, refer to EU Statistics on Income and

Living Conditions (EU-SILC 2017).
3Otherwise, the failure to provide appropriate income protection for businesses against the long term

disruptive economic impact of the pandemic would result in business failures and costly bankruptcy (Milne,

2020).
4The research findings will provide insights and understanding to individuals for determining how to
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the ability of an asset pricing model with the LNIS to explain the equity premium puzzle

and the risk-free rate puzzle especially through the key economic mechanism of optimal

consumption/savings. To obtain analytically tractable general equilibrium quantities, we

consider a pure exchange economy in the type of Lucas (1978). The generalization is that

a representative agent’s aggregate output is exposed to the LNIS. To investigate the ef-

fects of the LNIS in our equilibrium setting, we have derived Euler equation and general

equilibrium risk-free rate and equity premium in closed-form.5

1.2 Contribution

In this paper, we provide a simple explanation via Friedman’s PIH with the LNIS to fit

both low risk-free rate and high equity premium especially by using a small number of

parameters. The key economic mechanism understanding the PIH channel is that the

Arrow-Debrue price (or the shadow price) further increases with the LNIS (Theorem 4.1 in

Section 4). The increased price could influence an increase in the equilibrium consumption

price, implying that the amount of present consumption the agent would be willing to give

up now to receive one more unit of future consumption becomes larger than without the

LNIS. To continue being able to afford with the more expensive consumption price what the

agent can currently afford, she would then significantly increase her optimal savings with

the LNIS when wealth is large as well (Figure 3 in Section 5). The demand for optimal

savings is sufficiently strong making the agent save at a high rate6 and hence, lowering

the risk-free rate significantly, which is particularly relevant to today’s low-interest-rate

environment. Such a savings decision discourages equity investment, so the equity premium

increases.

continue being able to afford what they can currently afford, i.e., how to attain a smooth profile of future

consumption.
5In a general equilibrium sense, we also generalize in a rational expectations equilibrium framework the

Ramsey rule (Ramsey, 1928) showing that interest rate equals subjective discount rate plus the product

of consumption elasticity of marginal utility and consumption growth rate.
6The LNIS faced by the agent causes her likely to reduce consumption to secure extra reserves in

preparation for financing future consumption needs by using her savings.

2



Contrary to the standard asset pricing model without the LNIS, in our framework high

values of risk aversion no longer counterfactually generate high risk-free rates. Rather, an

increase in risk aversion results in a decrease in the risk-free rate (Figure 1 in Section 5),

thereby helping to disentangle the risk-free rate and equity premium and thus, avoiding

the risk-free rate puzzle (Weil, 1990).

The equity premium and the risk-free rate are determined in equilibrium and matched

up with the century-long sample (1891-1994) by Campbell (1999) and the long historical

sample (1871-2011) by the website of Robert Shiller (http://www.econ.yale.edu/∼shiller/data/chap26.xls).

The risk-free rates and the equity premia generated by our asset pricing model with the

LNIS are exactly the same with those observed from the century-long sample and the long

historical sample, requiring empirically plausible parameter values (Table 1 in Section 5).

Technically, our model improves methods proposed by Cox and Huang (1989) and

Karatzas et al. (1991) (who do not consider income) to solve optimal consumption/investment

and asset pricing problems with large income shocks. The improvement that we have in

Section 3 and Section 4 essentially uses ideas suggested by Bensoussan et al. (2016) to

solve incomplete-market problems with income risk. We then extend with the solutions

the asset pricing framework of Lucas (1978) to allow for income shocks.

1.3 Literature Review and Outline

Permanent Income Hypothesis. The permanent income hypothesis (PIH) of Friedman

(1957) suggests that consumption is proportional to the sum of financial wealth and human

capital, which is the discounted expected value of future income at the risk-free interest

rate. So, the changes in marginal consumption with financial wealth or human capital,

i.e., when future wealth or income shocks are possible, individuals’ optimal decision is

to save more to attain consumption smoothing (a smooth profile of future consumption).

In line with Friedman’s PIH intuition, our generalized PIH with the LNIS suggests that

responding to the LNIS would require substantial precautionary savings for consumption

smoothing.
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Individual Savings. According to the PIH predictions of Bewley (1977) and Campbell

(1987), an income shock is less likely to affect the optimal savings of people who are at the

higher end of wealth. This is because consumption of the wealthy can be financed mainly

by wealth, without resorting to income. Intuitively, the ability to self-insure against the

income shock improves when wealth is large, so the optimal savings decrease as wealth

increases and then turns negative if wealth is very large relative to income. Contrary to

Bewley (1977) and Campbell (1987), a savings motive for precautionary reasons in the

event of the LNIS has a first-order effect on the optimal savings decision of wealthy people.

Empirical and anecdotal evidence shows that positive and even high savings rates are very

common amongst wealthy people. Indeed, wealthy people are inclined to exhibit high

savings rates as follows: a positive relation between savings rates and income (Dynan et

al., 2004), entrepreneurship purposes for entering and expanding business (Buera, 2009),

out-of-pocket medical expenses patterns (De Nardi et al., 2010), the mix of bequests and

human capital, entrepreneurship, and medical-expense risk (De Nardi and Fella, 2017).

Our generalized PIH with the LNIS can partially support high savings rates of wealthy

people.

Optimal Consumption and Investment. Our work sits squarely within the optimal

consumption and investment framework. Starting from the seminal work of Merton (1969,

1971), many studies have incorporated nontradable income in the framework.7 Importantly,

the (undiversifiable) labor income risk has become a standard element in studies of optimal

strategies. When modeling and interpreting labor income shocks, standard literature has

assumed log-normality with a Brownian motion.8 However, large and negative income

7For instance, refer to Farhi and Panageas (2007) and Jang et al. (2013).
8For example, Merton (1971), Bodie et al. (1992), Duffie et al. (1997), Koo (1998), Cocco et al. (2005),

Gomes and Michaelides (2005), Polkovnichenko (2007), Benzoni et al. (2007), Wachter and Yogo (2010),

Dybvig and Liu (2010), Munk and Sørensen (2010), Lynch and Tan (2011a, 2011b), Calvet and Sodini

(2014), Ahn et al. (2019), and Jang et al. (2019).
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shocks affect individual life-cycle strategies significantly, and cause substantial deviations

from log-normality (Guvenen et al., 2015). Furthermore, models that use the Brownian

motion cannot appropriately account for the effects of low-probability, high-impact events

such as forced unemployment and job displacement.9 To reflect the empirical reality, we

consider the LNIS in the optimal consumption and investment framework.

Incomplete Market. It has long been known that market completeness under no arbi-

trage implies the existence of a unique state price density and the resulting unique risk-

neutral measure, under which the expected return on any asset becomes the risk-free rate

(Ross, 1978). However, when markets are incomplete, i.e., when risk may be undiver-

sifiable, the assumption of risk-neutrality with the unique state price density cannot be

justified. Rather, the number of state price densities is infinite, so the set of equivalent

martingale measures is also infinite. To price the expected return on an asset under the

LNIS, this multitude of state price densities must be pruned to one.

Although a theoretical framework for the martingale pricing in incomplete markets

exists (Karatzas et al., 1991), it cannot easily be used to characterize the set of state price

densities explicitly.10 The state price density has been derived explicitly by Kou (2002)

and Liu et al. (2003). However, these models have overlooked the labor income risk, which

is a major dimension of market incompleteness.11

9Low et al. (2010) show that large earnings losses are observed at job displacement.
10In order to address the challenges of market incompleteness, instead of the martingale pricing approach,

alternative dynamic programming approach can be used for the pricing in incomplete markets (Duffie et al.,

1997; Liu et al., 2005). However, in this case, it involves highly non-linear Hamilton-Jacobi-Bellman (HJB)

equations, which are almost impossible to solve analytically. Therefore, use of dynamic programming

approach requires use of complex numerical schemes to solve incomplete market problems. With no

consideration of labor income and its risk, one can adopt the approaches of Garlappi and Skoulakis (2010),

Jin and Zhang (2012), and Jin et al. (2017) for such a numerical approach to solving the consumption

and investment problem in incomplete markets.
11Based on the idea of market completion by Karatzas et al. (1991), Liu et al. (2003) have established

a dynamically completed market with derivatives. Similar to Liu et al. (2003), Branger et al. (2017) add

derivatives to complete the market in which variances and covariances of return are stochastic. It would
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In our work, the LNIS is driven by an exogenous shock that is assumed to occur with

a Poisson probability distribution, and hence cannot be fully diversified away. In such

a setting with the random arrival of the income shock, the classical martingale pricing

approach (Cox and Huang, 1989) that uses the risk-neutral measure is no longer available.

We believe the main difficulty lies in that allowing for market incompleteness usually gives

rise to considerable challenges in deriving the closed-form (or analytically tractable) unique

state price density for pricing purposes. Ours is a first attempt to develop an analytically

tractable martingale pricing approach in an incomplete market with the LNIS. We start

from the idea of fictitious completion (Karatzas et al., 1991) to establish a risk-neutral

intensity of the LNIS; the uniquely determined risk-neutral intensity should be used when

deriving the dynamic budget constraint.12

Equity Premium Puzzle. Mehra and Prescott (1985) initially raise the so-called equity

premium puzzle, which has been dubbed by Campbell (1999) as the following question:

why is the average real stock return so high in relation to the average short-term real

interest rate? There is an extensive literature in an attempt to resolve the equity premium

puzzle within a rational expectations equilibrium framework especially in a complete mar-

ket setting: Basak (1995), Heaton and Lucas (1996), Basak and Cuoco (1998), Basak

and Shapiro (2001), Liu et al. (2003), Maenhout (2004), Gârleanu and Panageas (2015),

Kimball et al. (2018), Gomez (2019), Gârleanu and Panageas (2019).

Amongst various economic channels that matter for asset prices, unhedgeable/uninsurable

idiosyncratic income shocks have been considered in standard asset pricing models to match

the equity premium: Grossman and Shiller (1982), Lucas (1994), Wang (2003), Gomes and

Michaelides (2008), Guvenen (2009), Kreuger and Lustig (2010), Christensen et al. (2012),

Dumas and Lyasoff (2012), Schmidt (2016), Constantinides and Ghosh (2017). Due to the

be tricky to apply their models to the incomplete market setting, without resorting to the idealistically

completed market.
12More recently, Ahn et al. (2019) provide a numerical scheme to characterize the unique state price

density.
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limitations of conventional income shock modeling in a diffusive-type shock (Brownian-risk)

setting, the existing models are limited to fully investigate the asset pricing implications of

market incompleteness. We present an analytically tractable asset pricing framework with

both diffusive income shocks and LNIS in the simplest possible economic setting (without

resorting to complex dimensions such as recursive utility and heterogeneity considered by

Schmidt (2016) and Constantinides and Ghosh (2017)) and explain both low risk-free rate

and high equity premium via a simple Friedman’s PIH optimal savings channel.

Risk-Free Rate Puzzle. Weil (1990) first identifies the so-called risk-free rate puzzle.

Requiring a very high risk aversion in a response to the equity premium puzzle results in a

very high interest rate as well, which has been at odds with the low interest rate we have

observed. In an attempt to resolve the risk-free rate puzzle, Constantinides et al. (2002)

show that borrowing constraints preventing young people from borrowing by capitalizing

their human capital can dramatically lower the risk-free rate, thereby partially explaining

the risk-free rate puzzle. Bansal and Yaron (2004) establish the long-run risk model in a

representative agent economy with recursive utility where the low risk-free rate is generated

matching the historical rate.

A few papers have investigated a role of non-hedgeable income shocks in the risk-free

rate: Weil (1992), Kreuger and Lustig (2010), Christensen et al. (2012). Weil (1992)

obtains a sufficient condition in a two-period model under which undiversifiable labor

income risk decreases the risk-free rate and increases the equity premium. Kreuger and

Lustig (2010) obtains the result in a standard incomplete markets endowment economy

just as Lucas (1994) that idiosyncratic labor income risk is known to decrease the risk-free

rate. Christensen et al. (2012) derive the result in a Brownian-risk setting that unspanned

income risk can play a pivotal role in a decrease of the risk-free rate. In a standard

infinite horizon, incomplete market, continuous-time setting with the LNIS, we also have

the result that the risk-free rate becomes lower with higher risk aversion and larger the

LNIS, consistent with the theoretical evidence by Weil (1992), Kreuger and Lustig (2010),

Christensen et al. (2012). More importantly, we can exactly match the historical risk-free
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rate with the LNIS-induced precautionary savings generalizing Friedman’s PIH, thereby

explaining the risk-free rate puzzle.

Related Literature. This paper builds on two strands of the literature. First, it draws

on the effects of a permanent discrete-jump income shock on optimal consumption and

savings by Wang et al. (2016) and Bensoussan et al. (2016). Wang et al. (2016) study

an incomplete-market consumption-savings model with recursive utility and stochastic in-

come modeled by both a Brownian motion and large jump income shocks. Bensoussan

et al. (2016) study a model of optimal consumption/savings, investment, and retirement

with jump-type forced unemployment risk. Our paper incorporates a disastrous income

shock in Friedman’s PIH, and thoroughly investigates its crucial role in optimal consump-

tion/savings, and, more importantly, in asset prices.

The paper draws on the literature on asset pricing with unhedgeable idiosyncratic in-

come shocks. In contrast to the insignificance of the role of labor income risk in asset

prices (Grossman and Shiller, 1982; Krueger and Lustig, 2010), Constantinides and Duffie

(1996), Gomes and Michaelides (2008), Guvenen (2009), Christensen et al. (2012), Du-

mas and Lyasoff (2012), Constantinides and Ghosh (2017) have improved their empirical

predictions for asset prices by focusing on unhedgeable idiosyncratic income shocks. All

of these asset pricing models acknowledge the limitations of conventional income shock

modeling in a Brownian-risk setting in matching asset prices. Different from these stud-

ies, generalizing Constantinides and Duffie (1996), Schmidt (2016) thoroughly investigates

asset pricing implications of idiosyncratic tail (jump) risk in consumption growth and in-

come with recursive preferences, income skewness, heterogeneous agents, and incomplete

markets.

Here our goal is different from Schmidt (2016): rather than include all the complex

dimensions that are realistic and important in financial and labor markets, this paper

isolates and very closely investigates the consumption and savings issues introduced by the

LNIS on asset prices. While being motivated by the pivotal role of a large uninsurable

component of labor income in asset prices, we further draw on the PIH-based general
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equilibrium model by Wang (2003) with the LNIS, which is a big step to study the PIH

explanations with the LNIS to the equity premium puzzle and the risk-free rate puzzle.

More precisely, ours addresses the level of equity premium and risk-free rate by newly

finding a substantial precautionary savings motive driven by the LNIS that turns out to

do matter for asset prices.

Outline. This paper is organized as follows. In Section 2, we establish the optimal

consumption and investment problem with the LNIS. In Section 3, we generalize the PIH

and obtain analytically tractable optimal consumption and investment strategies through

which the optimal savings required for consumption smoothing are quantified. In Section

4, we provide a general equilibrium analysis with all the equilibrium quantities derived

in closed-form. In Section 5, we perform an in-depth quantitative analysis to discuss the

impact of the optimal strategies on asset prices and match the equity premium and risk-free

rate observed from the data. In Section 6, we conclude the paper.

2 The Model

Model Setup. Uncertainty is driven by a filtered probability space (Ω,F , {Ft}, P ), in

which a multi-dimensional Brownian motion and a Poisson process are defined. All stochas-

tic processes are adapted to {Ft}, which is the P -augmentation of the filtration generated

by the Brownian motion and the Poisson process. All stated stochastic processes are

assumed to be well defined, without explicitly stating the regularity conditions.

Financial assets in the market are summarized by one riskless bond and multiple risky

stocks. The bond price B and the stock prices S are given by

dB(t) = rB(t)dt

and

dS(t) +D(t) = S(t){µdt+ σ>dZ(t)}, (1)
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where r is the risk-free interest rate, D(t) = (d1, ..., dN) are dividends for N risky stocks, µ

is the constant mean vector, σ is the constant nonsingular standard deviation matrix, and

Z(t) is the standard Brownian motion process with dimensionality equal to the number

of linearly independent returns on stocks. In the context of finance interpretation, Z(t)

represents variations in market/economic condition that stem from a source of market risk

(or a market factor) in the economy.

We consider the aggregate output process I(t) modeled by a geometric Brownian motion

with a Poisson shock as follows:

dI(t) = µII(t−)dt+ (σI)>I(t−)dZ(t)− (1− k)I(t−)dN(t), I(0) = I > 0, (2)

where µI is the output mean vector and σI is the standard deviation vector, Z(t) is the

market factor, k ∈ (0, 1) is the recovery parameter, and N(t) is a Poisson shock with

intensity δ > 0. The output is exposed to a large, negative income shock (LNIS) represented

by the Poisson shock. When the LNIS occurs at time t−, the aggregate output plummets

immediately to kI(t−) from I(t−).

We assume that the fraction ξ ∈ (0, 1) of aggregate output constitutes aggregate earn-

ings ξI(t).13 The remaining fraction 1 − ξ of aggregate output is paid out as a dividend

as:

D(t) = (1− ξ)I(t) = I(t)− ξI(t),

which shows that the dividend itself is affected by the LNIS not only in the aggregate

output I(t), but also in the aggregate earnings ξI(t). Such an influence of the LNIS would,

thus, affect asset returns in (1) as well.14

We consider an infinite-horizon economy with a single consumption good (the nu-

meraire). Each representative agent has wealth W (t) and invests π(t) in the stock market,

and saves her remaining wealth W (t) − π(t) in the bond market. The agent also con-

13The aggregate earnings are the total of all earnings in an economy expressing the proceeds from the

aggregate (total) output in the economy for producers of that output.
14Aggregate earnings risks and asset return risks are closely related (Ball et al., 2009). For instance,

there is a positive relation between earnings and asset returns at the firm level (Ball and Brown, 1968).
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sumes c(t) and receives ξI(t). The agent’s dynamic wealth (budget) constraint is then:15

W (0) = w > −ξI/β1,

dW (t) = {rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)}dt+ π(t)>σ>dZ(t), (3)

where 1 is a vector of one’s with dimensionality equal to the number of stocks, π(t) is the

dollar amount vector invested in each risky stock, and the borrowing limit is imposed by

the following wealth constraint:16

W (t) > −ξI(t)

β1
, for all 0 ≤ t < τ, (4)

where

β1 = r − µI + (σI)>θ, θ = (σ>)−1(µ− r1),

and τ is the random arrival of the LNIS driven by Poisson shock N(t). Notice that the

agent is being exposed to the large, negative wealth shock due to the LNIS in the aggregate

earnings ξI(t) stemming from the random arrival of the Poisson shock N(t) in the aggregate

output process (2).

