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Abstract

This paper develops nonparametric panel quantile regression models with sample selection.

The class of models allows the unobserved heterogeneity to be correlated with time-varying re-

gressors in a time-invariant manner. I adopt the correlated random e�ects approach proposed

by Mundlak (1978) and Chamberlain (1980), and the control function approach to correct the

sample selection bias. The class of models is general and �exible enough to incorporate many

empirical issues, such as endogeneity of regressors and censoring. Identi�cation of the model

requires that T ≥ 3, where T is the number of time periods, and that there is an excluded vari-

able that a�ects the selection probability. I also suggest semiparametric models for practical

implementation of estimation. Based on the identi�cation result, this paper proposes sieve two-

step estimation to estimate the model parameters and establishes the asymptotic theory for the

sieve two-step estimators, including consistency, convergence rates, and asymptotic normality

of functionals. A small Monte-Carlo simulation study with a semiparametric model con�rms

that the estimators perform well in �nite samples.

Keywords: Sample selection, panel data, quantile regression, nonseparable models, correlated

random e�ects, control function approach, nonparametric identi�cation, sieve two-step estima-

tion.
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1 Introduction

Sample selection is prevalent in economics. Since the seminal work of Gronau (1974) and Heckman

(1979), sample selection has considerably received a lot of attention from both theoretical and

applied econometrics due to its relevance and importance in many empirical contexts (e.g. Ahn

and Powell (1993), Donald (1995), Das et al. (2003), and Newey (2009)). At the same time, quantile

regression models have become a popular alternative to conditional mean models since the seminal

work of Koenker and Bassett (1978) as they allow to investigate the distribution of the outcome

variable and recover heterogeneous e�ects. Although many papers have studied sample selection and

quantile regression, the literature on the intersection of them is relatively scarce as most papers have

considered sample selection issues for conditional mean regression models. In particular, sample

selection issues in quantile regression models for panel data have not been well-addressed, whereas

the availability of panel data has become larger.

In this paper, I develop a nonseparable panel quantile model with sample selection and study

identi�cation and estimation of the model. Speci�cally, I consider the following panel quantile

model:
Y ∗t =m(Xt, Ut),

Yt =DtY
∗
t ,

(1)

where t indicates time, Y ∗t is an outcome variable of interest, Xt is a vector of time-varying covari-

ates, Ut is an unobserved heterogeneity, and Dt is a dummy variable indicating if it is selected. The

structural function m is assumed to be strictly increasing with respect to its second argument for

almost all Xt.

One of distinct features of the model in (1) is nonseparability between Xt and Ut. Many papers

in the literature on sample selection develop models and estimators under di�erent sets of assump-

tions, but they share some common feature that they focus on additively separable models. For

quantile regression in the presence of sample selection, Buchinsky (1998) considered an additively

separable quantile regression model for cross-sectional data. The additive separability facilitates

identi�cation and estimation of model parameters, but it considerably restricts the type of het-

erogeneity that can be allowed in a model. Nonseparability is important in quantile regression as

(i) it can allow for various types of heterogeneous e�ects and (ii) it is less vulnerable to model

misspeci�cation.1 Nonseparable quantile regression models with sample selection have been stud-

ied quite recently by Arellano and Bonhomme (2017) and Chernozhukov et al. (2018). While their

models are semiparametric and mainly for cross-sectional data, this paper focuses on nonparametric

quantile regression models for panel data. To my best knowledge, this paper is the �rst to consider

nonseparable panel quantile regression models in the presence of sample selection.

Panel data models can incorporate time-invariant heterogeneity that may be correlated with

time-varying regressors. When time-invariant heterogeneity is correlated with time-varying regres-

sors, it is called time-invariant endogeneity.2 One can resolve time-invariant endogeneity by taking

1 Huber and Melly (2015) point out that the additive separability may lead to inconsistency of the estimator in
the linear quantile regression models and propose a test for the structure.

2In the standard linear panel data models, the unobserved heterogeneity Ut is decomposed into two parts: one is
a time-invariant error term, and the other is an time-varying idiosyncratic error. In this paper, I do not explicitly
distinguish time-invariant components in Ut, but the dependence between time-varying regressors and time-invariant
components in the error term is allowed in this paper. The dependence is the main motivation of the �xed e�ects
model where Xt and time-invariant components are correlated in an arbitrary manner.
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some di�erencing-based approach when the model is linear or additively separable, but it is much

harder to deal with time-invariant endogeneity for nonlinear or nonseparable models. To overcome

this di�culty, I consider a correlated random e�ects (CRE) approach which was originally pioneered

by Mundlak (1978) and Chamberlain (1980). The main idea of the CRE approach is to assume that

the distribution of the unobserved heterogeneity depends on the whole history of the time-varying

covariates. In doing so, one can allow for time-invariant endogeneity as well as improve tractability

of the model.

This paper provides conditions under which the model parameters are nonparametrically identi-

�ed. The main idea of the identi�cation strategy in this paper is to utilize variation in some excluded

variables. Note that the model in this paper contains two types of endogeneity - time-invarant endo-

geneity and endogenous selection. Therefore, it is expected to have at least two excluded variables

for identi�cation. I show that one can use the rich information in panel data to deal with the time-

invariant endogeneity, and this feature of the identi�cation strategy requires that the number of

time periods be greater than or equal to 3 and covariates have enough variation. On the other hand,

I make use of a control function approach to correct for the selection bias, and this requires for an

instrumental variable that varies the selection probability but does not directly a�ect the outcome.

An exclusion restriction associated with the instrument, together with a conditional independence

assumption, allows to resolve the endogenous selection, and this is a generalization of the approach

of Heckman (1979). Under these standard identi�cation conditions, the structural function of the

outcome variable, which is denoted by m(·, ·), and the conditional distribution of the unobserved

error term for the selected are nonparametrically identi�ed. I also consider several extensions of the

model to address some important empirical issues such as time-varying endogeneity and censoring.

It is shown that the model in this paper can easily be extended to incorporate those issues, and

therefore the class of models in this paper is very general and �exible.

While the fully nonparametric models are robust to model misspeci�cation, they may not be

tractable in estimation. In this regard, I propose two classes of semiparametric models: (i) semi-

parametric index models and (ii) additively separable models. These classes of models are very

useful in a sense that one can reduce the dimension of some nonparametric object. Then, I provide

conditions under which the parameters of the models are identi�ed.

The identi�cation result suggests a nonlinear optimization problem for estimation that the

selection probability enters as a control function. Based on the identi�cation result, I propose

two-step nonparametric sieve estimation. The method of sieves provides a very �exible and general

way to estimate semi-nonparametric or nonparametric models. The sieve method is also easy to

implement in practice, and therefore it has been widely used. This paper provides the asymptotic

theory for two-step nonparametric sieve estimators, including consistency, convergence rates, and

asymptotic normality of smooth functionals.

Unlike the cross-sectional or time-series data, there are multiple types of data in terms of the

number of individuals and the number of time periods, which are denoted by n and T , respectively,

for panel data models. The relative magnitude between these two quantities de�nes the data

structure, and this feature of the data structure is very important for panel data models as they

are related to estimation of models. In this paper, I consider a �xed T -panel data model, and the

�xed-T framework renders the model �t into data where T is much smaller than n. The large-T

framework is frequently used in the literature on nonlinear �xed e�ects panel models to handle
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the incidental parameter problem (Neyman and Scott (1948)).3 For panel quantile models with

�xed e�ects, Koenker (2004), Canay (2011), Kato et al. (2012), and Besstremyannaya and Golovan

(2019) make use of the large-T framework.4 To adopt the large-T framework, however, the number

of time periods in data should be larger than the number of individuals, and this requirement may

not be appropriate to or suitable for some datasets, especially microdatasets or short panel datasets.

In addition, not only the asymptotic properties of estimators, but �nite-sample performances also

depend on the magnitudes of n and T .5 In this regard, estimators based on the large-T framework

may be sensitive to the model speci�cation and nature of data. On the other hand, I consider the

�xed-T framework while incorporating time-invariant endogeneity, and this allows for a much wider

applicability of the model in this paper.

I conduct a Monte-Carlo simulation study with a semiparametric model to examine the per-

formance of estimators in �nite samples. The results show that the semiparametric estimators

have negligible biases and small standard deviations, which suggest that they perform well in �nite

samples.

Literature This paper is related to the literature on the panel data models with sample selection

(e.g. Wooldridge (1995); Kyriazidou (1997); Semykina and Wooldridge (2010, 2013)).6 For panel

data in the presence of sample selection, Wooldridge (1995) and Kyriazidou (1997) propose estima-

tors for panel data models where the outcome variable equation is linear in parameters. Wooldridge

(1995) adopts the Mundlak-Chamberlain device (Mundlak (1978) and Chamberlain (1980)) to han-

dle the time-invariant unobserved heterogeneity and uses the control function approach in the same

spirit of Heckman (1979). The idea of Wooldridge (1995) is extended by Semykina and Wooldridge

(2010) and Semykina and Wooldridge (2013) to incorporate time-varying endogeneity and dynamic

panel data models, respectively. These papers, however, hugely rely on (semi-) parametric as-

sumptions as well as the additive separability of the error term. Kyriazidou (1997) considers the

conditional exchangeability assumption and the additively separable structure of the model. How-

ever, not only the additively separable error structure, but the conditional exchangeability condition

may also fail to hold in some cases.7 This paper di�ers from the aforementioned papers in that it

considers nonseparable quantile regression models for panel data, whereas Wooldridge (1995) and

Semykina and Wooldridge (2010) consider linear conditional mean models.

This paper is also related to the studies in the literature on (nonparametric) identi�cation and

estimation with endogeneity. This literature is too large to list all related papers, and one may refer

to Matzkin (2007) for a comprehensive review. Focusing on sample selection, this paper is closely

related to, for example, Buchinsky (1998), Das et al. (2003), and Newey (2009). The model varies

across them, but they make use of the control function approach to correct for the sample selection

3Fernández-Val and Weidner (2018) provide a comprehensive review on the literature on large-T panel data
models.

4Canay (2011) originally imposed a condition that n/T s → 0 for some s > 1 to establish consistency and asymp-
totic normality. Under this condition, one may use short panel data where n grows faster than T . Besstremyannaya
and Golovan (2019), however, point out that the rate condition is not su�cient for existence of a limiting distribution
or for zero mean of a limiting distribution. This result in Besstremyannaya and Golovan (2019) suggests that the
estimator of Canay (2011) does not �t into short panel data.

5The simulation results in Kato et al. (2012) show that the root mean squared error is quite large when T is small
in the location-scale shift model.

6One can refer to Dustmann and Rochina-Barrachina (2007) for comparison of some estimators including
Wooldridge (1995) and Kyriazidou (1997).