The uncertainty in the model results from two risk sources: the market risk factor

and the undiversifiable LNIS. The market factor is captured by fluctuations dZ(t) in mar-

ket/economic conditions. The undiversifiable disastrous income shock is captured by the

Poisson shock N(t) with a small probability that comes as the LNIS.

The Optimal Consumption and Investment Problem. The agent’s optimal con-

sumption and investment problem with the LNIS is to maximize over the infinite horizon

her constant relative risk aversion (CRRA) utility from intermediate consumption with

wealth constraints (3) and (4) by optimally controlling her consumption c and investment

π.17

15For more details about this dynamic wealth constraint, refer to an online appendix.
16This wealth constraint is same with the free borrowing against wages (Dybvig and Liu, 2010). In other

words, the agent is allowed to borrow against the present value of her future wages (or the human capital).
17Throughout the paper, we only consider the set of admissible policies of consumption c(t) and invest-

ment π(t).
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When δ = 0 (τ = ∞), i.e., without the LNIS the aggregate earnings are ξI(t), where

aggregate output I(t) follows a geometric Brownian motion:

dI(t) = µII(t)dt+ (σI)>I(t)dZ(t), I(0) = I > 0. (5)

The value function is then

V B(w, I) ≡ sup
(c,π)

E
[ ∫ ∞

0

e−βt
c(t)1−γ

1− γ

]
= K

(w + ξI/β1)
1−γ

1− γ
, (6)

where β > 0 is the subjective discount rate, c(·) denotes reduced-form consumption of

goods and services, γ > 0 is the constant coefficient for the agent’s relative risk aversion,

and

K = A−γ, A =
γ − 1

γ

(
r +
||θ||2

2γ

)
+
β

γ
, θ = (σ>)−1(µ− r1).

Here, θ is the Sharpe ratio vector.

When δ = ∞ (τ = 0), i.e., in the LNIS after the Poisson shock N(t), the aggregate

earnings are kξI(t), where aggregate output is the same as in (5). The value function is

then

V A(w, I) ≡ sup
(c,π)

E
[ ∫ ∞

0

e−β(t−τ)
c(t)1−γ

1− γ
dt
]

= K
(w + kξI/β1)

1−γ

1− γ
. (7)

When 0 < δ <∞ (0 < τ <∞), i.e., with the LNIS, the value function is to maximize

the CRRA utility from consumption before the LNIS (0 < t < τ) and after the LNIS

(τ ≤ t <∞) as the following:

V (w, I) ≡ sup
(c,π)

E
[ ∫ τ

0

e−βt
c(t)1−γ

1− γ
dt+ e−βτ

∫ ∞
τ

e−β(t−τ)
c(t)1−γ

1− γ
dt
]
, (8)

which is subject to the wealth constraints (3) and (4). The value function V (w, I) reduces

to either V B(w, I) or V A(w, I) in the two limiting cases of either δ = 0 (τ =∞) or δ =∞

(τ = 0) as follows:

V (w, I) =

V
B(w, I) without the LNIS, i.e., when δ = 0 (τ =∞),

V A(w, I) in the LNIS, i.e., when δ =∞ (τ = 0).
(9)

In these limiting cases, the agent’s problem reduces to Friedman (1957) and Merton (1969,

1971) in that her optimal consumption strategy follows Friedman’s PIH and her optimal
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investment strategy Merton’s investment rule (Theorem 3.1). Specifically, without the

LNIS (τ =∞), the optimal consumption follows Friedman’s (1957) PIH

c(t) = Â
(
w +

ξI

β1

)
,

where

Â =
γ − 1

γ

(
β1 +

||β3||2

2γ

)
+
β2
γ
,

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>,

and the optimal investment follows Merton’s (1969, 1971) investment rule

π(t) =
1

γ
σ−1θ

(
w +

ξI

β1

)
− σ−1σI ξI

β1
.

In the LNIS (τ = 0), the optimal consumption and investment strategies follow by replac-

ing aggregate earnings ξI with kξI in Friedman’s (1957) PIH and Merton’s (1969, 1971)

investment rule stated above.

3 Generalized Permanent Income Hypothesis

General Case. By the principle of dynamic programming the value function given in (8)

can be rewritten as the following:

V (w, I) = sup
(c,π)

E
[ ∫ τ

0

e−βt
c(t)1−γ

1− γ
dt+ e−βτV A(W (τ), I(τ))

]
.

This paper generalizes the two special cases (Friedman’s PIH and Merton’s investment

rule) with the LNIS in the empirically plausible range of 0 < δ < ∞ (0 < τ < ∞).

Integrating out the random arrival τ of the LNIS in (8) allows us to restate the optimal

consumption and investment problem as the following:18

V (w, I) = sup
(c,π)

E
[ ∫ ∞

0

e−(β+δ)t
(c(t)1−γ

1− γ
+ δK

{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]
, (10)

18For the details of the derivation, refer to an online appendix.
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subject to (3). The last term involving intensity δ of the LNIS on the right-hand side of (10)

represents the agent’s maximized utility value in the aftermath of the LNIS. The agent’s

utility value in the LNIS significantly interacts with the utility value before the LNIS,

thereby resulting in qualitative and quantitative adjustments in the optimal strategies

with the LNIS in the ultimate attainment of the totally maximized utility value given

by (10). Put differently, the agent with the LNIS becomes forward looking and aims to

maximize not only her utility value before the LNIS, but interestingly also her utility value

after the LNIS.

We also find that the LNIS makes the maximized expected discounted utility −∞ (or

the maximized expected utility +∞) if the agent would choose to follow Friedman’s PIH

and Merton’s investment policy. For instance, according to the PIH, the agent could be

able to finance her consumption needs by borrowing against her human capital. In this

case, however, the last term involving intensity δ of the LNIS on the right-hand side of

(10) would be highly likely to be −∞, especially as wealth approaches the borrowing limit

−ξI(t)/β1 given by (4).19 Therefore, developing the gereralized PIH framework with the

LNIS should address this challenge of −∞.

In an attempt to resolve such an infinity issue caused by the LNIS, we consider a

catastrophically low time-varying value of wealth as a new borrowing limit instead of (4)

which is reminiscent of a starvation level below which the agent cannot sustain herself

financially and thus, do not invest in the stock market at all. The new borrowing limit is

then given by

W (t) > −L(t) > −kξI(t)

β1
, for all t ≥ 0, (11)

where L(t) is a given nonnegative time-varying function. With the time-varying function

L(t), borrowing against human capital is now constrained fully or partly. Thus, the ex-

tent to which credit is tightened, i.e., the level of lower bound of wealth becomes a real

consideration.

19Such an infinity issue has been also acknowledge by Bensoussan et al. (2016).
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The Optimal Savings. We derive in closed-form the optimal consumption and invest-

ment strategies of the agent with the LNIS, which result in an explicit expression for the

optimal (riskless) savings.

Theorem 3.1 The optimal consumption strategy c(t) and the optimal investment strategy

π(t) of the agent with the LNIS are derived in closed-form:

c(t) = (Â+ δ)
(
w +

ξI

β1
− ξIB∗δz−α

∗
δ − IP

)
, (12)

π(t) =
1

γ
σ−1θw

+
1

γ
σ−1(θ − γσI)

[ξI
β1

+ (γα∗δ − 1)ξIB∗δz
−α∗

δ

− 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

/
c(t)−γ + (γαδ − 1)× IP1 + (γα∗δ − 1)× IP2

]
,

(13)

where

Â =
γ − 1

γ

(
β1 +

||β3||2

2γ

)
+
β2
γ
,

B∗δ and z are the two constants to be determined by the boundary conditions

G(z) = − L
ξI

+
1

β1
and G′(z) = 0,

αδ > 1 and −1 < α∗δ < 0 are the two roots to the following characteristic equation:

F (α; δ) ≡ −1

2
||β3||2α(α− 1) + α(β2 + δ − β1)α + β1 = 0,

G(z) is a dual function of the value function V (w, I) and it is given by:

G(z) =
1

Â+ δ
z−1/γ +B∗δz

−α∗
δ

+
2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0

µαδ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z

µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
,

(14)

with

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>,
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IP represents the integral parts of LNIS-induced precautionary savings and it is given by

IP = IP1 + IP2,

IP1 =
2δK(αδ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−αδ

∫ z

0

µαδ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ < 0,

IP2 =
2δK(α∗δ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−α

∗
δ

∫ z

z

µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ > 0.

Friedman’s (1957) Consumption. Without the time-varying borrowing constraints (11)

and the LNIS, i.e., when B∗0 = 0 and δ = 0, the agent’s optimal consumption strategy (12)

can be rewritten by the following Friedman’s (1957) PIH:

c(t) = Â
(
w +

ξI

β1

)
,

which means that the agent’s consumption can be annuitized from her total available

resources. Further, the marginal propensity to consume out of financial wealth is constant

implying that regardless of wealth levels, the agent’s optimal consumption to total wealth

ratio is well maintained at constant rate.

Merton’s (1969, 1971) Investment. The classic Merton (1969, 1971) investment rule can

be revisited:

π(t) =
1

γ
σ−1θ

(
w +

ξI

β1

)
− σ−1σI ξI

β1
, (15)

which comes from (13) when σI > 0 and δ = 0, i.e., with output uncertainty but without

the LNIS. The first term on the right hand side of (15) represents the mean-variance asset

allocation and the second one represents the demand for hedging (or the intertemporal

hedging component) against the output uncertainty.

Theorem 3.1 allows us to obtain the resulting optimal (riskless) savings by measur-

ing the wedge between total wealth (financial wealth+human capital) and the sum of

consumption and investment. Specifically, we identify and quantify three different optimal

savings motives in the following Corollary: (i) PIH-implied optimal savings, (ii) Borrowing-

constraints-induced optimal savings, and (iii) LNIS-induced optimal savings.
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Corollary 3.1 We identify and quantify three different optimal savings motives as follows.

(i) PIH-implied optimal savings

≡
(
w +

ξI

β1

)
− c(t;B∗0 = 0, δ = 0)− π(t;B∗0 = 0, δ = 0)

=
(

1− Â− 1

γ
σ−1θ

)(
w +

ξI

β1

)
+ σ−1σI

ξI

β1
.

(ii) Borrowing-constraints-induced optimal savings

≡
(
w +

ξI

β1

)
− c(t; δ = 0)− π(t; δ = 0)

= PIH-implied optimal savings

+
(
Â− 1

γ
σ−1(θ − γσI)(γα∗0 − 1)

)
ξIB∗0z

−α∗
0 .

(iii) LNIS-induced optimal savings

≡
(
w +

ξI

β1

)
− c(t)− π(t)

= PIH-implied optimal savings + LNIS-PS,

where the LNIS-induced precautionary savings (LNIS-PS) are given by

LNIS-PS = −δ
(
w +

ξI

β1

)
+
(
Â+ δ − 1

γ
σ−1(θ − γσI)(γα∗δ − 1)

)
ξIB∗δz

−α∗
δ

+
1

γ
σ−1(θ − γσI) 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

/
c(t)−γ

+
(
Â+ δ − 1

γ
σ−1(θ − γσI)(γαδ − 1)

)
× IP1

+
(
Â+ δ − 1

γ
σ−1(θ − γσI)(γα∗δ − 1)

)
× IP2.

(16)

The PIH-implied optimal savings show that the marginal propensity to save (MPS) out

of financial wealth is 1− Â− 1
γ
σ−1θ, which implies that with respect to one unit increase of

wealth the constant portion of the agent’s extra money aside from consumption portion Â

and investment portion 1
γ
σ−1θ is to be optimally put into her riskless savings. This savings

strategy, however, has been at odds with empirical evidence (Federal Reserve report, 2017;

EU-SILC 2017) in that the agent’s savings are too small to address the financial challenges

on her future consumption.

17



In addition to the PIH-implied optimal savings, the extra terms on the right hand side

of borrowing-constraints-induced optimal savings in 3.1 represent additional precautionary

savings motive for avoiding being binded by the borrowing constraints given in (11).

The smaller MPS with borrowing constraints implies that with respect to one unit

decrease of wealth the agent is inclined to less reduce her savings amount, as she is re-

sponsible for maintaining her wealth to be larger than the time-varying constraint −L(t)

given in (11) in all states. Interestingly, the MPS further decreases as wealth decumulates

(as a result, z becomes larger). This shows that the borrowing-constrained precautionary

savings motive has a progressively more stronger impact on the agent’s total savings when

wealth is small, thereby further increasing demand for savings at low levels of wealth in

the preparation against market downturns.

Bewley (1977) and Campbell (1987) point out that an income shock hardly affects

the optimal savings decision of wealthy people because they are already well prepared for

meeting their future consumption needs by relying on their enough wealth. Contrary to

the theoretical predictions of Bewley (1977) and Campbell (1987), many empirical studies

show that positve and even high savings rates are very common amongst wealthy people

(Dynan et al., 2004; Buera, 2009; De Nardi et al., 2010; De Nardi and Fella, 2017). As

complementary to these explanations for the high savings rates of wealthy people, we

particularly emphasize that the agent who is at the higher end of wealth could have a

savings demand for precautionary reasons in the event of the LNIS. Indeed, the integral

parts IP1 and IP2 of LNIS − PS can play a role to further decrease the MPS and

thus, the agent tends to less reduce her savings amount with respect to one unit decrease

of wealth. Rather, the agent reduces her consumption amount by (Â + δ) × IP as in

(12) and increases her savings amount as in the LNIS-induced optimal savings (or in the

LNIS-induced precautionary savings) in Corollary 3.1.

Given the differences between the PIH-implied optimal savings, borrowing-constraints-

induced optimal savings, and LNIS-induced optimal savings as we have analyzed so far, it

is worth to thoroughly investigate a role of the LNIS in the following two points: (i) what

and how the extra LNIS-induced precautionary savings motive would affect the general
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equilibrium interest rate, and (ii) such a savings movie could improve the equilibrium

model’s ability to match the equity premium and risk-free rate observed from the data.

4 General Equilibrium Analysis

Equilibrium Building Blocks. We consider a simple pure exchange economy in the type

of Lucas (1978). The economy is populated by a representative agent who encounters the

LNIS. The agent is entitled to an aggregate endowment to be consumed in equilibrium and

she is assumed to trade a riskless bond and multiple risky stocks distributing the dividend.

The returns to these assets adjust to represent a no-trade equilibrium.

Definition 4.1 An equilibrium can be characterized as a collection of (r, µ, σ) and optimal

strategies (c(t), π(t)) such that the consumption good, stock, and bond markets clear as

c(t) = I(t),

πj(t) = Sj(t)W (t), j = 1, ..., N,

W (t) =
N∑
j=1

Sj(t),

where N is the number of risky stocks.

State Price Density. The following theorem characterizes the unique state price density

(or the shadow price) in the presence of income risk including the LNIS.

Theorem 4.1 The unique state price density is derived in closed-form:

ξ δ̂(t) = exp
{

ln
( δ̂
δ

)
1{τ≤t} − (δ̂ − δ)t

}
H(t), (17)

where

δ̂ =
(
G(z)− 1

β1
+

k

β1

)−γ δK
z
,

τ is the arrival time of a Poisson shock, 1 is an indicator function that gives 1 if the

Poisson shock occurs at time t and 0 otherwise and the dynamics of H(t) are given by

dH(t) = −H(t){rdt+ θ>dZ(t)}, H(0) = 1.
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The unique state price density given in (17) is a generalized version of the well-known

Arrow-Debreu price. The identified quantity ξ δ̂(t, ζ) can be regarded as the Arrow-Debreu

price per unit probability P of one unit consumption good in state ζ ∈ Ω at time t.20

Theorem 4.1 allows a convenient multiplicative separation of the traditional Arrow-

Debreu price and the LNIS adjustments. In the absence of the LNIS (δ = δ̂), the state

price density (17) reduces to the conventional Arrow-Debrew price, and presents only the

output uncertainty adjustments. In the presence of the LNIS (δ 6= δ̂), the extra income

shock adjustments further increase the canonical Arrow-Debrew price and lead to the

generalized Arrow-Debreu price ξ δ̂(t) in (17).

Equilibrium Consumption Price. The rational expectations equilibrium consumption

price (equilibrium state price density) must satisfy the Euler equation (Stokey and Lucas,

1989).21 When solving the optimal consumption and investment problem of (10) with

dynamic wealth constraint (3) and lower bound of wealth (11), we can derive the following

Euler equation:

U ′(c(t)) = λe(β−(δ̂−δ))tH(t).

Using Itô’s formula, we explicitly derive the following equilibrium consumption dynamics:22

for t < τ ,
dc(t)

c(t)
= − U ′(c(t))

U ′′(c(t))c(t)

[{(
r + (δ̂ − δ)

)
− β

}
dt− θ>dZ(t)

]
.

Therefore, the Euler equation shows that equilibrium consumption growth is measured as

a gap between income-risk-adjusted interest rate of (δ̂ − δ) and subjective discount rate

of β, weighted by the elasticity of intertemporal substitution. The risk-neutral Poisson

20Basically, the Arrow-Debrew price is the future price of one unit consumption good. It can serve

as a shadow price for discounting future costs and benefits in financial analysis. The derived unique

state price density determines the risk-neutrality with respect to the LNIS. This price can be used as the

Randon-Nikodym derivative for measure change purposes.
21An Euler equation is a differential equation that represents an intertemporal first-order condition for

optimal consumption (Durlauf and Blume (2008), pp. 1854-1855).
22This dynamics are equivalent to the dynamics of equilibrium consumption price e−βtξδ̂(t) for t < τ .
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intensity δ̂ is included in addition to the original Poisson intensity δ. δ̂ either increases or

decreases the equilibrium consumption growth relative to risk-free interest rate r by the

amount of δ̂− δ. When δ̂ = δ, the LNIS can be fully diversified; as a result, it is rewarded

with the zero risk premium. However, when δ̂ 6= δ, the LNIS cannot be diversified, so it

should be compensated for by the nonzero risk premium δ̂ − δ.23 In the context of the

traditional risk-return trade-off (i.e., high risk and high return), δ̂ should be larger than δ,24

as a result, the income risk premium should be positive. Thus, the effective risk-adjusted

interest rate represents such a risk compensation for additional exposure to the LNIS, and

thereby increases both equilibrium consumption growth and equilibrium consumption price

compared to the case without the LNIS.25 This would imply that the amount of present

consumption the agent would be willing to give up now to receive one more unit of future

consumption becomes larger than without the LNIS.

Equilibrium Risk-Free Interest Rate. The following theorem solves the equilibrium

risk-free interest rate.