7A related discussion can be found in Altonji and Matzkin (2005).
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bias. This paper shares some common with them as the identi�cation strategy in this paper also

utilizes a control function, but di�ers from them as the model in this paper is nonseparable and for

panel data. As mentioned earlier, Arellano and Bonhomme (2017) and Chernozhukov et al. (2018)

consider nonseparable quantile regression models with sample selection, but their models are more

�tting into cross-sectional data. Furthermore, they consider semiparametric model speci�cations for

estimation. In contrast, this paper considers a class of nonparametric models with sample selection

for panel data, and the identi�cation or estimation strategy developed in this paper does not impose

such distributional assumptions. As a result, this paper extends Arellano and Bonhomme (2017)

and Chernozhukov et al. (2018) to nonparametric quantile regression models for panel data.

The literature on (nonlinear) panel data models is another area that this paper is closely related

to. One of the features of the model in this paper is that I adopt the CRE approach, and this

approach is also widely used in the literature to address time-invariant endogeneity. Abrevaya and

Dahl (2008) make use of the CRE approach for linear panel quantile regression, but this paper

di�ers from them as it considers nonparametric nonseparable models. Bester and Hansen (2009)

study identi�cation of the marginal e�ects in general panel data models with the CRE approach

with a focus on identi�cation of marginal e�ects, and therefore this paper is di�erent from theirs in

terms of the parameter of interest and identi�cation/estimation strategy. Arellano and Bonhomme

(2016) recently consider CRE speci�cations and develop a class of tractable nonlinear panel models,

but their identi�cation strategy relies on a high-level condition called injectivity, which is related

to the completeness condition. On the other hand, this paper adopts a control function approach

for identi�cation. For general nonlinear panel data models, Altonji and Matzkin (2005) study

identi�cation and estimation of local average responses (LARs) and structural functions under

an assumption called exchangeability. While the exchangeability condition generally implies some

shape restrictions on the distribution of the unobserved error term, I circumvent to restrict the

shape of the distribution of the error term by taking the CRE approach. Hoderlein and White

(2012), Chernozhukov et al. (2013), and Chernozhukov et al. (2015) study identi�cation of average

structural functions and quantile structural functions, but this paper considers identi�cation and

estimation of the structural functions. Evdokimov (2010) studies identi�cation and estimation

of a class of panel data models, but his identi�cation is based on deconvolution. Therefore, the

identi�cation strategy in this paper is completely di�erent from his. More importantly, none of

them address sample selection issues which are the main focus of this paper.

Outline The rest of this paper is organized as follows. In section 2, I introduce the model and

consider some extensions of the model. Section 3 considers identi�cation of the model, and section

4 presents several semiparametric models. Section 5 proposes two-step sieve estimation based on

the identi�cation result. Section 6 establishes the asymptotic theory for the nonparametric sieve

two-step estimators. Section 8 concludes and discusses future work. All mathematical proofs for

the asymptotic theory are presented in the appendix.

Notation I introduce some notation. For a vector A, A
′
denotes the transpose of A. For a generic

random variable At, the support of At is denoted by Supp(At). Let A ≡ (A1, A2, ..., AT )
′
be the

random vector consisting of At's from time period 1 to T . and letA−t ≡ (A1, ..., At−1, At+1, ..., AT )
′

be the random vector consisting of At's from time period 1 to T but not t. I use notation A−t,s to
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denote the random vector consisting of At's from time period 1 to T but not t and s. Realizations

of A and A are denoted by a and a, respectively.8 For two random variables A and B and for any

u ∈ (0, 1), QA|B(u|b) indicates the u-th conditional quantile of A on B = b, and FA|B(a|b) is the

conditional distribution function of A given B = b. E[·] is the expectation operator.

2 The Model

I consider the following general non-separable panel data model:

Y ∗t = m(Xt, Ut), (2)

where Y ∗t ∈ R is an outcome variable of interest, Xt ∈ Rdx is a vector of time-varying covariates,

and Ut ∈ R is an unobserved error term. I assume that m(x, ·) is strictly increasing for almost all

x ∈ Supp(Xt) for all t = 1, 2, ..., T and that {Ut : t = 1, 2, ..., T} is stationary. Since the quantile

operator is preserved under a monotone transformation, it is straightforward to see that for any

u ∈ U ⊆ (0, 1),

QY ∗t |X(u|X) = m(Xt, QUt|X(u|X);u). (3)

Note that the structural function m is allowed to vary across quantile levels.

It is common to assume that the unobserved error term Ut can be decomposed into time-

invariant individual heterogeneity and time-varying idiosyncratic terms and that the time-invariant

individual heterogeneity may be correlated with Xt. For the standard linear panel data model,

such time-invariant heterogeneity can be eliminated by taking di�erence. For nonlinear models,

however, the approach based on di�erencing does not work in general.

To overcome the di�culty in identi�cation and estimation of the model with short panels, I

adopt the CRE approach. Speci�cally, I assume that the conditional quantile function of Ut given

X is an unknown function of X. This is motivated by the CRE approach which was pioneered

by Mundlak and Chamberlain (Mundlak (1978); Chamberlain (1980, 1982)). The CRE approach

provides an e�ective way to deal with the unobserved heterogeneity in nonlinear panel models and

it has been widely considered in the literature. Abrevaya and Dahl (2008) propose a linear panel

quantile model, and Bester and Hansen (2009) investigate identi�cation of marginal e�ects in a class

of nonseparable panel models.9 Both of them utilize some CRE approach to handle the unobserved

individual e�ects with short panels. Arellano and Bonhomme (2016) recently develop a tractable

estimation strategy for nonseparable panel data models based on the CRE approach.

The class of models in this paper is also related to the correlated random coe�cient models in

the literature (e.g. Arellano and Bonhomme (2012); Graham and Powell (2012); Laage (2019)).

For quantile regression, Graham et al. (2018) consider linear panel quantile models with random

coe�cients, building upon Graham and Powell (2012). However, the model of this paper di�ers from

those in that I consider a nonparametric structural function m with a scalar error term, whereas

they consider a parametric structural function for m with a multi-dimensional error structure.

8Note that, however, I use u for the quantile level index throughout the paper, and thus u is not a realization of
the random variable Ut in (1).

9The class of models considered in this paper encompasses the linear panel quantile regression models in Abrevaya
and Dahl (2008) as a special case, and thus it can be viewed as a nonparametric generalization of the linear panel
quantile models with correlated random e�ects.
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Below I present some illustrative examples that �t into the class of CRE models in (3).

Example 2.1 (Random Coe�cient Model). Suppose that Supp(Xt) = R and that the data gener-

ating process is as follows:

Y ∗t = exp(Xt)Ut.

It is obvious that QY ∗t |X(u|X) = exp(Xt)·QUt|X(u|X), and hence the structural functionm(x, γ;u) =

x · γ for all u ∈ U ⊆ (0, 1).

Example 2.2 (Linear Panel Quantile Model). Abrevaya and Dahl (2008) propose a class of linear

panel quantile models as follows:

Y ∗t = X
′

tβ(u) + α(u) + εt(u),

α(u) = X
′
δ(u) + c(u),

where α(u) is an unobserved time-invariant heterogeneity, c(u) is an unobserved error term, and

Qc(u)+εt(u)(u|X) = 0. It is straightforward to see that QY ∗t |X(u|X) = X
′

tβ(u) + X
′
δ(u) under the

restriction on the model. This class of models is a special case of (3). Speci�cally, one can set

Ut = α + εt and m(Xt, γ;u) = X
′

tβ(u) + γ. The conditional quantile of Ut given X is equal to

X
′
δ(u).

Example 2.3 (Panel Quantile Model). Arellano and Bonhomme (2016) consider the following

model as an example:

Y ∗t = X
′

tβ(εt) + αδ(εt),

α = X
′
µ(V ),

where for all t = 1, 2, ..., T , εt and V are uniformly distributed conditional on X and α is an

unobserved time-invariant heterogeneity. As pointed out in Arellano and Bonhomme (2016), this

model is a generalization of the standard linear quantile models of Koenker and Bassett (1978) to

panel data. Assuming that the map u 7→ X
′

tβ(u) + X
′

iµ(u) · δ(u) is strictly increasing and that εt

and V are comonotonic, it can be shown that QY ∗t |X(u|X) = X
′

tβ(u) + X
′
θ(u)δ(u).10 Letting Ut ≡

X
′

t{β(εt)− β(u)}+ X
′
µ(V ) · δ(εt), m(x, γ;u) = x

′
β(u) + γ and QUt|X(u) = X

′
µ(u)δ(u) ≡ X

′
θ(u).

In examples 2.2 and 2.3, although there are two unobserved error terms, they can be collapsed

into a scalar error term. While additivity plays the role of putting them together in example 2.2,

comonotonicity of εt and V enables to collapse the error terms into a scalar error in example 2.3

where the unobserved error terms are nonlinearly enter. Therefore, the class of generalized CRE

models in (3) is quite �exible and general.

Based on (2) and (3), I develop a panel quantile model with sample selection. Let Pr(Dt =

1|Xt = x, Zt = z) ≡ ht(x, z) be the propensity score (or selection probability), where Zt ∈ Rdz

is a vector of excluded variables and Z = (Z1, Z2, ..., ZT )
′
. The selection probability conditioning

10For the de�nition of comonotonicity, one may refer to Koenker (2005, p.60).
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on Xt and Zt is denoted by Pt (i.e. Pt ≡ ht(Xt, Zt)). The random vector W ≡ (Y,X,Z,D)

is observed from the data. In the presence of sample selection, it is well-known that using only

selected observations usually yields a sample selection bias, and thus it is necessary to correct such

a bias. In this paper, I adopt the control function approach to correct the sample selection bias.

The control function approach to sample selection was originally proposed by Heckman (1979), and

it has been adapted to various models. Speci�cally, I impose the following assumption:

Assumption 1. Let u ∈ U be given. For all t ∈ {1, 2, ., T},

QUt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = r(X, ht(Xt, Zt);u), (4)

where r is an unknown measurable function.

Note that r is allowed to take a di�erent form across the quantile level u, and thus one can infer

the conditional distribution function of Ut from the conditional quantile function of Ut, r(X, Pt;u).

As a consequence, the way to correct the sample selection bias in this paper is to implicitly mod-

ify the conditional distribution function of the unobserved error term, and this is similar to that

of Buchinsky (1998). However, it is di�erent from the way that is considered in Arellano and

Bonhomme (2017) or Chernozhukov et al. (2018) in that I do not impose any parametric or semi-

parametric structure on the conditional distribution of Ut. In sum, I consider the following model

in this paper:

Y ∗t = m(Xt, Ut),

Yt = DtY
∗
t ,

QUt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = r(X, ht(Xt, Zt);u).