Theorem 4.2 The equilibrium risk-free interest rate is derived in closed-form:

r = β + γµI − 1

2
γ(1 + γ)(σI)2 − (δ̂(r)− δ), (18)

where µI and σI represent the expected consumption growth rate and volatility of consump-

tion growth rate, and the constant δ̂(r) is determined by solving the following non-linear

algebraic equation:

δ̂(r) =
{( w

ξI
+

1

β1(δ̂(r))

)/( w
ξI

+
k

β1(δ̂(r))

)}γ
{β1(δ̂(r))}γδK(r)

23The canonical CAPM does not generate the nonzero income risk premium as we obtained, whereas

in this paper, the LNIS can be thought of as extra undiversifiable risk source, accordingly, it should be

priced.
24This result can be also confirmed with a wide range of parameter values.
25Intuitively, the cost of one unit of equilibrium consumption increases with increase in a person’s

uncertainty about her future earnings. Further, the presence of the LNIS may increase the positive skew

of the distribution of equilibrium consumption price (or equilibrium state price density), and this change

will affect existing frameworks for asset pricing and risk management.
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with

β1(δ̂(r)) = β + (γ − 1)µI − 1

2
γ(γ − 1)(σI)2 − (δ̂(r)− δ),

K(r) =
{γ − 1

γ

(
r +

γ(σI)2

2

)
+
β

γ

}−γ
.

Our equilibrium results with the LNIS on the risk-free interest rate sit somewhat easily

with the key role of the savings inequality in shaping the wealth concentration among the

rich (Piketty, 2014; Acemoglu and Robison, 2015). In the existing equilibrium literature

without the LNIS, the equilibrium difference of β− r is large, so higher-wealth individuals

have a tendency to consume more and save less. This is because their financial wealth

grows at the rate of β, whereas their savings grow at the rate of r. When financial wealth

is disproportionately concentrated on the top of the wealth distribution, i.e., with the

unequally distributed wealth, the rich dis-save in equilibrium. Thus, the low or nearly zero

wedge of β − r is the key to generate high savings rates for the wealthy.

How do we obtain such a low difference of β − r in equilibrium? The possibility is to

understand in equilibrium the effects of the LNIS on the interest rate. The representative

agent facing the LNIS demands extra premium for her risk exposure to the LNIS, which

corresponds to a decrease in β by the amount of the risk premium δ̂ − δ depending upon

Poisson arrival intensity δ of the LNIS.

This effect of δ on interest rates is particularly relevant to today’s low interest-rate

situation, in that the LNIS has placed a heavy burden on the choice of equilibrium interest

rate. This additional burden also leads to a reduction of interest rate. A wide range of

private and public insurance would greatly improve security of earnings in the long run.

Thus, strategies and solutions focusing on the elimination of risk potentially catastrophic

individual earnings losses as much as possible would help to reduce the amount of com-

pensation for exposure to the LNIS, and might return the interest rate to its normal status

during times of stable economy.
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5 Quantitative Analysis

In this section, we perform quantitative analysis to illustrate the optimal strategies to

attain consumption smoothing when the LNIS can occur.

5.1 Parameter Values

Financial Market. We consider only two assets in the financial market: a riskless bond

and a risky stock. We choose equity premium, µ − r, as 4% and risk-free rate, r, as 2%.

The stock volatility, σ, is assumed to be 20%.26

People Preferences. The coefficient of relative risk aversion, γ, is set to 2. We adopt

the common value of 4% for the subjective discount rate, β. The mortality rate, ν, is fixed

to 2%, i.e., the expected time to death is 50 years.

Aggregate Earnings. For simplicity, aggregate earnings are assumed to be given by

a constant income stream, ε ≡ ξI, over the life cycle. When a jump-type LNIS occurs,

aggregate earnings decrease from ε to kε, k ∈ (0, 1). For prototype example, we let the

LNIS be associated with the risk of forced unemployment; this risk can be also a leading

cause of the credit tightening formulated by (19).27

Our choice of Poisson intensity δ = 1% is very conservative compared to Wang et al.

(2016) who have chosen the arrival rate of large discrete (jump) earnings shocks as 5%.

The recovery parameter k is set to 40%.28

26Compared to the century-long sample (1891-1994) by Campbell (1999), the risk-free rate of 2% is

reasonable, but the equity premium of 4% is somewhat conservative. In our general equilibrium analysis,

the risk-free rate and equity premium can be determined to 2% and 4%, respectively, with the reasonable

values of risk aversion.
27A key insight comes from economic recessions followed by human capital depreciation during long-term

periods of unemployment. During the 2007-2009 Great Recession in the United States, many people have

experienced the unprecedented largest reductions in their consumption and unemployment.
28In practice, U.S. households have been rescued by a safety net against the aftermath of the LNIS
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Lower Bound of Wealth. The lower bound −L(t) with L(0) = L of wealth in (11) can

be empirically plausible using the following relationship:29

L = ω
r + ν + δk

(r + ν + δ)(r + ν)
ε, for 0 ≤ ω < 1, (19)

where ω represents the extent to which credit is tightened and ν > 0 is the agent’s constant

mortality intensity when the time to death is distributed with an exponential distribution.30

The utility related to death is normalized as zero.31 For numerical illustrations, we do not

allow for borrowing against the present value of future income, i.e., ω = 0.32

5.2 Numerical Illustrations

In this section, we obtain numerical solutions and present graphical illustrations to provide

some details to the discussion about the general equilibrium quantities with the LNIS.

Equilibrium Interest Rate. In the absence of the LNIS (δ = 0), the equilibrium interest

rate is 6.55%, but in the presence of the LNIS (δ > 0), it drops significantly (Figure 1).

This relationship implies the important discontinuity and dramatic change in the interest

rate even when δ is very small small. For instance, the equilibrium interest rate decreases

41.53% (i.e., to 3.83%) as δ increases from 0 to 2%.

(for example, possibly caused by forced unemployment), and recover 20% of the income that they earned

before unemployment (Carroll et al., 2003).
29The relationship shows an accurate reflection of human capital adjusted by the LNIS. The derivation

details are available in an online appendix.
30The constant mortality rate assumption is made for parsimony of the model, helping explore horizon-

dependent polices in the simplest possible economic environment. The derived model predictions are

consistent with the typical life-cycle advice. A more realistic model would allow for a Gompertz force of

mortality, which is quite relevant to the actuarial literature.
31On account of this normalization, we do not consider motive for bequest. The presence of bequest

motive is expected to reinforce the negative impacts of the LNIS.
32For the effects of credit tightening with a range of values for ω on the optimal strategies, refer to

further numerical results in an online appendix.
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Figure 1: Equilibrium interest rates. Parameter Values: β = 4% (subjective discount rate), γ = 2 (risk

aversion), µI = 1.52% (expected consumption growth rate), σI = 4.06% (volatility of consumption growth rate),

w = 1 (initial wealth), I = 1 (aggregate output), ξ = 0.5 (fraction constituting aggregate earnings), k = 40%

(recovery rate), and ω = 0 (borrowing constraint). For the expected consumption growth rate and volatility of

consumption growth rate, µI and σI , we have used the Robert J. Shiller’s real monthly dividend data from 1926

to 2016 in “Irrational Exuberance” published by Princeton University Press. Note: In the absence of the LNIS

(δ = 0), the equilibrium interest rate is 6.55%, but in the presence of the LNIS (δ > 0), it drops significantly,

implying the important discontinuity and dramatic change in the interest rate even when δ is small.

Risk aversion γ also affects the equilibrium risk-free interest rates (Figure 2). When

δ > 0, high values of γ no longer counterfactually generate high risk-free interest rates, so

the risk-free rate puzzle (Weil, 1990) is avoided. Rather, an increase in risk aversion can

lead to a decrease in risk-free rate in the presence of the LNIS.

The LNIS includes a low-probability, depression-like third state of Rietz (1988)’s model

in the individual’s income process, which can be regarded as a different application of

the rare disaster risk hypothesis by Rietz (1988).33 Consistent with this hypothesis, the

possibility of the LNIS can account for high risk premium on bonds but through the

33The rate disaster hypothesis arguably states that the slim chance of rare disasters (e.g., economic

crisis or war) can dominate the determinaiton of asset risk premia. The seminal work of Rietz (1988),

Barro (2006) and Gabaix (2012) have established different versions of the rate disaster hypothesis, thereby

explaining empirical regularities, such as the equity premium puzzle and the risk-free rate puzzle.
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Figure 2: Equilibrium interest rates. Parameter Values: β = 4% (subjective discount rate), γ = 2 (risk

aversion), µI = 1.52% (expected consumption growth rate), σI = 4.06% (volatility of consumption growth rate),

w = 1 (initial wealth), I = 1 (aggregate output), ξ = 0.5 (fraction constituting aggregate earnings), k = 40%

(recovery rate), and ω = 0 (borrowing constraint). Note: When δ > 0, high values of γ no longer counterfactually

generage high risk-free interest rates, so the risk-free rate puzzle (Weil, 1990) is avoided. Rather, an increase in

risk aversion can lead to a decrease in risk-free rate in the presence of the LNIS.

precautionary savings channel. With the LNIS, people’s demand for precautionary savings

is sufficiently strong making her save at a high rate and lowering the equilibrium interest

rate significantly.

The presence of the LNIS drives down the risk-free interest rate by stimulating the

precautionary savings mechanism, thereby maintaining the risk-free rate low. Similar to

Bewley (1977) and Campbell (1987), we could confirm the amount of optimal savings

decreases in financial wealth w (Figure 3).34 This is because consumption of the wealthy

34The downward-sloping part of individual savings profile can be understood within the traditional life-

cycle framework. In the context of the life-cycle hypothesis, the savings should have the downward-sloping

part at the high end of wealth (Jappelli, 1999; Deaton and Paxson, 2000; Attanasio and Szekely, 2000;

Cocco et al., 2005; Benzoni et al., 2007). Empirically, the downward-sloping part has been observed

by Jappelli (1999) using data from Italy, by Deaton and Paxson (2000) using data from Taiwan and

Thailand, and by Attanasio and Szekely (2000) using data from East Asia and Latin America. These

empirical observations have been justified by theoretical life-cycle models such as Cocco et al. (2005) and
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can be financed by wealth, without resorting to income. Intuitively, the ability to self-

insure against the income shock improves when wealth is large, so the optimal savings

decrease as wealth increases.35

Figure 3: Precautionary savings amount. Parameter values: r = 0.02 (risk-free rate), β = 0.04 (subjective

discount rate), µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2 (risk aversion), ε = 1 (income),

ν = 0.02 (mortality rate), k = 40% (recovery rate), and ω = 0 (borrowing constraint). Note: The amount of

LNIS-induced optimal savings (δ = 1%) is significantly larger than the Friedman’s case without the LNIS (δ = 0).

Although an income shock does not seem to significantly affect the optimal savings of

people who are at the higher end of wealth (Bewley, 1977; Campbell, 1987), the LNIS could

affect substantially the savings rate of rich people.36 Indeed, the optimal savings are still

Benzoni et al. (2007).
35The income-to-wealth-ratio is inversely related to individual wealth. The income is a major staple

of the relatively low-wealth people and they should concern themselves with diversifying the negative

effects of the LNIS, thereby continuing being able to afford what they can currently afford by saving less.

Relative to the low-wealth people, the income is a smaller staple of the high-wealth people, so they have

greater tolerance for risk than the low-wealth people. Hence, the high-wealth people would rather not be

concerned with diversification. They can afford to pay further for economic preparedness and emergency

savings, thereby saving more to meet the required precautionary savings for consumption smoothing and

thus, being well-prepared for unexpected hardship caused by the LNIS.
36Empirically, the average ratio of wealth-to-income between 1952 and 2016 in the U.S. was 6.6. Since
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very high for people who are at the higher end of wealth. This result may partially explain

positive and even high savings rates amongst wealthy people which have been observed

by empirical and anecdotal evidence (Dynan et al., 2004; Buera, 2009; De Nardi et al.,

2010; De Nardi and Fella, 2017).37 The reason is that people would be better off keeping

accumulating extra wealth for precautionary reasons in the event of the LNIS, and use

this extra wealth as a buffer against the LNIS. Further, an unexpected, exogenous, and

permanent jump-type LNIS is much harder to buffer than adverse diffusive-type income

shocks, so readiness for the LNIS requires a large amount of savings.

Matching Equity Premium and Risk-Free Rate. Using the LNIS, our equilibrium

results are matched up with the observed risk-free rate and equity premium. We have tried

to match our model with the century-long sample from 1891 to 1994 by Campbell (1999)

and the long historical sample from 1871 to 2011 by the website of Robert Shiller

(http://www.econ.yale.edu/∼shiller/data/chap26.xls) (Table 1). The presence of the LNIS

dramatically improves the model’s ability to match asset prices. The standard asset pricing

framework by Lucas (1978) without the LNIS requires negative values for the subjective

discount rate which are not empirically plausible in order to obtain the risk-free rate of

1.74% (1.48%) which is lower than the observed rate of 1.96% (2.8%) from the century-long

sample (the long historical sample). While the risk-free rate of 1.96% (2.8%) generated by

our framework with the LNIS is exactly the same with that observed from the century-long

sample (the long historical sample), thereby requiring empirically plausible parameters as

follows: LNIS shock δ = 1% (δ = 4.5%), subjective discount rate β = 1.65% (β = 1%),

labor income is normalized as one in our paper, high-wealth people can be regarded as those having wealth

more than 6.6.
37The recent studies offer many alternative explanations for the upward-sloping part of individual sav-

ings profile: a positive relation between savings rates and income (Dynan et al., 2004), entrepreneurship

purposes for entering and expanding business (Buera, 2009), out-of-pocket medical expenses patterns (De

Nardi et al., 2010), the mix of bequests and human capital, entrepreneurship, and medical-expense risk

(De Nardi and Fella, 2017). The explanation we provide here, while different, would be regarded as

complementary to these.
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Estimated consumption and return parameters 1891-1994 1871-2011

Expected consumption growth rate µI 1.74% 2.3%

Consumption volatility σI 3.26% 3.3%

Stock Volatility σ 18.53% 18.2%

Risk-free rate r 1.96% 2.8%

Equity premium µ− r 6.26% 5.2%

(a) Data

Required parameters 1891-1994 1871-2011

LNIS δ 0 1% 0 4.5%

Discount rate β −9.81% 1.65% −15.53% 1%

Risk aversion γ 10 10 10 9

Model-generated equilibrium quantities 1891-1994 1871-2011

Risk-free rate 1.74% 1.96% 1.48% 2.8%

Equity premium 6.04% 6.04% 6.0% 5.4%

(b) Model results with required parameters

Table 1: Table (a) reports the annualized parameter values for consumption and return for the century-long sample

(1891-1994) by Campbell (1999) and the long historical sample (1871-2011) by the website of Robert Shiller

(http://www.econ.yale.edu/∼shiller/data/chap26.xls). Table (b) reports a comparison of the model-generated

equilibrium results from the model without the LNIS (δ = 0) and the model with the LNIS (δ > 0).

risk aversion γ = 10 (γ = 9).38

The intuitive interpretation of our improved ability to match the observed asset prices is

that the LNIS faced by individuals causes them likely to reduce consumption very much to

secure extra reserves in preparation for financing future consumption needs by using their

savings. Such a savings decision encourages reduction in equity demand, so the equity

premium increases and the risk-free rate instead decreases due to their high savings.

Table 5.2 reports the estimated consumption and return parameter values from four

sample periods: 1889-1978 (Lucas, 1994), 1890-1997 (Gomes and Michaelides, 2008), 1929-

2009 (Constantinides and Ghosh, 2017), and 1930-2008 (Schmidt, 2016). To investigate

the ability of our model with the LNIS to match the risk-free rate and equity premium from

38According to Mehra and Prescott (1985), the upper bound of risk aversion is known as 10.
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Estimated consumption and return parameters 1889-1978 1890-1997 1929-2009 1930-2008

Expected consumption growth rate µI 1.8% 1.7% 2.0% 1.93%

Consumption volatility σI 3.7% 3.3% 2.0% 2.16%

Stock Volatility σ 16.7% 19.81% 18.7% 20.28%

Risk-free rate r 1.0% 1.58% 0.6% 0.57%

Equity premium µ− r 6.0% 6.74% 7.0% 7.09%

Table 2: Table reports the estimated consumption and return parameter values from sample periods: 1889-1978

(Lucas, 1994), 1890-1997 (Gomes and Michaelides, 2008), 1929-2009 (Constantinides and Ghosh, 2017), and 1930-

2008 (Schmidt, 2016).

the data (Table 5.2), we compare our model with four representative general equilibrium

models considering unhedgeable income risk by Lucas (Lucas, 1994), GM (Gomes and

Michaelides, 2008), CG (Constantinides and Ghosh, 2017), and Schmidt (Schmidt, 2016)

(Table 5.2). Table 5.2 (a), (b), (c), (d) show the comparison results between ours and Lucas,

ours and GM, ours and CG, ours and Schmidt, respectively. The second last column of

each table reports the number of model parameters used to match asset prices. The details

are as follows:

• Lucas (1994) uses 5 model parameters: discount rate β, risk aversion γ, idiosyncratic

shocks, short sale constraint, borrowing constraint

• Gomes and Michaelides (2008) use 6 model parameters: discount rate β, risk aversion

γ, two EIS (ψ) parameters for two different type agents, deviation of productivity

shock, standard deviation of income shock

• Constantinides and Ghosh (2017) use 14 model parameters: 3 preference parameters

of discount rate β, risk aversion γ, EIS (ψ), 3 parameters for income shocks, 2

parameters of mean and volatility of aggregate consumption growth, 3 parameters for

state variable dynamics, 3 parameters governing aggregate dividend growth dynamics

• Schmidt (2016) uses 21 model parameters39 including 3 preference parameters of

discount rate β, risk aversion γ, EIS (ψ) and 4 parameters for consumption and

39Refer to Table 3 Summary of Parameters for the Quantitative Model in Schmidt (2016).
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income shocks such as income shock intensity δ

• Our model uses 4 model parameters: discount rate β, risk aversion γ, LNIS δ, recovery

k

The last column of each table reports the mean square error(MSE) which is the average

squared difference between the observed risk-free rate and equity premium (Data) and the

model-generated rates (Models). The last row of each table reports the optimized our

model results to match asset prices by minimizing the sum of the squared relative errors

between the historical rates and our model-generated rates.

The comparison of ours and Lucas highlights the incremental contribution to the ability

to match asset prices from 1889-1978, where Lucas argues that idiosyncratic shocks to

income do not matter for asset prices. As compared with 9.3% and 0.7% generated by

Lucas for the risk-free rate and equity premium, respectively, ours generates (with the

same discount rate, a slightly higher risk aversion, and the empirically plausible LNIS

δ = 5.0%) the risk-free rate of 3.8% and the equity premium of 1.9% (Table 5.2 (a)).