(5)

From (5), it is straightforward to see that

QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = m(Xt, QUt|X,Zt,Dt=1(u|X, Zt, Dt = 1))

= m(Xt, r(X, ht(Xt, Zt);u);u). (6)

Assumption 1 shares a common feature with the models of Buchinsky (1998), Das et al. (2003)

and Newey (2009) in that the selection bias is adjusted by including a control function, and this can

be considered as a generalization of the control function approach in Heckman (1979). This paper,

however, di�ers from Buchinsky (1998) in that neither any parametric restriction nor additivity of

the error term is imposed on model (5).11 Therefore, this paper extends the additive semiparametric

quantile models for cross-sectional data in Buchinsky (1998) to nonseparable quantile regression

models for panel data. Das et al. (2003) and Newey (2009) study identi�cation and estimation of

nonparametric sample selection models with an additive error term. This paper di�ers from them

in that model (5) does not impose such an additive separability and thus it allows much various

types of heterogeneity. In addition, this paper considers quantile regression, whereas they focus on

conditional mean functions.

The structural functions m and r are related to many objects of interest. I �rst de�ne the local

structural function (LQSF) in time t as follows:

11Buchinsky (1998) considers a class of models where m is characterized by some �nite-dimensional parameter.

Speci�cally, his model is written as m(X, ε) = X
′
β + ε.
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De�nition 2.1 (Local Quantile Structural Function (LQSF)). The local u-th quantile structural

function (LQSF) at (Xt, r(X, Pt)) = (x, γ) in time t is

qlocalt (u, x, γ) ≡ QY ∗t |Xt,r(X,Pt)(u|Xt = x, r(X, Pt) = γ).

Note that the de�nition of the LQSF is similar to, but slightly di�erent from that of Fernández-

Val et al. (2019). It is straightforward to see that the structural function m(x, γ;u) in this paper

corresponds to the LQSF. Related to the LQSF, one can consider the quantile structural function

(QSF) which was introduced by Imbens and Newey (2009). The following de�nition of the QSF is

a generalization of the QSF in Imbens and Newey (2009) to that for panel data:

De�nition 2.2 (Quantile Structural Function (QSF)). The u-th quantile structural function (QSF)

in time t evaluated at Xt = x is

qt(u, x) ≡ E[qlocalt (u, x, r(X, Pt))].

The LQSF and QSF are parameters of interest in many empirical analyses and closely related to

the (local) quantile treatment e�ect of changing Xt. To make it concrete, I provide the de�nitions

of the local and the average quantile treatment e�ects of Xt below:

De�nition 2.3 (Local Quantile Treatment E�ect (LQTE)). The u-th local quantile treatment e�ect

in time t of changing Xt from x0 to x1 at r(X, Pt) = γ is

LQTEt(u, x0, x1, γ) ≡ qlocalt (u, x1, γ)− qlocalt (u, x0, γ)

De�nition 2.4 (Quantile Treatment E�ect (QTE)). The u-th average conditional quantile e�ect

in time t of changing Xt from x0 to x1 is

QTEt(u, x0, x1) ≡
∫
qlocalt (u, x1, r(x, h(x, z)))− qlocalt (u, x0, r(x, h(x, z)))dFX,Zt(x, z)

= qt(u, x1)− qt(u, x0).

If Xt is continuous, then the LQTE and QTE can be interpreted as the local and average

marginal e�ects, respectively. Many objects that are similar to the LQTE or the QTE are considered

in the literature on nonseparable panel data models (e.g. Altonji and Matzkin (2005); Bester and

Hansen (2009); Imbens and Newey (2009); Hoderlein and White (2012); Chernozhukov et al. (2013,

2015)). It is clear to see that the LQTE and QTE are functionals of the structural functions m and

r from the de�nitions.

3 Nonparametric Identi�cation

3.1 Main Results

In this section, I consider identi�cation of the model parameters. The identi�cation strategy is

based on the model implication in (6), and the main objects of interest in (5) are m(·, ·;u) and

r(·, ·;u). Note that the conditional selection probability at time t, ht(x, z), is identi�ed from the
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data. As shown earlier, one can answer many questions that are empirically relevant, such as the

marginal e�ect of Xt on the conditional quantile of Y ∗t , through identi�cation of these objects. To

achieve identi�cation of m(·, ·;u) and r(·, ·;u), I impose the following assumption:

Assumption 2. Let T ≥ 3. For any u ∈ U ⊆ (0, 1), the following conditions hold:

(i) For each t = 1, 2, ..., T , there exists a known value x̄(u) ∈ Supp(Xt) ⊆ Rdx such that

m(x̄(u), γ;u) = γ ;

(ii) Let x ∈ Supp(Xt) and γ ∈ Supp(r(X, h(Xt, Zt))) be given. For any t, s ∈ {1, 2, ..., T} with
t 6= s, there exists a non-empty subset X̃−t,s(x, x̄(u)) of Supp(X−t,s|(Xt, Xs) = (x, x̄(u))) and

such that, for any x−t,s ∈ X̃−t,s(x, x̄(u)), r(x0, p) = γ for some p ∈ Supp(h(x, Zt)|X = x0)

and Pr(X−t,s ∈ X̃−t,s(x, x̄(u))) > 0, where x0 = (Xt = x,Xs = x̄(u)),X−t,s = x−t,s);

(iii) For any t = 1, 2, ..., T and for any x ∈ Supp(Xt) and z ∈ Supp(Zt) ⊆ Rdz , there exists a

non-empty set Zs(z) ⊆ Supp(Zs) for some s ∈ {1, 2, ..., T} such that, for any z̃ ∈ Zs(z),
ht(x, z) = hs(x̄(u), z̃) and Pr(Zs ∈ Zs(z)) > 0.