The comparison of our model and GM also emphasizes the ability of the LNIS to match

asset prices from 1890-1997, where GM arguably states that idiosyncratic income shocks

can play only a modest role in matching the asset prices. As compared with 2.58% and

3.83% generated by GM (with elasticity of intertemporal substitution, EIS, ψ) for the

risk-free rate and equity premium, respectively, ours generates without EIS (with the same

discount rate and risk aversion, and LNIS δ = 5.0%) the risk-free rate of 2.20% and the

equity premium of 3.27% (Table 5.2 (b)).

The comparison results between ours and CG (Table 5.2 (c)) and ours and Schmidt

(Table 5.2 (d)) show the pivotal role of uninsurable idiosyncratic shocks in matching asset

prices. CG incorporate uninsurable idiosyncratic income shocks to household consumption

that are conditionally lognormal in the incomplete market where households are prevented

from self insuring any part of their idiosyncratic income shocks.40 Schmidt also focuses on

40CG models the idiosyncratic income shocks by a Poisson mixture of normals which becomes normal
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idiosyncratic shocks to consumption growth that have state-dependent Gaussian and jump

components (compound Poisson processes). Different from CG and Schmidt, our focus

is on uninsurable and idiosyncratic shocks to income process (rather than consumption

process) that are modeled by the LNIS.

Our risk-free rate and equity premium are both closer to the observed rates from 1929-

2009 than CG without EIS (Table 5.2 (c)). This demonstrates that the consideration of

jump risk such as the LNIS (rather than diffusive-type risk or Brownian-risk) can further

improve the ability to match asset prices.

The ability of our asset pricing model is rather not enough to match asset prices from

1930-2008, while Schmidt dramatically lowers the risk-free rate and amplifies the equity

premium, which are both very close to the historical rates (Table 5.2 (d)). Schmidt thor-

oughly investigates the asset pricing implications with state-dependent and idiosyncratic

tail risk not only in the consumption process, but also in the labor income process, whereas

we consider the LNIS only in the income process. Even though ours loses the ability to

perfectly match asset prices unless we consider the uninsurable and idiosyncratic shocks

in the consumption process as well, with the generally good and acceptable ability of our

asset pricing model without resorting to EIS, it is much more analytically tractable than

Schmidt’s asset pricing framework.

6 Conclusion

We have developed an analytically tractable framework that generalizes Friedman’s per-

manent income hypothesis (PIH) by considering the possibility of a large, negative in-

come shock (LNIS). The generalized PIH with the optimal consumption and investment

strategies helps attain consumption smoothing when the LNIS occurs. We have quanti-

fied precautionary savings and calculated the required amount of savings for consumption

smoothing. We also have provided a general equilibrium analysis based on the Lucas-

type pure exchange economy. The equilibrium interest rate with the LNIS is obtained in

conditional on the state variable.
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closed-form. We find that the substantial amount of extra precautionary savings for con-

sumption smoothing, driven by high-wealth people, should be reflected in the equilibrium

asset pricing. We show that the equilibrium interest rate would therefore fall dramatically

even when the chance of the LNIS is small; this result partly explains today’s low interest

rates. Finally, our equilibrium model’s ability to match asset prices observed in the data

is greatly improved with the LNIS.
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Model results Required parameters Number

Models Risk-free Equity premium LNIS Recovery Discount Risk aversion of MSE

rate r µ− r δ k rate β γ parameters %

Data 1.0% 6.0% − − − − − −

Lucas 9.3% 0.7% − − 5.0% 2.5 5 0.4849

Ours 3.8% 1.9% 5.0% 40% 5.0% 3 4 0.1233

Ours 1.0% 6.0% 5.0% 29% 1.0% 9.7 4 0

(a) Model results with required parameters (1889-1978)

Model results Required parameters Number

Models Risk-free Equity premium LNIS Recovery Discount Risk aversion EIS of MSE

rate r µ− r δ k rate β γ ψ parameters %

Data 1.58% 6.74% − − − − − − −

GM 2.58% 3.83% − − 1.0% 5 0.6 6 0.0473

Ours 2.20% 3.27% 5.0% 40% 1.0% 5 − 4 0.0621

Ours 1.58% 6.74% 1.9% 40% 1.0% 10.31 − 4 0

(b) Model results with required parameters (1890-1997)

Model results Required parameters Number

Models Risk-free Equity premium LNIS Recovery Discount Risk aversion EIS of MSE

rate r µ− r δ k rate β γ ψ parameters

Data 0.6% 7.0% − − − − − − −

CG 2.5% 4.9% − − 1.7% 5.05 1.10 14 0.0401

CG 4.2% 3.6% − − 1.3% 14.7 − 14 0.1226

Ours 3.1% 5.6% 1.0% 40% 1.3% 15 − 4 0.0411

Ours 1.5% 7.1% 1.0% 10% 1.3% 19 − 4 0.0041

(c) Model results with required parameters (1929-2009)

Model results Required parameters Number

Models Risk-free Equity premium LNIS Recovery Discount Risk aversion EIS of MSE

rate r µ− r δ k rate β γ ψ parameters

Data 0.57% 7.09% − − − − − − −

Schmidt 0.46% 6.46% 8.0% 49% 2.55% 11 2 21 0.0020

Ours 2.90% 4.82% 5.0% 40% 2.55% 11 − 4 0.0529

Ours 1.02% 7.01% 5.0% 10% 2.55% 16 − 4 0.0001

(d) Model results with required parameters (1930-2008)

Table 3: Table compares our model with four representative general equilibrium models considering unhedgeable

income risk by Lucas (Lucas, 1994), GM (Gomes and Michaelides, 2008), CG (Constantinides and Ghosh, 2017),

and Schmidt (Schmidt, 2016).
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Online Appendix for “Negative Income Shocks and Asset Pricing"
Steven Kou (Questrom School of Business, Boston University) and

Seyoung Park (Nottingham University Business School, University of Nottingham)

1 A Two-period Model

We start with a simple two-period model with a jump-type income shock. We consider a representative

economic agent who aims to attain her optimal consumption and investment strategies over the two

periods: period 0 and period 1. The agent dies at the end of period 1 and the probability of her

survival until period 1 is δ1. The objective of the agent is to maximize the following utility function

by optimally controlling consumptions c0 and c1 at period 0 and at period 1, respectively:

v(c0) + δ2E[v(c1)],

where v is a strictly increasing, strictly concave real-valued function defined on the set of positive real

numbers, 0 < δ2 < 1 is the subjective discount factor, and E denotes the expectation taken at period

0.

There are two tradable financial assets: a riskless bond and a risky stock. The riskless bond pays

1 at period 1 and its price is
1

R
at period 0, where R > 0 is the risk-free interest rate. The price of a

share of the risky stock is 1 at period 0 and can be u and d (u > R > d > 0) with probabilities πu

and πd = 1 − πu, respectively, at period 1. The agent obtains aggregate earnings at the rate of ε in

each period. There is a jump shock in her earnings that would cause a significant downward jump in

earnings from ε to 0 at period 1 with the probability of p. The probability distributions of the agent’s

mortality, the stock price, and the jump shock are assumed to be independent.

The budget constraint during period 1 is described as the following: for i ∈ {u, d},

W1i =


RwB0 + iwS0 + ε, if the income shock does not occur,

RwB0 + iwS0 , if the income shock occurs,



where wB0 is the dollar amount of savings invested in the riskless bond during period 0, and wS0 is the

dollar amount of savings invested in the risky stock during period 0.

The optimal consumption strategy c1i at period 1 for i ∈ {u, d} is to consume all of wealth W1i

available at period 1 i.e., c1i = W1i. The budget constraint during period 0 is given by

W0 + ε = c0 + wB0 + wS0 ,

where c0 is the optimal consumption strategy at period 0.

The agent’s optimization problem at period 0 is formulated by the following value function:

max
(wB0 ,w

S
0 )

[
v
(
W0 + ε− wB0 − wS0

)
+ δ2Ev

(
W1

)]
= max

(wB0 ,w
S
0 )

[
v
(
W0 + ε− wB0 − wS0

)
+ δ(1− p)

{
πuv

(
RwB0 + uwS0 + ε

)
+ πdv

(
RwB0 + dwS0 + ε

)}
+ δp

{
πuv

(
RwB0 + uwS0

)
+ πdv

(
RwB0 + dwS0

)}]
,

where δ ≡ δ1δ2. The first-order conditions for wB0 and wS0 are given by

v
′
(
W0 + ε− wB0 − wS0

)
= (1− p)δR

{
πuv

′
(
RwB0 + uwS0 + ε

)
+ πdv

′
(
RwB0 + dwS0 + ε

)}
+ pδR

{
πuv

′
(
RwB0 + uwS0

)
+ πdv

′
(
RwB0 + dwS0

)}
and

v
′
(
W0 + ε− wB0 − wS0

)
= (1− p)δ

{
πuv

′
(
RwB0 + uwS0 + ε

)
u+ πdv

′
(
RwB0 + dwS0 + ε

)
d
}

+ pδ
{
πuv

′
(
RwB0 + uwS0

)
u+ πdv

′
(
RwB0 + dwS0

)
d
}
,

respectively.

To obtain analytically tractable optimal strategies, we assume the simplest possible utility func-

tion: v is quadratic and it is given by

v(c) = c− γ

2
c2,

where γ is a positive constant. Then the first-order conditions become linear equations and we can

2



derive in closed-form the optimal strategies as the following:

wB0 =
[
δ{−1 + γ(W0 + ε)}{uπu(u−R)− dπd(R− d)}

+ δ{(1− p)γε− 1}{(uπu + dπd −R)− δRπuπd(u− d)2}
]

/
γ
[
(1 + δR2){1 + δ(u2πu + d2πd)} − {1 + δR(uπu + dπd)}2

]
,

wS0 =
[
δ(uπu + dπd −R)

(
R{−1 + γ(W0 + ε)}+ {(1− p)γε− 1}

)]
/
γ
[
{1 + δR(uπu + dπd)}2 − {1 + δR2(πu + πd)}{1 + δ(u2πu + d2πd)}

]
.

Notice that the premium term uπu + dπd −R on the risky stock can be reasonably assumed to be

positive. Then,
wS0
∂p

< 0.

This arguably states that the income shock reduces the dollar amount of savings invested in the risky

stock.

However, we need to investigate whether this result does change relying on the assumptions under

which the utility function is quadratic and only two periods rather than multi periods are considered.

If we relax those assumptions by considering the well-known utility functions (the constant absolute

or relative risk aversion utility function) or multi-period settings, to our best knowledge, the first-

order conditions obtained when deriving optimal strategies turn out to be highly non-linear, so it is a

considerable challenge to solve the problem analytically or even numerically.

Instead of the discrete time two-period model with the quadratic utility function, we will now de-

velop a tractable continuous-time model with the constant relative risk aversion utility function, where

all the optimal strategies and general equilibrium quantities are analytically tractable and derived in

closed-form.
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2 A Continuous-Time Model

2.1 The Building Blocks

The Benchmark Problem. In the context of the classic consumption utility maximization framework,

the representative agent’s consumption-savings model can be formulated by

V B(w) ≡ sup
c
E
[ ∫ ∞

0
e−rtU

(
c(t)
)
dt
]
, (1)

subject to the following wealth process of the agent:

dW (t) = {rW (t)− c(t) + I}dt, W (0) = w > −I/r,

and

W (t) > −I
r
, for all t ≥ 0,

where r is the risk-free interest rate and I > 0 stands for reduced-form aggregate earnings.

Throughout the paper, we consider the following constant relative risk aversion (CRRA) utility

function:

U
(
c(t)
)

=
c(t)1−γ

1− γ
,

where γ > 0 is the constant coefficient for an agent’s relative risk aversion. We derive in closed-form

the solution of the optimization problem of (1):

V B(w) =
1

r

(rw + I)1−γ

1− γ
, w > −I/r.

Accordingly, we can obtain in closed-form the optimal consumption-savings strategy:

c(t) = rw + I. (2)

The Permanent Income Hypothesis. We revisit the classic permanent income hypothesis (PIH) of

Friedman (1957) and Modigliani and Brumberg (1954) based on the derived optimal consumption-

savings strategy given in (2). The ratio of consumption to total available financial resources is con-
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stant:
c(t)

w + I/r
= r,

where the denominator w + I/r denotes total wealth (financial wealth w plus human capital I/r).1

The marginal consumption with respect to financial wealth w is, thus, always constant, implying con-

sumption smoothing. Intuitively, human capital strongly holds up total available financial resources

and hence, people are able to attain the constant standard of living through consumption smoothing

as the PIH predicts.2

The Optimal Consumption and Investment Problem in an Incomplete Market. We recollect the

representative agent’s optimal consumption and investment problem with a large, negative income

shock (LNIS) stated in the manuscript entitled "Negative Income Shocks and Asset Pricing":

V (w, I) ≡ sup
(c,π)

E
[ ∫ ∞

0
e−(β+δ)t

(c(t)1−γ
1− γ

+ δK
{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]
, (3)

where

K = A−γ , A =
γ − 1

γ

(
r +
||θ||2

2γ

)
+
β

γ
, β1 = r − µI + (σI)>θ, θ = (σ>)−1(µ− r1).

We consider an infinite-horizon economy with a single consumption good (the numeraire). Each

representative agent has wealth W (t) and invests π(t) in the stock market, and saves her remaining

wealthW (t)−π(t) in the bond market. The agent also consumes c(t) and receives ξI(t). The agent’s

dynamic wealth (budget) constraint is then: W (0) = w > −ξI/β1,

dW (t) = dπ(t) + d{W (t)− π(t)>1} − c(t)dt+ ξI(t)dt

= π(t)>µdt+ π(t)>σ>dZ(t) + rW (t)dt− π(t)>r1dt− c(t)dt+ ξI(t)dt

= {rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)}dt+ π(t)>σ>dZ(t),

(4)

where 1 is a vector of one’s with dimensionality equal to the number of stocks, π(t) is the dollar

amount vector invested in each risky stock, and the borrowing limit is imposed by a wealth constraint
1The human capital presented here by I/r is the present value of future aggregate earnings discounted at the risk-free

rate (Friedman, 1957; Hall, 1978).
2In reality, people can choose to finance very large expenditures such as buying a car, buying a house, sending their

children to college, and so on, rather than directly spending cash. Here, human capital plays a key role in smoothing
consumption as people can shift their earning power of labor from high-income periods to low-income periods of life.
In high-income periods people can finance consumption needs by borrowing against their human capital, keeping cash in
banks. In low-income periods people can use their savings for the most satisfying standard of living.
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as follows. Similar to the wealth constraint with free borrowing against wages, the agent is allowed to

borrow against the present value of her future wages (or the human capital):

W (t) > −ξI(t)

β1
, for all 0 ≤ t < τ, (5)

where

β1 = r − µI + (σI)>θ,

and τ is the random arrival of the LNIS driven by a Poisson jump process.

The technical details behind the derivation of the optimization problem (3) are given as follows.

We have assumed in the manuscript that the LNIS is driven by a Poisson shock. On account of such

an assumption, the problem is the same as the traditional Merton’s (1969, 1971) case after the arrival

of the Poisson shock. That is, the agent’s problem after the occurrence of the LNIS is given by

V A(w, I) ≡ sup
(c,π)

E
[ ∫ ∞

0
e−βt

c(t)1−γ

1− γ
dt
]
, (6)

subject to

dW (t) = {rW (t)−c(t)+kξI(t)+π(t)>(µ−r1)}dt+π(t)>σ>dZ(t), W (0) = w > −ξI/β1, (7)

W (t) > −ξI(t)

β1
, for all t ≥ 0.

Note that the agent undergone the significant reduction in her aggregate earnings from ξI(t) to kξI(t),

k ∈ (0, 1), as identified in (7). Ultimately, the problem (6) belongs to the conventional consumption

utility-maximizing framework which aims to maximize the consumption of goods and services over

the life cycle. Following Merton (1969, 1971), the problem is solved in closed-form:

V A(w, I) = K
{W (t) + kξI(t)/β1}1−γ

1− γ
. (8)

Before integrating out the Poisson intensity δ, the original problem should be given by

V (w, I) ≡ sup
(c,π)

E
[ ∫ τ

0
e−βt

c(t)1−γ

1− γ
dt+ e−βτV A(w, I)

]
,
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where τ represents the arrival of the Poisson shock. After integrating out the Poisson intensity δ, the

problem stated above becomes the problem (3). The derivation details are as follows.

V (w, I) = sup
(c,π)

E
[ ∫ τ

0
e−βt

c(t)1−γ

1− γ
dt+ e−βτV A(W (τ), I(τ))

]
= sup

(c,π)
E
[ ∫ τ

0
e−βt

c(t)1−γ

1− γ
dt+ e−βτK

{W (τ) + kξI(τ)/β1}1−γ

1− γ

]
= sup

(c,π)
E
[ ∫ ∞

0
δe−δs

∫ s

0
e−βt

c(t)1−γ

1− γ
dtds

+

∫ ∞
0

δe−δte−βtK
{W (t) + kξI(t)/β1}1−γ

1− γ
dt
]

= sup
(c,π)

E
[ ∫ ∞

0
e−βt

c(t)1−γ

1− γ

∫ ∞
t

δe−δsdsdt

+

∫ ∞
0

e−(β+δ)δK
{W (t) + kξI(t)/β1}1−γ

1− γ
dt
]

= sup
(c,π)

E
[ ∫ ∞

0
e−(β+δ)t

c(t)1−γ

1− γ
dt+

∫ ∞
0

e−(β+δ)δK
{W (t) + kξI(t)/β1}1−γ

1− γ
dt
]

= sup
(c,π)

E
[ ∫ ∞

0
e−(β+δ)t

(c(t)1−γ
1− γ

+ δK
{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]
,

2.2 The Solution

Problem Reformulation. Following Karatzas et al. (1991), we come up with a fictitious asset, Sf (t),

and its price dynamics are given by

dSf (t) = µfSf (t)dt+ σfSf (t)dM(t),

where µf and σf are to be determined under the minimal local martingale measure and M(t) is

a compensated martingale process related to a Poisson shock. Specifically, the dynamics of M(t)

follow

dM(t) = −δdt+ dN(t),

where N(t) represents the Poisson shock. By defining the market price of the income shock (driven

by the Poisson) shock as

δ̂ ≡ δ +
µf − r
σf

,
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which will be called the income-shock-adjusted intensity. The state price densities are then character-

ized as

ξδ̂(t) ≡ exp
{

ln
( δ̂
δ

)
1{τ≤t} − (δ̂ − δ)t

}
H(t), (9)

where 1 is an indicator function that gives 1 if the Poisson shock occurs at time t and 0 otherwise,

H(t) is the standard state price density in complete markets under no arbitrage and its dynamics are

given by

dH(t) = −H(t){rdt+ θ>dZ(t)}, H(0) = 1.