Condition (i) is a normalization. Theorem 3.1 in Matzkin (2007) implies that it is necessary to

impose a normalization to identify function m(·, ·;u). Note that the value x̄(u) may di�er across

the quantile indices, but I assume that x̄(u) remains the same across u ∈ U for simplicity.

Condition (ii) is implied by su�cient variation in X−t,s. This variable can be viewed as an

excluded variable that provides a source of exogenous variation to r while �xing Xt and Xs for

some t and s. To illustrate how this condition is used for identi�cation, consider the linear panel

quantile model in Example 2.2 with assuming that T = 3 and dx = 1. In addition, I ignore the

sample selection issues, and therefore Y ∗t is observed for everyone, to elucidate the role of condition

(ii) in identi�cation analysis. Note that x̄(u) = 0, m(x, γ) = xβ(u) + γ, and r(x) = x
′
δ(u).

Let x ∈ Supp(X1) be given. Then, one can show that QY ∗1 |X(u|X0) = xβ(u) + r(X0) and that

QY ∗2 |X(u|X0) = r(X0) = xδ1(u)+X3δ3(u), where δ(u) = (δ1(u), δ2(u), δ3(u))
′
and X0 = (x, 0, X3)

′
.

Condition (ii) ensures that one can �nd a set of values of X3 such that for a given γ ∈ Supp(r(X)),

xδ1(u)+X3δ3(u) = γ. Therefore, a necessary condition in this illustration that guarantees condition

(ii) in Assumption 2 is that δ3(u) 6= 0. If X3 has enough variation conditioning on X1 = x

and X2 = 0 and δ3(u) 6= 0, then condition (ii) for this example is satis�ed. This is similar to

Assumption 2 in Imbens and Newey (2009) that a large support condition for the excluded variable

is satis�ed. Since the model in this paper allows for time-invariant endogeneity and it is captured

by the CRE speci�cation, Xt can be considered endogenous (in the time-invariant manner), and

the covariates in other time periods are used as an excluded variable that helps resolve the time-

invariant endogeneity. It is worth pointing out that more than three time periods gives additional

exogenous variation that can be used to identify the structural functions and therefore having more

than 3 time periods provide additional identi�cation power.

A related assumption to condition (ii) is exchangeability considered by Altonji and Matzkin

(2005). Exchangeability typically places some restriction on the admissible class of functions for r,

it may help weaken assumptions on variation in the excluded variable. Compared to the exchange-

ability assumption, condition (ii) is likely to require stronger conditions on the support of X−t,s,

but it does not impose any shape restrictions on the class of functions that r belongs to. More

importantly, exchangeability may not be plausible to be assumed with panel data where t indicates
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time. Exchangeability is related to symmetry of the e�ects of covariates on the distribution of

the unobserved error term, and thus the e�ect of a change in Xs is the same (or similar) to that

of a change in Xt for some t 6= s. In this regard, exchangeability may be consistent with some

variants of the form in Mundlak (1978) in a sense that the correlated random e�ects speci�cation

of Mundlak (1978) is the average of Xt's over time and therefore the e�ects of Xt and Xs with

t 6= s are symmetric. On the other hand, I do not impose such restrictions on the model so that

one can consider more �exible speci�cations for r. One can refer to Altonji and Matzkin (2005,

pp.1062-1066) for further discussion on the exchangeability condition and CRE approach.

Condition (iii) requires variation in the excluded variable Zt, which is an instrumental variable.

This condition also requires that the excluded variable Zt a�ect the selection probability, so one

can use the variation in Zt and Zs to match the selection probabilities in time periods t and s.

This condition is needed to deal with the endogenous selection. For illustration, suppose that

Dt = 1(Xtζ + Ztπ ≥ νt), where νt ∼ N(0, 1), (Xt, Zt) ⊥ νt and dx = dz = 1. Then, for

given x ∈ Supp(Xt), Pr(Dt = 1|Xt = x, Zt) = Φ(xζ + Ztπ) and Pr(Ds = 1|Xs = x̄(u), Zs) =

Φ(x̄(u)ζ + Zsπ), where Φ is the standard normal distribution function. In this case, condition (iii)

in Assumption 2 is satis�ed if π 6= 0 and variation in either Zt or Zs is large enough. The former

condition π 6= 0 corresponds to the standard relevance condition for instrumental variables, and

such relevance conditions are usually required for nonparametric identi�cation with endogeneity.

The latter condition which is about variation in Zt (or Zs) is similar to the large support condition

in Imbens and Newey (2009). Similar assumptions to condition (iii) can be found in, for example,

Altonji and Matzkin (2005) and Vytlacil and Yildiz (2007).

An informal description of the identi�cation strategy in this paper is as follows: Fixing Xt = x,

the information in time period s, together with the normalization, is used to derive an expression

for r at (X
′

t , X
′

s,X
′

−t,s)
′

= (x
′
, x̄(u)

′
,X
′

−t,s)
′
and hs(x̄(u), Zs). Then, one can utilize the variation

in X−t,s, Zt, and Zs to �nd values x0 and p such that r(x0, p) = γ ∈ Supp(r(X, h(Xt, Zt))).

Taking average over such values yields identi�cation of m(x, γ;u) over Supp(Xt, r(X, ht(Xt, Zt)))

for each t = 1, 2, ..., T . Then, one can identify r(x, p) for all (x, p) ∈ Supp(X, ht(Xt, Zt)) by taking

average of the inverse map of m conditional on X = x and ht(Xt, Zt) = p. The following theorem

demonstrates that Assumption 2 are su�cient for identi�cation of m(·, ·;u) and r(·, ·;u) in (6).