We provide a lemma to convert the dynamic wealth constraint in (4) into the static wealth con-

straint as follows.

Lemma 2.1. The dynamic wealth constraint in (4) can be converted into the following static wealth

constraint:

E
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
≤ w. (10)

Proof. See 3. Q.E.D.

With the help of Lemma 3.1, we are able to convert the original stochastic optimization problem

(3) into the following static optimization problem:

V (w, I) = sup
(c,W )

E
[ ∫ ∞

0
e−(β+δ)t

(c(t)1−γ
1− γ

+ δK
{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]
, (11)

subject to

E
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
≤ w.

We introduce another lemma to reformulate the problem (11) one more.

Lemma 2.2. The static optimization problem of (11) can be reformulated as

V (w, I) = inf
(λ,δ̂)
{J δ̂(λ, I) + λw}

= inf
λ
{inf
δ̂
J δ̂(λ, I) + λw}

≡ inf
λ
{J(λ, I) + λw},

(12)
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where the indirect value function J δ̂(λ, I) is given by

J δ̂(λ, I) = (ξI)1−γẼ
[ ∫ ∞

0
e−(β2+δ)t

{ γ

1− γ

(
1 + (δK)1/γ δ̂1−1/γ

)
Γδ̂(t)1−1/γ +

(
1 +

δ̂k

β1

)
Γδ̂(t)

}
dt
]

≡ (ξI)1−γϕδ̂(z)

(13)

with z = λ(ξI)γ , where Ẽ is the expectation under the new probability measure defined as

P̃ (A) ≡
∫
A

exp
(
− 1

2
(1− γ)2||σI ||2(t, ω) + (1− γ)(σI)>Z(t, ω)

)
dP (ω) for all A ∈ F

with the new Brownian motion process Z̃ given by

Z̃(t) = −(1− γ)σIdt+ Z(t),

Γδ̂(t) is a new state variable defined by

Γδ̂(t) ≡ λe(β+δ−δ̂)tH(t)(ξI(t))γ ,

and its dynamics are given by

dΓδ̂(t) = Γδ̂(t){−(β δ̂1 − β2)dt+ β3dZ̃(t)},

β δ̂1 = r − µI + (σI)>θ + δ̂ − δ,

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>.

Proof. See 3. Q.E.D.

Minimal Local Martingale Measure. In order to solve the reformulated problem (12), the income-

shock-adjusted intensity δ̂ should be determined appropriately to find the minimal local martingale

measure, guaranteeing the uniqueness of the state price density. Using the dynamic programming

approach of Bensoussan et al. (2016), we can determine δ̂ uniquely and explicitly.
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Lemma 2.3. The income-shock-adjusted intensity δ̂ is determined uniquely by

δ̂ =
(
G(z)− 1

β1
+

k

β1

)−γ δK
z
, (14)

where G(z) = −ϕ′δ(z) + 1/β1 solves to the following non-linear differential equation:

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ , 0 < z < z.

(15)

with the boundary conditions

G(z) = − L
ξI

+
1

β1
and G′(z) = 0.

Proof. See 3. Q.E.D.

Now, it remains to solve the non-linear differential equation (15) to characterize the income-shock-

adjusted intensity δ̂ explicitly.

Proposition 2.1. A general solution of the differential equation in (15) is given by

G(z) =
1

Â+ δ
z−1/γ +B∗δ z

−α∗δ

+
2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
,

(16)

where Â is given by

Â =
γ − 1

γ

(
β1 +

||β3||2

2γ

)
+
β2
γ
,

B∗δ and z are the two constants to be determined by the boundary conditions:

G(z) = − L
ξI

+
1

β1
and G′(z) = 0,
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and αδ > 1 and −1 < α∗δ < 0 are the two roots to the following characteristic equation:

F (α; δ) ≡ −1

2
||β3||2α(α− 1) + α(β2 + δ − β1)α+ β1 = 0.

Proof. See 3. Q.E.D.

3 Technical Details of Solution

In the main manuscript, we have provided analytically tractable results for the optimal strategies. In

this subsection, the associated technical details are provided. To derive the main results, the most

difficult part is to solve the stochastic optimization problem (3). More specifically, the problem is

inclined to involve unwanted unlimited downside utilities with some possibilities. This is because the

term in (3) that involves the Poisson intensity δ is highly likely to be caught up in−∞when borrowing

is allowed against human capital, i.e., as wealth W (t) approaches −ξI(t)/β1. The simplest approach

to remedy this problem is to introduce a time-varying lower bound of wealth:

W (t) > −L(t) > −kξI(t)

β1
, for all t ≥ 0, (17)

where L(t) is a given nonnegative time-varying function, but not completely arbitrary. With the help

of the lower bound of wealth in (17), the problem (3) is now well defined.

The State Price Density. Solving the stochastic optimization problem (3) involves many steps. One

of the most important steps is to explicitly characterize the unique state price density in an incomplete

market. This is a daunting task, as there exist infinitely many possible candidates for the state price

density in our economic setting, where not only the market risk, but also the income shock give rise to

market incompleteness. In order to address the issue associated with market incompleteness, we rely

on the fictitious completion of Karatzas et al. (1991). Specifically, we come up with a fictitious asset,

Sf (t), and its price dynamics are given by

dSf (t) = µfSf (t)dt+ σfSf (t)dM(t),

where µf and σf are to be determined with the minimal local martingale measure and M(t) is a
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compensated martingale process related to a Poisson shock. Specifically, the dynamics ofM(t) follow

dM(t) = −δdt+ dN(t),

where N(t) represents the Poisson shock. Given the following income-shock-adjusted intensity

δ̂ ≡ δ − µf − r
σf

,

the state price densities are then characterized as

ξδ̂(t) ≡ exp
{

ln
( δ̂
δ

)
1{τ≤t} − (δ̂ − δ)t

}
H(t),

where 1 is an indicator function that gives 1 if the Poisson shock occurs at time t and 0 otherwise,

H(t) is the standard state price density in complete markets under no arbitrage and its dynamics are

given by

dH(t) = −H(t){rdt+ θ>dZ(t)}, H(0) = 1.

Having characterized the state price densities in the presence of the income shock, we introduce one

important lemma to convert the dynamic wealth constraint in (4) into the static wealth constraint as

follows.

Lemma 3.1. The dynamic wealth constraint in (4) can be converted into the following static wealth

constraint:

E
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
≤ w. (18)

Proof. By applying Itô’s formula to d
(
e−rtW (t)

)
yields

d
(
e−rtW (t)

)
= −e−rt{c(t)− ξI(t)}dt+ e−rtπ(t)>dZ̃(t), (19)

where Z̃ is the Brownian motion process under the new martingale measure with respect to the state

price density ξδ̂(t). By Girsanov’s theorem, the new probability measure is defined by

P̃ (A) ≡
∫
A
ertξδ̂(t, ω)dP (ω) for all A ∈ F (20)
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and the Brownian motion process Z̃ follows

Z̃(t) ≡ θdt+ Z(t).

Integrating both sides of (19) from 0 to τ ,

∫ τ

0
e−rt

(
c(t)− ξI(t)

)
dt+ e−rτW (τ) = w +

∫ τ

0
e−rtπ(t)>dZ̃(t).

Taking expectation Ẽ under the new martingale measure,

Ẽ
[ ∫ τ

0
e−rt

(
c(t)− ξI(t)

)
dt+ e−rτW (τ)

]
≤ w.

Changing the martingale measure into the physical measure using the relationship of (20),

E
[ ∫ τ

0
ξδ̂(t)

(
c(t)− ξI(t)

)
dt+ ξδ̂(τ)W (τ)

]
≤ w.

Integrating out the Poisson intensity δ with respect to τ using the conditional expectation completes

the proof of the lemma. Q.E.D.

The Static Optimization Problem. With the help of Lemma 3.1, we solve the stochastic optimization

problem (3) by using the martingale representation approach in an incomplete market (Karatzas et al.,

1991), thereby converting the problem into the following static optimization problem:

V (w, I) = sup
(c,W )

E
[ ∫ ∞

0
e−(β+δ)t

(c(t)1−γ
1− γ

+ δK
{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]
, (21)

subject to

E
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
≤ w.

The optimization problem given by (21) seems to be almost impossible to be solved analytically

or even numerically. We introduce a lemma to reformulate the optimization problem as follows.
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Lemma 3.2. The static optimization problem of (21) is reformulated as

V (w, I) = inf
(λ,δ̂)
{J δ̂(λ, I) + λw}

= inf
λ
{inf
δ̂
J δ̂(λ, I) + λw}

≡ inf
λ
{J(λ, I) + λw},

(22)

where the indirect value function J δ̂(λ, I) is given by

J δ̂(λ, I) = (ξI)1−γẼ
[ ∫ ∞

0
e−(β2+δ)t

{ γ

1− γ

(
1 + (δK)1/γ δ̂1−1/γ

)
Γδ̂(t)1−1/γ +

(
1 +

δ̂k

β1

)
Γδ̂(t)

}
dt
]

≡ (ξI)1−γϕδ̂(z)

(23)

with z = λ(ξI)γ , where Ẽ is the expectation under the new probability measure defined by

P̃ (A) ≡
∫
A

exp
(
− 1

2
(1− γ)2||σI ||2(t, ω) + (1− γ)(σI)>dZ(t, ω)

)
dP (ω) for all A ∈ F

with the new Brownian motion process Z̃ given by

Z̃(t) = −(1− γ)σIdt+ Z(t),

Γδ̂(t) is a new state variable defined by

Γδ̂(t) ≡ λe(β+δ−δ̂)tH(t)(ξI(t))γ ,

and its dynamics are given by

dΓδ̂(t) = Γδ̂(t){−(β δ̂1 − β2)dt+ β3dZ̃(t)},

β δ̂1 = r − µI + (σI)>θ + δ̂ − δ,

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>.

Proof. Using the standard Lagrangian approach, we can construct the indirect value function, J δ̂(λ, I),
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and it is given by

J δ̂(λ, I) ≡ sup
(c,W )

E
[ ∫ ∞

0
e−(β+δ)t

(c(t)1−γ
1− γ

+ δK
{W (t) + kξI(t)/β1}1−γ

1− γ

)
dt
]

−λE
[ ∫ ∞

0
e−δ̂tH(t)

(
c(t)− ξI(t) + δ̂W (t)

)
dt
]
.

(24)

Applying the first-order conditions for consumption c(t) and wealth W (t) gives rise to

c(t) =
(
λe(β+δ−δ̂)tH(t)

)−1/γ
,

W (t) =
(
λe(β+δ−δ̂)tH(t)

)−1/γ( δ̂
δ

)−1/γ
K1/γ − kξI(t)/β1.

(25)

The indirect value function in (24) can be rewritten when the above first-order conditions for con-

sumption and wealth are substituted in:

J δ̂(λ, I) = E
[ ∫ ∞

0
e−(β+δ)t

{ γ

1− γ

(
λe(β+δ−δ̂)tH(t)

)1−1/γ
+

γ

1− γ
(δK)1/γ δ̂1−1/γ

(
λe(β+δ−δ̂)tH(t)

)1−1/γ
+
(

1 +
δ̂k

β1

(
λe(β+δ−δ̂)tH(t)

)
ξI(t)

)}
dt
]
.

(26)

We introduce a new state variable to reformulate the indirect value function in (26). Specifically,

Γδ̂(t) ≡ λe(β+δ−δ̂)tH(t)(ξI(t))γ .

The indirect value function in (24) can be reformulated as the function of Γδ̂(t):

J δ̂(λ, I) = E
[ ∫ ∞

0
(ξI(t))1−γe−(β+δ)t

{ γ

1− γ

(
Γδ̂(t)1−1/γ + (δK)1/γ δ̂1−1/γΓδ̂(t)1−1/γ

)
+
(

1 +
δ̂k

β1

)
Γδ̂(t)

}
dt
]
.

By Girsanov’s Theorem, the new probability measure can be defined by

P̃ (A) ≡
∫
A

exp
(
− 1

2
(1− γ)2||σI ||2(t, ω) + (1− γ)(σI)>dZ(t, ω)

)
dP (ω) for all A ∈ F

15



and the new Brownian motion process Z̃ is given by

Z̃(t) = −(1− γ)σIdt+ Z(t).

The dynamics of the new state variable follow

dΓδ̂(t) = Γδ̂(t){−(β δ̂1 − β2)dt+ β3dZ̃(t)},

where
β δ̂1 = r − µI + (σI)>θ + δ̂ − δ,

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>.

As a result, the indirect value function is given by

J δ̂(λ, I) = (ξI)1−γẼ
[ ∫ ∞

0
e−(β2+δ)t

{ γ

1− γ

(
1 + (δK)1/γ δ̂1−1/γ

)
Γδ̂(t)1−1/γ +

(
1 +

δ̂k

β1

)
Γδ̂(t)

}
dt
]

≡ (ξI)1−γϕδ̂(z),

where z = λ(ξI)γ . Following Karatzas et al. (1999), the stochastic optimization problem (3) or

equivalently, the static optimization problem (21) essentially derives from the indirect value function

in (24) by the following relationship:

V (w, I) = inf
(λ,δ̂)
{J δ̂(λ, I) + λw}

= inf
λ
{inf
δ̂
J δ̂(λ, I) + λw}

≡ inf
λ
{J(λ, I) + λw},

which completes the proof. Q.E.D.

The Income-Shock-Adjusted Intensity. In the lemma, δ̂ is to be determined to find out the minimal

local martingale measure, guaranteeing the uniqueness of the state price density through which the

risk neutral probability measure can be constructed to give more weight to unwanted events resulting

from the LNIS relative to the physical (or the original) probability measure. The following lemma

16



determines the unique δ̂.

Lemma 3.3. The income-shock-adjusted intensity δ̂ is determined uniquely by

δ̂ =
(
G(z)− 1

β1
+

k

β1

)−γ δK
z
, (27)

where G(z) = −ϕ′δ(z) + 1/β1 solves to the following non-linear differential equation:

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ , 0 < z < z.

(28)

with the boundary conditions

G(z) = − L
ξI

+
1

β1
and G′(z) = 0.

Proof. The function ϕδ̂(z) in (23) should satisfy by Feynman-Kac’s formula the following non-linear

ordinary differential equation:

inf
δ̂

[1

2
||β3||2z2ϕ′′δ̂ (z)− (β δ̂1 − β2)zϕ′δ̂(z)− (β2 + δ)ϕδ̂(z)

+
γ

1− γ

(
1 + (δK)1/γ δ̂1−1/γ

)
z1−1/γ +

(
1 +

δ̂k

β1

)
z
]

= 0, 0 < z < z,

(29)

where
β δ̂1 = r − µI + (σI)>θ + δ̂ − δ,

β2 = β − µI(1− γ) +
1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>,

and z is to be determined according to the boundary conditions (or the value matching and smooth

pasting conditions) given by

ϕ′
δ̂
(z) =

L

ξI
, ϕ′′

δ̂
(z) = 0.

Note that the technical details behind the boundary conditions stated above are essentially the same

as Dybvig and Liu (2011). Applying the first-order condition for δ̂ leads to

δ̂ =
(
− ϕ′

δ̂
(z) +

k

β1

)−γ δK
z
. (30)
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When the above first-order condition is substituted in (29), the differential equation is rewritten as

1

2
||β3||2z2ϕ′′δ̂ (z)− (β1 − δ − β2)zϕ′δ̂(z)− (β2 + δ)ϕδ̂(z)

+
γ

1− γ
z1−1/γ + z +

δK

1− γ

(
− ϕ′

δ̂
(z) +

k

β1

)1−γ
= 0, 0 < z < z.

(31)

From now on, we will carry out several transformations to simplify the differential equation given

in (31). We denote −ϕ′
δ̂
(z) by G̃(z). By differentiating the both sides of (31) with respect to z, the

differential equation (31) is restated with G̃(z) as follows:

−1

2
||β3||2z2G̃′′(z)− (||β3||2 + β2 + δ − β1)zG̃′(z)

+ β1G̃(z) + 1 + δK
(
G̃(z) +

k

β1

)−γ
G̃′(z) = z−1/γ , 0 < z < z,

(32)

with the boundary conditions

G̃(z) = − L
ξI

and G̃′(z) = 0.

We also denote G̃(z) + 1/β1 by G(z). Then the differential equation (32) is rewritten as

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ , 0 < z < z.

with the boundary conditions

G(z) = − L
ξI

+
1

β1
and G′(z) = 0.

Finally, δ̂ given in (30) is rewritten as a function of G(z), which completes the proof. Q.E.D.

The Indirect Value Function. The relationship (22) shows that the optimization problem in (3) or

equivalently, the problem (21) is solved by deriving the indirect value function in (23) together with

the income-shock-adjusted intensity δ̂ in the lemma. Going forward, we devote our full attention to

solving the non-linear differential equation given in (28) to derive the indirect value function J(λ, I)

given in (23).

Now, we introduce the important proposition to derive a general solution to the differential equa-

tion in (28).
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Proposition 3.1. A general solution to the differential equation in (28) is given by

G(z) =
1

Â+ δ
z−1/γ + (B∗δ )−α

∗
δ

+
2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
,

(33)

where Â is given by

Â =
γ − 1

γ

(
β1 +

||β3||2

2γ

)
+
β2
γ
,

B∗δ and z are the two constants to be determined by the boundary conditions:

G(z) = − L
ξI

+
1

β1
and G′(z) = 0,

and αδ > 1 and −1 < α∗δ < 0 are the two roots to the following characteristic equations:

F (α; δ) ≡ −1

2
||β3||2α(α− 1) + α(β2 + δ − β1)α+ β1 = 0.

Proof. We conjecture a general solution of the equation (28) as

G(z) =
1

Â+ δ
z−1/γ + η(z)z−αδ + η∗(z)z−α

∗
δ , (34)

subject to

η′(z)z−αδ + (η∗(z))′z−α
∗
δ = 0,

where αδ > 1 and −1 < α∗δ < 0 are the two roots to the following characteristic equations:

F (α; δ) ≡ −1

2
||β3||2α(α− 1) + α(β2 + δ − β1)α+ β1 = 0.

Direct calculations of the first and second derivative of G result in

G′(z) = − 1

γ(Â+ δ)
z−1/γ−1 − αδη(z)z−αδ−1 − α∗δη∗(z)z−α

∗
δ−1
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and

G′′(z) =
(

1 +
1

γ

) 1

γ(Â+ δ)
z−1/γ−2 − αδη′(z)z−αδ−1 + αδ(αδ + 1)η(z)z−αδ−2

− α∗δ(η∗(z))′z−α
∗
δ−1 + α∗δ(α

∗
δ + 1)η∗(z)z−α

∗
δ−2.

Using the general solution (34) and the derivatives of G stated above, the first three terms of left-hand

side in (28) become

− 1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z) + β1G(z)

= z−1/γ +
||β3||2

2
(αδ − α∗δ)z1−αδη′(z)

= z−1/γ − ||β3||
2

2
(αδ − α∗δ)z1−α

∗
δ (η∗(z)).

As a result, the differential equation (28) simplifies to the following: for 0 < z < z,

||β3||2

2
(αδ − α∗δ)z1−αδη′(z) = −δK

(
G(z)− 1

β1
+

k

β1

)−γ
G′(z)

and
||β3||2

2
(αδ − α∗δ)z1−α

∗
δ (η∗(z)) = δK

(
G(z)− 1

β1
+

k

β1

)−γ
G′(z).

Integrating the both sides of the above two relationships from 0 to z and from z to z allows η(z) and

η∗(z) to be expressed as an integral form:

η(z) = − 2δK

||β3||2(αδ − α∗δ)

∫ z

0
µαδ−1

(
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ)dµ

and

η∗(z) = η∗(z)− 2δK

||β3||2(αδ − α∗δ)

∫ z

z
µα
∗
δ−1
(
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ)dµ.

Therefore, the general solution (34) also can be expressed as an integral form:

G(z) =
1

Â+ δ
z−1/γ + η∗(z)z−α

∗
δ − 2δK

||β3||2(αδ − α∗δ)

[
z−αδ

∫ z

0
µαδ−1

(
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ)dµ

+ z−α
∗
δ

∫ z

z
µα
∗
δ−1
(
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ)dµ

]
.

(35)
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Note that (
G(µ)− 1

β1
+

k

β1

)−γ
G′(µ) =

d

dµ

{ 1

1− γ

(
G(µ)− 1

β1
+

k

β1

)1−γ}
.

Using the integration by parts, the general solution (35) can be restated as follows:

G(z) =
1

Â+ δ
z−1/γ +

{
η∗(z) + zα

∗
δ−1

1

1− γ

(
G(z)− 1

β1
+

k

β1

)1−γ}
z−α

∗
δ

+
2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
.

(36)

Defining a constant B∗δ as

B∗δ ≡ η∗(z) + zα
∗
δ−1

1

1− γ

(
G(z)− 1

β1
+

k

β1

)1−γ
.

Finally, we obtain the general solution in closed-form:

G(z) =
1

Â+ δ
z−1/γ + (B∗δ )−α

∗
δ

+
2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
,

which completes the proof. Q.E.D.

Optimal Consumption and Investment Strategies. Now, we are ready to derive the analytic results

of optimal consumption and investment strategies.

Theorem 3.1. The optimal consumption strategy c(t) and the optimal investment strategy π(t) of the

agent with the LNIS are derived in closed-form:

c(t) = (Â+ δ)
(
w +

ξI

β1
− ξIB∗δ z−α

∗
δ − IP

)
, (37)

21



π(t) =
1

γ
σ−1θw

+
1

γ
σ−1(θ − γσI)

[ξI
β1

+ (γα∗δ − 1)ξIB∗δ z
−α∗δ

− 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

/
c(t)−γ + (γαδ − 1)× IP1 + (γα∗δ − 1)× IP2

]
,

(38)

where

Â =
γ − 1

γ

(
β1 +

||β3||2

2γ

)
+
β2
γ
,

B∗δ and z are the two constants to be determined by the boundary conditions

G(z) = − L
ξI

+
1

β1
and G′(z) = 0,

αδ > 1 and −1 < α∗δ < 0 are the two roots to the following characteristic equation:

F (α; δ) ≡ −1

2
||β3||2α(α− 1) + α(β2 + δ − β1)α+ β1 = 0,

G(z) satisfies the following non-linear differential equation: for 0 < z < z,

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ ,

with
β2 = β − µI(1− γ) +

1

2
γ(1− γ)||σI ||2,

β3 = γ(σI)> − θ>,

IP represents the integral parts of LNIS-induced precautionary savings and it is given by

IP = IP1 + IP2,

IP1 =
2δK(αδ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ < 0,

IP2 =
2δK(α∗δ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−α

∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ > 0,

(39)
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and the LNIS-induced precautionary savings (LNIS-PS) are given by

LNIS-PS = −δ
(
w +

ξI

β1

)
+
(
Â+ δ − 1

γ
σ−1(θ − γσI)(γα∗δ − 1)

)
ξIB∗δ z

−α∗δ

+
1

γ
σ−1(θ − γσI) 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

/
c(t)−γ

+
(
Â+ δ − 1

γ
σ−1(θ − γσI)(γαδ − 1)

)
× IP1

+
(
Â+ δ − 1

γ
σ−1(θ − γσI)(γα∗δ − 1)

)
× IP2.

(40)

Proof. With the first-order condition (27) for δ̂, the first-order conditions for consumption c(t) in (25)

can be rewritten as

c(t) = ξI(t)Γδ̂(t)−1/γ , (41)

where Γδ̂(t) is given by

Γδ̂(t) = λe(β+δ−δ̂)tH(t)(ξI(t))γ ,

and

δ̂ =
(
G(Γδ̂(t))− 1

β1
+

k

β1

)−γ δK

Γδ̂(t)

By the principle of dynamic programming, it is convenient to express the consumption as a function

of initial variable z:

c(t) = c(0) = ξIz−1/γ . (42)

From the relationship (22) between the value function and the indirect value function, applying the

first-order condition for λ results in

w = −Jλ(λ, I)

= −ξIϕ′
δ̂
(z)

= ξIG̃(z)

= ξI
(
G(z)− 1

β1

)
,

(43)

accordingly,

G(z) =
w

ξI
+

1

β1
.
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A little rearrangement of the general solution (33) leads to

z−1/γ = (Â+ δ)
[
G(z)−B∗δ z−α

∗
δ

− 2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]

= (Â+ δ)
[ w
ξI

+
1

β1
−B∗δ z−α

∗
δ

− 2δK

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
.

Therefore, the first-order condition for consumption c(t) in (41) allows the following optimal con-

sumption strategy:

c(t) = (Â+ δ)
(
w +

ξI

β1
− ξIB∗δ z−α

∗
δ − IP

]
,

where IP represents the integral parts of LNIS-induced precautionary savings and it is given by

2δKξI

||β3||2(αδ − α∗δ)(1− γ)

[
(αδ − 1)z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+ (α∗δ − 1)z−α
∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ
]
.

For simplicity, IP is rewritten as

IP = IP1 + IP2,

where

IP1 =
2δK(αδ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−αδ

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ < 0,

IP2 =
2δK(α∗δ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−α

∗
δ

∫ z

z
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ > 0.

It remains to derive the optimal investment strategy. A little rearrangement of the relationship in

(43) gives
w

ξI
= G(z)− 1

β1
,
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or equivalently,
W (t)

ξI(t)
= G(Γδ̂(t))− 1

β1
. (44)

By applying Itô’s formula to the left hand side of the above relationship,

d
(W (t)

ξI(t)

)
= dW (t)

1

ξI(t)
+W (t)d

( 1

ξI(t)

)
+ dW (t)d

( 1

ξI(t)

)
=
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

] 1

ξI(t)

+W (t)
[
− (ξI(t))−2dI(t) + (ξI(t))−3(dI(t))2

]
+
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

]
×
[
− (ξI(t))−2dI(t) + (ξI(t))−3(dI(t))2

]
=
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

] 1

ξI(t)

+W (t)
[
− (ξI(t))−1{µIdt+ (σI)>dZ(t)}+ (ξI(t))−1||σI ||2dt

]
+
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

]
×
[
− (ξI(t))−1{µIdt+ (σI)>dZ(t)}+ (ξI(t))−1||σI ||2dt

]
=
[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)

}
dt+ π(t)>σ>dZ(t)

] 1

ξI(t)

+
W (t)

ξI(t)

[
− (µI − ||σI ||2)dt− (σI)>dZ(t)

]
− (ξI(t))−1π(t)>σ>σIdt

=
1

ξI(t)

[{
rW (t)− c(t) + ξI(t) + π(t)>(µ− r1)−W (t)(µI − ||σI ||2)− π(t)>σ>σI

}
dt

+ {π(t)>σ> −W (t)(σI)>}dZ(t)
]

=
1

ξI(t)

[{
{r − µI + ||σI ||2}W (t)− c(t) + ξI(t) + π(t)>{µ− r1− σ>σI}

}
dt

+ {π(t)>σ> −W (t)(σI)>}dZ(t)
]
.

(45)
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By applying Itô’s formula to the right hand side of the relationship (44),

dG(Γδ̂(t)) = G′(Γδ̂(t))dΓδ̂(t) +
1

2
G′′(Γδ̂(t))(dΓδ̂(t))2

= G′(Γδ̂(t))Γδ̂(t){−(β δ̂1 − β2)dt+ β3dZ̃(t)}+
1

2
G′′(Γδ̂(t))(Γδ̂(t))2||β3||2dt

= G′(Γδ̂(t))Γδ̂(t){−(β δ̂1 − β2)dt+ β3{−(1− γ)σIdt+ dZ(t)}+
1

2
G′′(Γδ̂(t))(Γδ̂(t))2||β3||2dt

=
{
−G′(Γδ̂(t))Γδ̂(t){(β δ̂1 − β2) + (1− γ)β3σ

I}+
1

2
G′′(Γδ̂(t))(Γδ̂(t))2||β3||2

}
dt

+G′(Γδ̂(t))Γδ̂(t)β3dZ(t).

(46)

Equating each term of dZ(t) in d(W (t)/(ξI(t))) and dG(Γδ̂(t)) derives the following relationship

that involves the optimal investment strategy π(t):

π(t)>σ> −W (t)(σI)>

ξI(t)
= G′(Γδ̂(t))Γδ̂(t)β3. (47)

By the principle of dynamic programming, it is convenient to express the investment as a function of

initial variables at time 0:
π>σ> − w(σI)>

ξI
= G′(z)zβ3, (48)

where π = π(t) = π(0). Using the general solution G(z) given in (33), a direct calculation of G′(z)

yields

G′(z) =− 1

γ(Â+ δ)
z−1/γ−1 − α∗δB∗δ z−α

∗
δ−1 +

2δK

||β3||2(1− γ)z2

(
G(z)− 1

β1
+

k

β1

)1−γ
− 2δKαδ(αδ − 1)

||β3||2(αδ − α∗δ)(1− γ)
z−αδ−1

∫ z

0
µαδ−2

(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

−
2δKα∗δ(α

∗
δ − 1)

||β3||2(αδ − α∗δ)(1− γ)
z−α

∗
δ−1

∫ z

0
µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ.

Multiply G′(z) by ξIz gives

ξIG′(z)z =− 1

γ(Â+ δ)
ξIz−1/γ − α∗δξIB∗δ z−α

∗
δ

+
2δKξI

||β3||2(1− γ)z

(
G(z)− 1

β1 +
k

β1

+
)1−γ

− αδ × IP1− α∗δ × IP2,
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where IP1 and IP2 given in (39) are the first and second integral part of LNIS-induced precautionary

savings. Note that ξIz−1/γ of the first term in the above relationship is equivalent to the optimal

consumption strategy from (42), as a result, ξIG′(z)z can be restated with (37) as the following:

ξIG′(z)z = −1

γ

[
w +

ξI

β1
+ (γα∗δ − 1)ξIB∗δ z

−α∗δ

− 2γ

||β3||2(1− γ)z
ξIδK

(
G(z)− 1

β1
+

k

β1

)1−γ
+ (γαδ − 1)× IP1 + (γα∗δ − 1)× IP2

]
.

Note that
− 2γ

||β3||2(1− γ)z
ξIδK

(
G(z)− 1

β1
+

k

β1

)1−γ

= − 2γ

||β3||2z
ξIδK

( w
ξI

+
k

β1

)1−γ
1− γ

= − 2γ

||β3||2z
(ξI)γδK

(
w +

kξI

β1

)1−γ
1− γ

= − 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

c(t)γ

= − 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

/
c(t)−γ .

Therefore, we derive the optimal investment strategy from (48):

π(t) = σ−1(β3)
>ξIG′(z)z + σ−1σIw

= σ−1(γσI − θ)ξIG′(z)z + σ−1σIw

=
1

γ
σ−1θw

+
1

γ
σ−1(θ − γσI)

[ξI
β1

+ (γα∗δ − 1)ξIB∗δ z
−α∗δ

− 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

/
c(t)−γ

+ (γαδ − 1)× IP1 + (γα∗δ − 1)× IP2
]
.

Until now, we have derived the optimal consumption and investment strategies, c(t) and π(t),

in closed-form in (37) and (38), respectively, together with the income-shock-adjusted intensity δ̂ in
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(27). Following Karatzas et al. (1991), the optimality would be verified if the wealth process W (t)

was self financed by c(t) and π(t). The term of dt of dG(Γδ̂(t)) in (46) is rewritten as

−G′(Γδ̂(t))Γδ̂(t){(β δ̂1 − β2) + (1− γ)β3σ
I}+

1

2
G′′(Γδ̂(t))(Γδ̂(t))2||β3||2

=
1

2
||β3||2(Γδ̂(t))2G′′(Γδ̂(t)) + {β2 − β1 − δ̂ + δ − (1− γ)β3σ

I}Γδ̂(t)G′(Γδ̂(t))

=
1

2
||β3||2(Γδ̂(t))2G′′(Γδ̂(t)) + (β2 + δ − β1)Γδ̂(t)G′(Γδ̂(t))− (1− γ)β3σ

IΓδ̂(t)G′(Γδ̂(t))

−
(
G(Γδ̂(t))− 1

β1
+

k

β1

)−γ δK

Γδ̂(t)
Γδ̂(t)G′(Γδ̂(t))

=
1

2
||β3||2(Γδ̂(t))2G′′(Γδ̂(t)) + (β2 + δ − β1)Γδ̂(t)G′(Γδ̂(t))− δK

(
G(Γδ̂(t))− 1

β1
+

k

β1

)−γ
G′(Γδ̂(t))

− (1− γ)Γδ̂(t)G′(Γδ̂(t))β3σ
I

= −||β3||2Γδ̂(t)G′(Γδ̂(t)) + β1G(Γδ̂(t))− Γδ̂(t)−1/γ − (1− γ)Γδ̂(t)G′(Γδ̂(t))β3σ
I

= −π(t)>σ> −W (t)(σI)>

ξI(t)
(β3)

> + β1

(W (t)

ξI(t)
+

1

β1

)
− c(t)

ξI(t)
− (1− γ)

π(t)>σ> −W (t)(σI)>

ξI(t)
σI

=
1

ξI(t)

[
{(σI)>(β3)

> + β1}W (t)− c(t) + ξI(t)− π(t)>σ>(β3)
> − (1− γ)π(t)>σ>σI + (1− γ)||σI ||2W (t)

]
=

1

ξI(t)

[
{(σI)>(γσI − θ) + r − µI + (σI)>θ}W (t)− c(t) + ξI(t)− π(t)>σ>(γσI − θ)

− (1− γ)π(t)>σ>σI + (1− γ)||σI ||2W (t)
]

=
1

ξI(t)

[
{r − µI + γ||σI ||2}W (t)− c(t) + ξI(t) + π(t)>{µ− r1− σ>σI}

]
.

where the second equality derives when δ̂ in (27) substituted in, the fourth equality derives from the

differential equation in (28), the fifth equality derives from ||β3||2 = β(β3)
>, (41), (44), and (47).

This shows that each term of dt in d(W (t)/(ξI(t))) and dG(Γδ̂(t)) are exactly the same, as a result,

the wealth process W (t) is self financed by the optimal consumption strategy c(t) and the optimal

investment strategy π(t) with the income-shock-adjusted intensity δ̂ in (27). Q.E.D.

Theorem 3.1 allows us to obtain the resulting optimal (riskless) savings by measuring the wedge

between total wealth (financial wealth+human capital) and the sum of consumption and investment.

Specifically, we identify and quantify three different optimal savings motives in the following Corol-

lary: (i) PIH-implied optimal savings, (ii) Borrowing-constraints-induced optimal savings, and (iii)

LNIS-induced optimal savings.
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Corollary 3.1. We identify and quantify three different optimal savings motives as follows.

(i) PIH-implied optimal savings

=
(

1− Â− 1

γ
σ−1θ

)(
w +

ξI

β1

)
+ σ−1σI

ξI

β1
.

(ii) Borrowing-constraints-induced optimal savings

= PIH-implied optimal savings

+
(
Â− 1

γ
σ−1(θ − γσI)(γα∗0 − 1)

)
ξIB∗0z

−α∗0 .

(iii) LNIS-induced optimal savings

= PIH-implied optimal savings + LNIS-PS,

where LNIS-PS is the LNIS-induced precautionary savings given in (40).

Proof. Without the time-varying borrowing constraints (17) and the LNIS, i.e., when B∗0 = 0 and

δ = 0, the agent’s optimal consumption strategy (37) can be rewritten by the following Friedman’s

(1957) PIH:

c(t) = Â
(
w +

ξI

β1

)
.

Also, the classic Merton (1969, 1971) investment rule can be revisited:

π(t) =
1

γ
σ−1θ

(
w +

ξI

β1

)
− σ−1σI ξI

β1
,

which comes from (38) when σI > 0 and δ = 0, i.e., with output uncertainty but without the LNIS.

Friedman’s PIH-implied optimal savings are then defined as total wealth minus the sum of consump-

tion and investment, so that

PIH-implied optimal savings ≡ w +
ξI

β1
− c(t)− π(t)

= w +
ξI

β1
− Â

(
w +

ξI

β1

)
− 1

γ
σ−1θ

(
w +

ξI

β1

)
+ σ−1σI

ξI

β1

=
(

1− Â− 1

γ
σ−1θ

)(
w +

ξI

β1

)
+ σ−1σI

ξI

β1
,

which is the PIH-implied optimal savings in Corollary 3.1.

With the time-varying borrowing constraints but the LNIS, i.e., when B∗0 > 0 and δ = 0, the
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agent’s optimal consumption strategy (37) can be restated as

c(t) = Â
(
w +

ξI

β1
− ξIB∗0z−α

∗
0

)
.