Theorem 3.1. Let u ∈ U be given. Suppose that Assumptions 1 and 2 hold. Then, for each

t = 1, 2, ..., T , m(·, ·;u) is over Supp(Xt, r(X, ht(Xt, Zt))). Furthermore, r(·, ·;u) is identi�ed over

the set ∪Tt Supp(X, ht(Xt, Zt)).

Proof. I drop u in functions m and r for simplicity of notation. Let X0 = (Xt = x,Xs = x̄,X−t,s).

Note that h(Xt, Zt) is directly identi�ed from the data. Then, one can show that under Assumption

2,

QYt|X,Zt,Dt=1(u|X0, Zt) = m(x, r(X0, Ht0)),

QYs|X,Zs,Ds=1(u|X0, Zs) = r(X0, Hs0),

where Ht0 ≡ Pr(Dt = 1|Xt = x, Zt) and Hs0 ≡ Pr(Ds = 1|Xs = x̄, Zs). Let γ ∈ R be given, then

it is straightforward to see that

m(x, γ) = E[QYt|X,Zt,Dt=1(u|X0, Zt)|QYs|X,Zs,Ds=1(u|X0, Zs) = γ,Ht0 = Hs0]. (7)
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The conditioning event in (7) has a positive measure by conditions (ii) and (iii) in Assumption 2,

and therefore m(x, γ) is identi�ed.

Sincem(·, ·;u) is assumed to be strictly monotone in its second argument, there exists the inverse

mapping with respect to the second argument. From (6), one obtains that

r(X, Pt) = m−1(Xt, QYt|X,Zt,Dt=1(u|X, Zt)),

where m−1(x, y) is the inverse mapping of m(x, e) with respect to e that is identi�ed.12 For any

(x, p) ∈ Supp(X, Pt), one obtains that

r(x, p) = E[m−1(x,QYt|X,Z,Dt=1(u|X,Z))|X = x, ht(x, Zt) = p],

and this establishes identi�cation of r(x, p) over Supp(X, ht(Xt, Zt)) for each t = 1, 2, ..., T . �

The LQTE and QTE are objects that may be important and relevant to policy evaluation. These

objects are functionals of the structural functions m, r, and h, and thus they are identi�ed once

those structural functions are identi�ed. The following corollary demonstrates that the LQTE and

QTE are identi�ed under the same set of conditions for identi�cation of the structural functions.

Corollary 3.2. Suppose that the conditions in Theorem 3.1 hold. Let t ∈ {1, 2, ..., T} and x0, x1 ∈
Supp(Xt) be given. Then, for any γ ∈ Supp(r(X, ht(Xt, Zt);u)), LQTEt(u, x0, x1, γ) is identi�ed.

In addition, QTE(u, x0, x1) is also identi�ed.

Proof. Recall that m(x, γ;u) = qlocalt (u, x, γ). Since m and r are identi�ed by Theorem 3.1, one

obtains that

LQTEt(u, x0, x1, γ) ≡ qlocalt (u, x1, γ)− qlocalt (u, x0, γ)

= E[m(x1, r(X, h(Xt, Zt);u);u)−m(x0, r(X, h(Xt, Zt);u);u)|r(X, ht(Xt, Zt);u) = γ].

Note that the conditioning event is of a positive probability because γ ∈ Supp(r(X, ht(Xt, Zt);u)),

and thus LQTEt(u, x0, x1, γ) is identi�ed. Similarly, it follows from the de�nition ofQTEt(u, x0, x1)

that

QTEt(u, x0, x1) = E[m(x1, r(X, ht(Xt, Zt);u);u)−m(x0, r(X, ht(Xt, Zt);u);u)],

where the expectation is taken over Supp(r(X, ht(Xt, Zt);u)). Therefore, QTEt(u, x0, x1) is also

identi�ed. �

The CRE approach was also adopted by Bester and Hansen (2009) and Arellano and Bonhomme

(2016), and they require that T to be greater than or equal to 3 for identi�cation. The identi�-

cation strategy in this paper, however, is di�erent from theirs. Speci�cally, Bester and Hansen

(2009) focus on the marginal e�ects of continuous covariates without completely specifying the

data generating process. They use a derivative argument for identi�cation of the marginal e�ects.

In contrast, I focus on identi�cation of the structural functions with specifying the data generating

process (equation (1)), and the identi�cation strategy in this paper is to use variation in excluded

variables. The marginal e�ects in this paper are also identi�ed as a by-product (Corollary 3.2).

12y = m(x, e) if any only if e = m−1(x, y).
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Arellano and Bonhomme (2016) consider nonparametric identi�cation of structural functions, but

the identi�cation strategy in Theorem 3.1 is di�erent from that of Arellano and Bonhomme (2016).

Speci�cally, Arellano and Bonhomme (2016) use a high-level assumption, called an injectivity condi-

tion, and this condition resembles completeness conditions that are commonly used in the literature

on nonparametric identi�cation (e.g. Newey and Powell (2003) and Blundell et al. (2007)). The

injectivity condition, however, is relatively di�cult to interpret and verify in practice. More im-

portantly, estimation and inference may su�er from an ill-posed inverse problem which leads to a

slower convergence rate. On the other hand, the identi�cation strategy in this paper does not rely

on completeness conditions, and hence it is not subject to an ill-posed inverse problem.