The individual whose borrowing is constrained by (17) derives the following optimal investment strat-

egy:

π(t) =
1

γ
σ−1θ

(
w +

ξI

β1

)
− σ−1σI ξI

β1
+

1

γ
σ−1(θ − γσI)(γα∗0 − 1)ξIB∗0z

−α∗0 . (49)

The borrowing-constraints-induced optimal savings are then given by

Borrowing-constraints-induced optimal savings

≡ w +
ξI

β1
− c(t)− π(t)

= w +
ξI

β1
− Â

(
w +

ξI

β1
− ξIB∗0z−α

∗
0

)
− 1

γ
σ−1θ

(
w +

ξI

β1

)
+ σ−1σI

ξI

β1
− 1

γ
σ−1(θ − γσI)(γα∗0 − 1)ξIB∗0z

−α∗0

=
(

1− Â− 1

γ
σ−1θ

)(
w +

ξI

β1

)
+ σ−1σI

ξI

β1

+
(
Â− 1

γ
σ−1(θ − γσI)(γα∗0 − 1)

)
ξIB∗0z

−α∗0 ,

which is the borrowing-constraints-induced optimal savings in Corollary 3.1.

With both the time-varying borrowing constraints and the LNIS, the agent’s LNIS-induced optimal

savings are defined as total wealth minus the sum of consumption and investment which are given in

Theorem 3.1:

LNIS-induced optimal savings

≡ w +
ξI

β1
− c(t)− π(t)

=
(
w +

ξI

β1

)
− (Â+ δ)

(
w +

ξI

β1
− ξIB∗δ z−α

∗
δ − IP

)
− 1

γ
σ−1θw − 1

γ
σ−1(θ − γσI)

[ξI
β1

+ (γα∗δ − 1)ξIB∗δ z
−α∗δ

− 2γ

||β3||2
δK

(
w +

kξI

β1

)1−γ
1− γ

/
c(t)−γ + (γαδ − 1)× IP1 + (γα∗δ − 1)× IP2

]
= PIH-implied optimal savings + LNIS-PS,
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which is the LNIS-induced optimal savings given in Corollary 3.1. Q.E.D.

Discussion on Optimal Consumption/Savings. Without the time-varying borrowing constraints (17)

and the LNIS, i.e., when B∗0 = 0 and δ = 0, the agent’s optimal consumption strategy (37) can be

rewritten by the following Friedman’s (1957) PIH:

c(t) = Â
(
w +

ξI

β1

)
,

which means that the agent’s consumption can be annuitized from her total available resources. Fur-

ther, the marginal propensity to consume out of financial wealth is constant implying that regardless

of wealth levels, the agent’s optimal consumption to total wealth ratio is well maintained at constant

rate.

The classic Merton (1969, 1971) investment rule can be revisited:

π(t) =
1

γ
σ−1θ

(
w +

ξI

β1

)
− σ−1σI ξI

β1
, (50)

which comes from (38) when σI > 0 and δ = 0, i.e., with output uncertainty but without the LNIS.

The first term on the right hand side of (50) represents the mean-variance asset allocation and the

second one represents the demand for hedging (or the intertemporal hedging component) against the

output uncertainty.

The PIH-implied optimal savings show that the marginal propensity to save (MPS) out of financial

wealth is 1− Â− 1
γσ
−1θ, which implies that with respect to one unit increase of wealth the constant

portion of the agent’s extra money aside from consumption portion Â and investment portion 1
γσ
−1θ

is to be optimally put into her riskless savings. This savings strategy, however, has been at odds with

empirical evidence (Federal Reserve report, 2017; EU-SILC 2017) in that the agent’s savings are too

small to address the financial challenges on her future consumption.

In addition to the PIH-implied optimal savings, the extra terms on the right hand side of borrowing-

constraints-induced optimal savings in 3.1 represent additional precautionary savings motive for avoid-

ing being binded by the borrowing constraints given in (17). The MPS out of financial wealth becomes

larger or smaller than that of the PIH-implied optimal savings by the amount of −α∗0
(
Â− 1

γσ
−1(θ −

γσI)(γα∗0− 1)
)
ξIB∗0z

−α∗0z′(w).3 Here, − 1
γσ
−1(θ− γσI)(γα∗0− 1)ξIB∗0z

−α∗0 captures endogenous

3z(w) is a dual function of financial wealth w and known to be decreasing and convex implying z′(w) < 0.
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adjustments in the savings with benchmarking. When the benchmark is taken to be aggregate output,

σIθ−1 can quantify the sensitivity of the benchmark (or the aggregate output) to economic conditions,

and 1/γ can quantify the sensitivity of the Merton policy (or the stock investment) to economic con-

ditions.4 Normally, the aggregate output becomes less sensitive to economic conditions than the stock

investment, i.e., σIθ−1 < 1/γ.5 Hence, the MPS is smaller than that of the PIH-implied optimal

savings.

The smaller MPS with borrowing constraints implies that with respect to one unit decrease of

wealth the agent is inclined to less reduce her savings amount, as she is responsible for maintaining

her wealth to be larger than the time-varying constraint−L(t) given in (17) in all states. Interestingly,

the MPS further decreases as wealth decumulates (as a result, z becomes larger). This shows that the

borrowing-constrained precautionary savings motive has a progressively more stronger impact on the

agent’s total savings when wealth is small, thereby further increasing demand for savings at low levels

of wealth in the preparation against market downturns.

We generalize Friedman’s PIH-implied optimal savings with the LNIS-induced precautionary sav-

ings (LNIS − PS). The MPS of the LNIS − PS out of financial wealth is

∂(LNIS − PS)

∂w
=− δ − α∗δ

(
Â+ δ − 1

γ
σ−1(θ − γσI)(γα∗δ − 1)

)
ξIB∗δ z

−α∗
δ−1z′(w)

+
1

γ
σ−1(θ − γσI) 2γ

||β3||2
δK
(
w +

kξI

β1

)−γ/
c(t)−γ

− 1

γ
σ−1(θ − γσI) 2γ

||β3||2z2
(ξI)γδK

(
w +

kξI

β1

)1−γ
1− γ

z′(w)

+
(
Â+ δ − 1

γ
σ−1(θ − γσI)(γαδ − 1)

)∂(IP1)

∂z
z′(w)

+
(
Â+ δ − 1

γ
σ−1(θ − γσI)(γα∗δ − 1)

)∂(IP2)

∂z
z′(w),

where
∂(IP1)

∂w
=− 2δKαδ(αδ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−αδ−1

∫ z

0

µαδ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

+
2δK(αδ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)z2

(
G(z)− 1

β1
+

k

β1

)1−γ
> 0,

4Basak et al. (2006) have adopted these quantities in their analysis for the risk management with benchmarking.
5In an economy in which the aggregate output reacts more to changes in economic conditions than the stock investment,

i.e., when i.e., if σIθ−1 > 1/γ, the MPS can be larger than that of the PIH-implied optimal savings in some cases. In this
case, the individual earnings no longer act as a substitute for the implicit cash holdings, rather these earnings behave like a
stochastic stream which may be riskier than the stock investment. The individual’s optimal choice would, thus, be to invest
more in the stock market as in Cocco et al. (2005).
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∂(IP2)

∂w
=− 2δKα∗δ(α

∗
δ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)
z−α

∗
δ−1

∫ z

z

µα
∗
δ−2
(
G(µ)− 1

β1
+

k

β1

)1−γ
dµ

− 2δK(α∗δ − 1)ξI

||β3||2(αδ − α∗δ)(1− γ)z2

(
G(z)− 1

β1
+

k

β1

)1−γ
> 0.

Compared to the borrowing-constraints-induced optimal savings,6 the extra first two terms involving

δK
(
w +

kξI

β1

)−γ/
c(t)−γ

and

δK

(
w +

kξI

β1

)1−γ
1− γ

on the right hand side of the MPS further increase the MPS, as those two terms capture a hedging

demand for risk diversification that turns out to decrease the optimal (riskless) savings and instead

increase the optimal investment in the stock market as in (38) by the amount proportional to the ratio

of the agent’s utility value from total available financial resources for satisfying consumption needs

in the LNIS, δK(w + kξI/β1)
1−γ/(1− γ), to the marginal utility of one extra unit of consumption,

c−γ = (c1−γ/(1− γ))′. This ratio does imply that a larger amount of stock investment is required for

higher consumption needs in the LNIS.

Interestingly, in addition to such a risk diversification demand, the agent would show a savings

demand for precautionary reasons in the event of the LNIS. Indeed, the integral parts IP1 and IP2 of

LNIS − PS can play a role to further decrease the MPS and thus, the agent tends to less reduce her

savings amount with respect to one unit decrease of wealth. Rather, the agent reduces her consumption

amount by (Â+ δ)× IP as in (37) and increases her savings amount as in the LNIS-induced optimal

savings (or in the LNIS-induced precautionary savings) in Corollary 3.1.

Given the differences between the PIH-implied optimal savings, borrowing-constraints-induced

optimal savings, and LNIS-induced optimal savings as we have analyzed so far, it is worth to thor-

oughly investigate a role of the LNIS in the following two points: (i) what and how the extra LNIS-

induced precautionary savings motive would affect the general equilibrium interest rate, and (ii) such

a savings movie could improve the equilibrium model’s ability to match the equity premium and

risk-free rate observed in the data.
6The LNIS-induced optimal savings reduce to the borrowing-constraints-induced optimal savings without consideration

of the LNIS (δ = 0).
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4 Technical Details of a General Equilibrium Analysis

In the main manuscript, we have derived the general equilibrium quantities in the presence of the

LNIS. We consider a simple exchange economy in the style of Lucas (1978). The economy is popu-

lated by a representative agent facing the LNIS. The agent is entitled to an aggregate endowment to be

consumed in equilibrium and is assumed to trade a riskless bond and multiple risky stocks distribut-

ing the dividend. The returns to these assets adjust to represent a no-trade equilibrium. The risk-free

interest rate, r, the constant mean vector, µ, and the constant nonsingular standard deviation matrix,

σ, should be determined from the equilibrium conditions, as specified below:

Definition 4.1. An equilibrium can be characterized as a collection of (r, µ, σ) and optimal strategies

(c(t), π(t)) such that the consumption good, stock, and bond markets clear as

c(t) = I(t),

πj(t) = Sj(t), j = 1, ..., N,

W (t) =
N∑
j=1

Sj(t),

where N is the number of risky stocks.

The following proposition provides the unique state price density in the presence of the market

risk and the income shock.

Proposition 4.1. The unique state price density is given by

ξδ̂(t) = exp
{

ln
( δ̂
δ

)
1{τ≤t} − (δ̂ − δ)t

}
H(t), (51)

where

δ̂ =
(
G(z)− 1

β1
+

k

β1

)−γ δK
z
,

τ is the arrival time of a Poisson shock, 1 is an indicator function that gives 1 if the Poisson shock

occurs at time t and 0 otherwise, G(z) satisfies the following differential equation:

−1

2
||β3||2z2G′′(z)− (||β3||2 + β2 + δ − β1)zG′(z)

+ β1G(z) + δK
(
G(z)− 1

β1
+

k

β1

)−γ
G′(z) = z−1/γ , 0 < z < z,

(52)
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with

G(z) = − L
ξI

+
1

β1
, G′(z) = 0,

and the dynamics of H(t) are given by

dH(t) = −H(t){rdt+ θ>dZ(t)}, H(0) = 1.

Proof. See 3. Q.E.D.

Given the unique state price density, the following proposition solves for the equilibrium state

price density, and the equilibrium risk-free interest rate and the equilibrium Sharpe ratio.

Proposition 4.2. The equilibrium state price density prior to the LNIS is given by: t < τ ,

H(t) =
1

λ
e−(β−(δ̂(r)−δ))t(I(t))−γ , (53)

the equilibrium risk-free interest rate and the equilibrium Sharpe ratio prior to the LNIS are given by:

t < τ

r = β + γµI − 1

2
γ(1 + γ)(σI)2 − (δ̂(r)− δ) (54)

and

θ = γσI , (55)

respectively, where µI and σI represent the expected consumption growth rate and volatility of con-

sumption growth rate, and the constant δ̂(r) is determined by solving the following non-linear alge-

braic equation:

δ̂(r) =
{( w

ξI
+

1

β1(δ̂(r))

)/( w
ξI

+
k

β1(δ̂(r))

)}γ
{β1(δ̂(r))}γδK(r)

with

β1(δ̂(r)) = β + (γ − 1)µI − 1

2
γ(γ − 1)(σI)2 − (δ̂(r)− δ),

K(r) =
{γ − 1

γ

(
r +

γ(σI)2

2

)
+
β

γ

}−γ
,
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and the constant λ satisfies

E
[ ∫ ∞

0
e−δ̂(r)tH(t)

{
c(t)− ξI(t) + δ̂(r)W (t)

}
dt
]

= w, (56)

c(t) =
(
λe(β+δ−δ̂(r))tH(t)

)−1/γ
, W (t) =

(
λe(β+δ−δ̂(r))tH(t)

)−1/γ( δ̂(r)
δ

)−1/γ
K1/γ− kξI(t)

β1(δ̂(r))
,

with (53), (54), and (55) substituted in.

Proof. We can expect that the LNIS may result in jumps in the state price densities and the equilibrium

securities accordingly. We, thus, need to change the bond and stock price dynamics. We can posit

that the price dynamics are still unchanged, but at time τ we allow for an extra jump component

ψ1{τ≤t} in the price dynamics. Here, 1τ≤t is a (right-continuous) step function so that d1τ≤t is a

measure assigning unit mass to time τ . The jump coefficient ψ is an Fτ -measurable random variable

associated with the price jumps by

ψ = ln
(
H(τ−)/H(τ)

)
= ln

(
B(τ−)/B(τ)

)
= ln

(
Sj(τ−)/Sj(τ)

)
, j = 1, 2, ..., N,

where H(τ−), B(τ−), Sj(τ−) are the left limits at τ . Notice that since Fτ− = Fτ , the jump

coefficient ψ in the state price densities and the security prices must be the same, otherwise there is

an arbitrage on these jumps. Therefore, the discounted bond and stock prices and wealth are all still

continuous at all times.

The optimal consumption strategy prior to the LNIS derives from (25): t < τ ,

c(t) =
(
λe(β+δ−δ̂(r))tH(t)

)−1/γ
,

where the constant λ should satisfy

E
[ ∫ ∞

0
e−δ̂(r)tH(t)

{
c(t)− ξI(t) + δ̂(r)W (t)

}
dt
]

= w
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with the following optimal wealth process prior to the LNIS: t < τ ,

W (t) =
(
λe(β+δ−δ̂(r))tH(t)

)−1/γ( δ̂(r)
δ

)−1/γ
K1/γ − kξI(t)

β1(δ̂(r))
,

and δ̂(r) prior to the LNIS is given by Proposition 4.1 as follows: t < τ ,

δ̂(r) =
(
G(z)− 1

β1(δ̂(r))
+

k

β1(δ̂(r))

)−γ δK
z
, (57)

where G(z) solves the differential equation in (52) with

G(z) = − L
ξI

+
1

β1(δ̂(r))
, G′(z) = 0.

According to the clearing condition of consumption good, c(t) = I(t), the equilibrium state price

density H(t) prior to the LNIS follows: t < τ ,

H(t) =
1

λ
e−(β−(δ̂(r)−δ))tI(t)−γ . (58)

Applying Itô’s formula to the both sides of (58) prior to the LNIS i.e., for any t < τ ,

−H(t){rdt+ θ>dZ(t)}

= −H(t)
{(
β − (δ̂(r)− δ) + γµI − 1

2
γ(1 + γ)||σI ||2

)
dt+ γ(σI)>dZ(t)

}
,

where we do not consider in general equilibrium the Poisson jump term of I(t) because its effects

are reflected by δ̂(r) − δ in the drift term on the right hand side of the equation, which results from

the generalized state price densities given in (53). Equating each term of dt and dZ(t) gives the

equilibrium risk-free interest rate and the equilibrium Sharpe ratio as stated in (54) and (55).

When the LNIS occurs, i.e., at t = τ , the jump-size parameter is determined in equilibrium

by measuring the anticipated downward jump in H(t) at time t = τ . In this case, the equilibrium

consumption price c(t) jumps down to correspond to the downward jump in aggregate demand for

consumption at time τ due to reduced total resources caused by the LNIS. The equilibrium state price

density H(t) in the LNIS follows: t ≥ τ ,

H(t) =
1

λ̃
e−βt(kI(t))−γ ,
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where the constant λ̃ should satisfy

E
[ ∫ ∞

0
H(t){c(t)− kξI(t)}dt

]
= w.

The jump-size parameter ψ would be, thus, determined by

ψ = ln
(
H(τ−)/H(τ)

)
= ln

{( 1

λ
e−(β−(δ̂(r)−δ))τI(τ)−γ

)/( 1

λ̃
e−βτ (kI(τ))−γ

)}
= ln

( λ̃
λ
e(δ̂(r)−δ)τkγ

)
With the equilibrium quantities (54) and (55), and the clearing conditions of stock and bond mar-

kets, the differential equation in (52) has a solution in closed-form:

G(z) =
1

β1(δ̂(r))
z−1/γ .

By substituting the solution for G(z) in (57), δ̂(r) is determined by

δ̂(r) =
( 1

β1(δ̂(r))
z−1/γ − 1

β1(δ̂(r))
+

k

β1(δ̂(r))

)−γ δK
z
. (59)

Recall the relationship (43)

w = ξI
(
G(z)− 1

β1(δ̂(r))

)
,

accordingly,
1

β1(δ̂(r))
z−1/γ =

w

ξI
+

1

β1(δ̂(r))
,

or equivalently,

z−1 = {β1(δ̂(r))}γ
( w
ξI

+
1

β1(δ̂(r))

)γ
.

As a result, the equation (59) reduces to

δ̂(r) =
{( w

ξI
+

1

β1(δ̂(r))

)/( w
ξI

+
k

β1(δ̂(r))

)}γ
{β1(δ̂(r))}γδK
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with
β1(δ̂(r)) = r − µI + (σI)>θ

= β + γµI − 1

2
γ(1 + γ)||σI ||2 − (δ̂(r)− δ)− µI + (σI)>θ

= β + (γ − 1)µI − 1

2
γ(γ − 1)||σI ||2 − (δ̂(r)− δ),

where the second equality derives from the substitution of (54) and the third equality comes from the

substitution of (55). This completes the proof. Q.E.D.

5 Technical Details of Quantitative Analysis

Lower Bound of Wealth. In terms of empirical reality, we can relate the lower bound −L(t) with

L(0) = L of wealth in (17) to a tightening of credit, which is empirically plausible as Survey of

Consumer Finances (2017) states as follows:

In 2016, 20.8 percent of families were considered credit constrained – those who reported

being denied credit in the past year, as well as those who did not apply for credit for fear

of being denied in the past year (Survey of Consumer Finances, 2017).

Borrowing against human capital is constrained fully or partly. Thus, the extent to which credit is

tightened, i.e., the level of lower bound of wealth becomes a real consideration.

Aggregate earnings are assumed to be given by a constant income stream. Specifically, the earn-

ings are given by ε ≡ ξI over the life cycle. Then, the lower bound −L(t) with L(0) = L of wealth

in (17) can be empirically plausible using the following relationship:

L = ω
r + ν + δk

(r + ν + δ)(r + ν)
ε, for 0 ≤ ω < 1, (60)

where ε = ξI represents a constant stream of earnings over the life cycle, ω represents the extent to

which credit is tightened and ν > 0 is the agent’s constant mortality intensity when the time to death

is distributed with an exponential distribution.7 The utility related to death is normalized as zero.8

7The constant mortality rate assumption is made for parsimony of the model, helping explore horizon-dependent polices
in the simplest possible economic environment. The derived model predictions are consistent with the typical life-cycle
advice. A more realistic model would allow for a Gompertz force of mortality, which is quite relevant to the actuarial
literature.

8On account of this normalization, we do not consider motive for bequest. The presence of bequest motive is expected
to reinforce the negative impacts of the LNIS.
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The relationship (60) shows that the value of human capital depreciates relative to that predicted

by Friedman (1957). Without the LNIS (i.e., δ = 0), the lower bound reduces to ε/(r + ν) as ω

approaches one (i.e., when credit tightening does not occur). With the LNIS (i.e., δ > 0), the lower

bound is always larger than −ε/(r + ν), which is more credit tightened than without the LNIS.

Now, we will verify the relationship (60). Following Friedman (1957) and Hall (1978), the present

value of future earnings is calculated by their discounted value at the risk-free interest rate. More

specifically, with the stochastic life-cycle earnings ε(t) given by

ε(t) =


ε, if 0 ≤ t < τ ∧ τν ,

kε, if τ ≤ t < τν ,

0, if t ≥ τν ,

the present value of future life-cycle earnings follows

E
[ ∫ τ∧τν

0
e−rtε(t)dt+ e−r(τ∧τ

ν)

∫ ∞
τ∧τν

e−r(t−τ∧τ
ν)ε(t)dt

]
= E

[ ∫ ∞
0

νe−νs
∫ τ∧s

0
e−rtε(t)dtds+

∫ ∞
0

νe−νse−r(τ∧s)
∫ ∞
τ∧s

e−r(t−τ∧s)ε(t)dtds
]

= E
[ ∫ τ

0
νe−νs

∫ s

0
e−rtεdtds+

∫ ∞
τ

νe−νs
∫ τ

0
e−rtεdtds

+

∫ τ

0
νe−νse−rs

∫ ∞
s

e−r(t−s)0dtds+

∫ ∞
τ

νe−νse−rτ
∫ s

τ
e−r(t−τ)kεdtds

]
= E

[ ∫ τ

0
e−rtε

∫ τ

t
νe−νsdsdt+

∫ τ

0
e−rtε

∫ ∞
τ

νe−νsdsdt+

∫ ∞
τ

e−rtkε

∫ ∞
t

νe−νsdsdt
]

= E
[ ∫ τ

0
e−rtε

∫ ∞
t

νe−νsdsdt+

∫ ∞
τ

e−rtkε

∫ ∞
t

νe−νsdsdt
]

= E
[ ∫ τ

0
e−(r+ν)tεdt+

∫ ∞
τ

e−(r+ν)tkεdt
]

=

∫ ∞
0

δe−δs
∫ s

0
e−(r+ν)tεdtds+

∫ ∞
0

δe−δs
∫ ∞
s

e−(r+ν)tkεdtds

=

∫ ∞
0

e−(r+ν)tε

∫ ∞
t

δe−δsdsdt+

∫ ∞
0

e−(r+ν)tkε

∫ t

0
δe−δsdsdt

=

∫ ∞
0

e−(r+ν+δ)tεdt+

∫ ∞
0

e−(r+ν)tkε(1− e−δt)dt

=
1

r + ν + δ
ε+

1

r + ν
kε− 1

r + ν + δ
kε

=
r + ν + δk

(r + ν + δ)(r + ν)
ε.
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δ = 0 δ = 0.07 δ = 0.08
w \ ω 0% 5% 10% 20% 0% 5% 10% 20% 0% 5% 10% 20%

1 1.0922 1.2090 1.2966 1.4336 0.7261 0.7200 0.7232 0.7281 0.7077 0.7033 0.7060 0.7098
10 1.8159 1.8646 1.9104 1.9948 1.1919 1.1809 1.1808 1.1810 1.1691 1.1578 1.1575 1.1586
20 2.4041 2.4402 2.4750 2.5409 1.6679 1.6538 1.6538 1.6539 1.6406 1.6285 1.6285 1.6285
30 2.9396 2.9698 2.9991 3.0552 2.1348 2.1183 2.1185 2.1185 2.1040 2.0915 2.0918 2.0910
40 3.4507 3.4772 3.5031 3.5528 2.5966 2.5787 2.5789 2.5789 2.5636 2.5507 2.5510 2.5501
50 3.9476 3.9715 3.9949 4.0400 3.0552 3.0365 3.0368 3.0368 3.0210 3.0075 3.0078 3.0069

δ = 0.09 δ = 0.10
w \ ω 0% 5% 10% 20% 0% 5% 10% 20%

1 0.6862 0.6887 0.6909 0.6945 0.6748 0.6815 0.6784 0.6814
10 1.1396 1.1397 1.1397 1.1398 1.1223 1.1094 1.1233 1.1237
20 1.6071 1.6071 1.6072 1.6071 1.5894 1.5913 1.5890 1.5888
30 2.0680 2.0681 2.0681 2.0681 2.0498 2.0618 2.0489 2.0486
40 2.5260 2.5260 2.5260 2.5260 2.5069 2.5208 2.5059 2.5057
50 2.9820 2.9821 2.9821 2.9821 2.9620 2.9738 2.9613 2.9611

Table 1: Optimal consumption amount for various credit tightening scenarios and intensity val-
ues of the large, negative shock. Parameter values: r = 0.02 (risk-free rate), β = 0.04 (subjective
discount rate), µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2 (risk aversion),
ε = 1 (income), ν = 0.02 (mortality rate), and k = 0.2 (recovery rate).

Therefore, the lower bound L at time 0 in (60) derives from the multiplication of the present value

stated above by exogenously given ω ∈ [0, 1) that represents the extent to which credit is tightened.

6 Further Numerical Results

Effects of Credit Tightening. Credit tightening affects the optimal consumption (Table 1) and in-

vestment (Table 2) strategies. Tightening of credit by decreasing ω makes individuals reduce their

consumption amount; this response is especially significant for poor people, so their consumption

smoothing is more difficult than for wealthy people. The effects of the LNIS worsens the situation

for poor people. Given the significant downward jump in income in the aftermath of the LNIS, the

poor people who are credit tightened would have difficulty to secure extra savings to finance their

consumption needs. Hence, the consumption amount could fall further with the joint effects caused

by the credit tightening and the income shock. Those effects also reduce the risky investment amount;

this result is similar to the observation in the optimal consumption amount.

Hedging Demand. The amount of hedging demands differs between δ = 0 and δ > 0, and the differ-

ence increases as wealth w increases (Figure 1). This result implies that even sufficiently large wealth

does not appropriately absorb the negative effects of the LNIS, and thereby amplifies the negative ef-

fects of background risk on risky investment compared to the positive effects of risk diversification.9

9There are two opposing motives on risky investment: a precautionary savings motive that reduces investment and a
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δ = 0 δ = 0.07 δ = 0.08
w \ ω 0% 5% 10% 20% 0% 5% 10% 20% 0% 5% 10% 20%

1 4.0426 6.1272 7.6885 10.1335 5.2955 5.6019 5.8596 6.2650 5.3110 5.5845 5.8131 6.1575
10 14.2285 15.0976 15.9148 17.4194 12.3362 12.2797 12.8383 12.2981 12.2003 12.1282 12.1269 12.1598
20 21.6927 22.3378 22.9587 24.1342 17.7237 17.6876 17.6797 17.6806 17.5918 17.4760 17.4635 17.5022
30 28.2186 28.7577 29.2809 30.2818 23.0102 22.9245 22.9209 22.9207 22.8117 22.6988 22.6947 22.7050
40 34.3084 34.7818 35.2955 36.1304 28.2267 28.0941 28.0950 28.0951 27.9683 27.8593 27.8622 27.8523
50 40.1449 40.5720 40.9892 41.7945 33.3908 33.2257 33.2293 33.2298 33.0902 32.9808 32.9875 32.9675

δ = 0.09 δ = 0.10
w \ ω 0% 5% 10% 20% 0% 5% 10% 20%

1 5.3298 5.5553 5.7509 6.0713 5.3526 5.7242 5.7158 5.9980
10 12.0225 12.0263 12.0312 12.0399 11.8807 11.6225 11.9189 11.9382
20 17.3480 17.3468 17.3471 17.3471 17.1623 16.6403 17.2001 17.2086
30 22.5196 22.5197 22.5197 22.5194 22.3573 22.2349 22.3573 22.3544
40 27.6439 27.6450 27.6452 27.6454 27.4934 27.6851 27.4720 27.4644
50 32.7435 32.7451 32.7453 32.7456 32.5915 32.9486 32.5630 32.5543

Table 2: Optimal investment amount for various credit tightening scenarios and intensity values
of the large, negative shock. Parameter values: r = 0.02 (risk-free rate), β = 0.04 (subjective
discount rate), µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2 (risk aversion),
ε = 1 (income), ν = 0.02 (mortality rate), and k = 0.2 (recovery rate).

Figure 1: Hedging demand. Parameter values: r = 0.02 (risk-free rate), β = 0.04 (subjective
discount rate), µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2 (risk aversion),
ε = 1 (income), ν = 0.02 (mortality rate), and k = 0.2 (recovery rate).

Data Description. The data on wealth and income are from family net worth and before tax family

income by selected characteristics of families in the SCF for the period of 1995-2010. We sort the

risk diversification motive that rises investment.
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Age
Percentile of Net Worth 35-44 45-54 55-64 65-74 75-80

0-25 6.0 5.7 5.5 1.3 0.5
25-49.9 10.7 10.4 9.7 3.4 2.0
50-74.9 14.8 14.6 14.2 6.2 4.1
75-89.9 17.7 17.6 17.3 9.1 6.7
90-100 20.1 20.0 19.8 12.0 9.4

all 14.8 14.6 14.2 4.1 4.1

Table 3: The optimal proportion of total wealth invested in stocks.Parameter values: r = 0.02
(risk-free rate), β = 0.04 (subjective discount rate), µ = 0.06 (expected stock return), σ = 0.20
(stock volatility), γ = 2 (risk aversion), ε = 1 (income), and k = 0.2 (recovery rate). The values
of mortality rate, ν, are adjusted following age of head given in the SCF, assuming that people die
on average at the age of 80. An initial endowment of financial wealth, w, and a constant stream of
labor income per annum, ε = ξI , are calibrated via the normalized cash-on-hand, i.e., the net worth
normalized by income from the SCF for the period of 1995-2010. Note that the data period is chosen
for including the 2007-2009 Great Recession in the U.S., when many people have experienced the
unprecedented largest reductions in their consumption and unemployment.

family net worth and before tax family income into age groups and percentile of net worth, and use

them to compute the normalized cash-on-hand, which is the ratio of net worth to income. We find

from the data that the family net worth (before tax family income) by age groups shows a hump-

shaped profile; until age of 55-64 (45-54) the net worth (the family income) increases with age, but

subsequently falls with age on average. The net worth and the family income increase with an increase

in percentile of net worth.

Calibration. To obtain empirically plausible implications on investment, we carefully choose the

parameter values for mortality rate and aggregate earnings by using the Survey of Consumer Finances

(SCF) data. We adjust the values of mortality rate, ν, according to age of head given in the SCF. We

assume that people die on average at the age of 80. For the age group of 35−44, for instance, we vary

ν from 0.0222 to 0.0278 at intervals of 0.0014. In this case, we have five values of ν. When matching

up the stock investment with the SCF data, we take the median proportion of total wealth invested

in stocks from age 35 through 44 (i.e., ν ∈ [0.0222, 0.0278]) as the optimal investment proportion.

When computing the optimal proportion of total wealth invested in stocks, we calibrate an initial

endowment of financial wealth, w, and a constant stream of labor income per annum, ε = ξI , through

the normalized cash-on-hand, i.e., the net worth normalized by income from the SCF.
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Portfolio Share. The LNIS reduces the optimal portion of total wealth that should be invested in

stocks (Table 3). The optimal investment strategy reported in the table differs from the wealth- and

age- independent constant Merton (1969, 1971) investment rule. Our optimal investment strategy

suggests that as people get older, their risky investment should be geared toward relatively safe assets;

this advice is consistent with the rules of thumb proposed by financial advisers. The optimal risky

portion itself is significantly ≤50%, as would be optimal in the Merton investment model. Our model

generates empirically plausible values of 0 to 20% for optimal stock investment.

Interestingly, we show that people’s risky investment ratio rises as their wealth increases, and

this result is consistent with Wachter and Yogo (2010). The decision to invest in stocks is affected

by two counteracting forces: a precautionary savings motive that decreases stock investment, and

a diversification motive that increases stock investment. The presence of the LNIS itself increases

undiversifiable background risk such as income risk, so precaution makes people conservative when

taking on risk in the stock market. Accordingly, precautionary saving occurs. When saving occurs,

the resources available for future investment are increased. Since the prices of risky investments are

adjusted to increase their expected returns, the expected decline in labor income due to the LNIS can

be partially offset. For risk diversification purposes, the share of total resources invested in the stock

market would, thus, increase with an increase in wealth.

Human Capital Value. Neglecting the LNIS can be costly to individuals who aim to attain their

consumption smoothing in terms of human capital aspect. We measure the value of human capital

as the marginal rate of substitution between income and financial wealth. That is, the human capital

value can be regarded as the individual’s subjective marginal value of her income.

Similar to the relation of (22), the actuarial fair value (AFV) of future income discounted at the

risk-free interest rate is10

AFV =
r + ν + δk

(r + ν + δ)(r + ν)
ε,

which is the present value of income. We use AFV as a benchmark against the effects of the LNIS on

the human capital value.

Definition 6.1. Let V (w, I; δ) be the value function given in (3) with the Poisson intensity δ. Then, the

value of human capital is defined as the marginal rate of substitution between income and financial
10In the actuarial literature, it is common to use the risk-free interest rate for actuarial calculation purposes.

44



Figure 2: Human capital value. Parameter values: r = 0.02 (risk-free rate), β = 0.04 (subjective
discount rate), µ = 0.06 (expected stock return), σ = 0.20 (stock volatility), γ = 2 (risk aversion),
ε = 1 (income), ν = 0.02 (mortality rate), and k = 0.2 (recovery rate). Note: The LNIS dramatically
reduces the value of human capital, regardless of levels of financial wealth. The human capital value
has an increasing and concave trend and the concavity strengthens as wealth decreases.

wealth, i.e.,
∂V (w, I; δ)

∂I

/∂V (w, I; δ)

∂w
.

The LNIS dramatically reduces the value of human capital, regardless of levels of financial wealth

(Figure 2). As expected, the level of human capital decreases as the chance of income shock (δ)

increases. The wage would thus decrease with the LNIS.

Interestingly, we could see an increasing and concave trend of the human capital value with re-

spect to wealth, and the concavity strengthens as wealth decreases. This trend would be especially

problematic for the poor people because they have very little residual income to save with the LNIS

and therefore may be ill-prepared for the situations in its aftermath.

The increasing and concave human capital value in wealth would have relevance to the wealth

concentration among the wealthy. While the rich theoretically do not save (Bewley, 1977; Campbell,

1987), they empirically have strong incentives to save and show the wealth concentration (Kaplan and
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Figure 3: The sensitivity of human capital value with respect to changes of risk aversion. Param-
eter values: r = 0.02 (risk-free rate), β = 0.04 (subjective discount rate), µ = 0.06 (expected stock
return), σ = 0.20 (stock volatility), γ = 2 (risk aversion), ε = 1 (income), ν = 0.02 (mortality rate),
and k = 0.2 (recovery rate). Note: An increase of risk aversion increases the human capital value in
the absence of the LNIS (top figure, δ = 0). In contrast, in the presence of the LNIS, an increase of
risk aversion decreases the human capital value (bottom figure, δ = 0.07).
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Rauh, 2013).11 In terms of the human capital aspect, the top wealth-rich are high-income households

and thus, their relatively high exposure of labor income to the LNIS is a likely contributor to their

high precautionary savings rates for the preparation after the LNIS, which is consistent with the recent

observations in the exposure of labor income to aggregate fluctuations (Parker and Vissing-Jrgensen,

2009; Guvenen et al., 2017).

The effects of the LNIS outweigh the effects of risk aversion (Figure 3). An increase of risk

aversion increases the human capital value in the absence of the LNIS. Intuitively, as an individual’s

risk aversion increases, she becomes increasingly likely to increase her investment in (seemingly)

riskless human capital than in the risky assets (increasing her taking on market risk). In contrast, in

the presence of the LNIS, an increase of risk aversion decreases the human capital value, so it no

longer serves as a substitute of riskless assets, rather it resembles like a defaultable risky asset. Of

course, the concern about the LNIS increases as risk aversion increases.

Utility Costs. We can measure utility costs of ignoring the LNIS as the wedge of value functions with

and without the income shock. The costs can be thought of as the certainty equivalent wealth that is

the greatest wealth the individual is willing to pay to reduce the probability or effect of the risk of

catastrophic reduction in individual earnings.

Definition 6.2. Let ∆(w) be the certainty equivalent wealth at initial wealth w, satisfying

V (w −∆(w), I; δ = 0) = V (w, I; δ > 0),

where V (w, I; δ) is the value function given in (3) with the Poisson intensity δ.

Ignoring the LNIS can result in substantial utility costs in the form of certainty equivalent wealth

(Figure 4). Obviously, the maximum payment that the individual should be willing to accept to elimi-

nate the possibility of the catastrophic income shock (or reduce its negative effects) increases with the

probability that the shock will occur.

11The wealthiest 400 Americans on the Forbes Magazine list own 1.5% of the total wealth in the US (Kaplan and Rauh,
2013).
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Figure 4: Utility costs of ignoring a large, negative income shock. Parameter Values: µ − r = 4%, r = 2%, σ = 20%, γ = 2,

β = 4%, k = 20%, L = 0, ε = ξI = 1, and ν = 0.02.
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