The identi�cation strategy in Theorem 3.1 does not require to specify the distribution of the

unobserved error term. In contrast, Arellano and Bonhomme (2017) and Chernozhukov et al. (2018)

consider some semiparametric speci�cation of the joint distribution of Y ∗ andD. Furthermore, both

papers focus on quantile regression models for cross-sectional data, whereas this paper considers

models for panel data.

The implication of model (equation (6)) is similar to that of Lewbel and Linton (2007) or

Escanciano et al. (2016), and hence the identi�cation strategy of this paper shares some common

with their strategies. However, the models of the papers are di�erent from that of this paper.

Speci�cally, the model of Lewbel and Linton (2007) di�ers from (6) in that they assume that

Xt is excluded from X and that the selection probability does not depend on Xt. Therefore,

their identi�cation strategy cannot be directly applied to identify m and r in (6). Escanciano

et al. (2016) study a class of models where there are two index functions and m relates these two

index functions.13 The focus of Escanciano et al. (2016) is on identi�cation and estimation of the

�nite-dimensional parameter in one of the index functions, but this paper studies nonparametric

identi�cation and estimation of (6) without specifying an index function for Xt, which allows for

more �exibility of the model.

While the linear correlated random coe�cients models allow for multi-dimensional error terms,

the identi�cation comes at cost of a larger (but �xed) number of time periods (e.g. Arellano and

Bonhomme (2012); Graham and Powell (2012); Graham et al. (2018); Laage (2019)). In contrast,

this paper imposes a scalar error term, but identi�cation requires T be greater than equal to 3

with some support condition. The requirement for T is much weaker than that in the correlated

random coe�cients models where T should be greater than or equal to the number of covariates. In

addition, the model in this paper is completely nonparametric, whereas most of correlated random

coe�cients models are parametric or semiparametric.

3.2 Extensions

In this section, I discuss some extensions of the panel quantile models with sample selection in

Section 2. I consider (i) endogeneity of Xt and (ii) censoring, which are useful and relevant to many

empirical situations. I show that model (5) can be easily extended to incorporate these issues.

13 One of the index functions is a linear-index function, and the other one is a known function from data.
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3.2.1 Endogenous Regressors

Endogeneity issues are prevalent in many empirical questions. The CRE speci�cation e�ectively

captures �time-invariant� endogeneity, but some regressors may exhibit �time-varying� endogene-

ity.14 The model implication in (6) is closely related to the control function approach to deal with

sample selection bias, and it can be extended to allow for endogeneity of Xt. To make it concrete,

suppose that Xt = (Xe
′

t , X̃
′

t)
′
, where Xe

t is a vector of endogenous regressors and X̃t is a vector of

exogenous regressors. For brevity of the model, I assume that Xe
t ∈ R, but it can be easily extended

to the case where Xe
t is a vector. Assume that and Zt = (Z

′

1t, Z
′

2t)
′
, and consider the following

class of models:
Y ∗t = m(Xt, Ut), :

Yt = DtY
∗
t ,

Xe
t = q(Z2t, Vt),

QUt|X,Z,Dt=1(u|X, Zt, Dt = 1) = re(X̃, Vt, ht(Xt, Z1t);u),

(8)

where Vt ∈ R is unobserved and independent of Z2t, and q(z2, v) is a non-trivial function of z2

and strictly increasing in v for all z2. Without loss of generality, Vt is assumed to be uniformly

distributed on the unit interval, conditional on Z2t. Model (8) is closely related to the sample

selection model with endogeneity that is studied by Das et al. (2003). The conditional quantile

restriction on Ut in model (8) implies that, conditional on Vt, X
e
t is no longer endogenous, and

hence the following model implication is obtained:

QYt|X,Z,Dt=1(u|X,Z, Dt = 1) = m(Xt, r
e(X̃, Vt, ht(Xt, Z1t);u);u). (9)

This extends the control function approach to handle the sample selection bias that is presented in

(6) to a more general case where some regressors are endogenous. The variable Vt plays the role

of a control function to handle endogeneity of Xe
t , and needs to be estimated in the �rst-stage.

Since the model implication (6) suggests that the selection probability ht(Xt, Zt) plays the role

of control function to correct selection bias, the roles of ht(Xt, Zt) and Vt are almost the same.

Similar approaches for cross-sectional data models are considered by, for example, Newey et al.

(1999), Lee (2007), Imbens and Newey (2009), and Chernozhukov et al. (2015). For panel data

models, Semykina and Wooldridge (2010) develop a class of models that is similar to (9), but their

focus is on the conditional mean function with additively separable error terms.

3.2.2 Censoring

Censoring is an issue that empirical researchers frequently face. I consider the following censoring

rule with sample selection:

Y ∗t = m(Xt, Ut),

Yt = Dt ·max(Y ∗t , Ct),

14As mentioned earlier, the CRE speci�cation is closely related to the dependence between the regressors and
time-invariant unobserved heterogeneity, which is commonly assumed in �xed e�ects models. On the other hand, I
use the term time-varying endogeneity to allow for dependence between the regressors and time-varying components
of the error term Ut. See also Laage (2019).
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where Ct's are �xed constants. Since the quantile operator is preserved under monotone trans-

formations, quantile regression models can easily incorporate censored data in a similar fashion of

Powell (1986). Speci�cally, one can show that

QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = max(QY ∗t |X,Zt,Dt=1(u|X, Zt, Dt = 1), Ct),

and the conditional quantile function of Y ∗t is the same as (6). It is worth noting that one can

simultaneously incorporate endogeneity and censoring, as in Chernozhukov et al. (2015). This

result can be further extended to the Tobit type-3 model considered by Fernández-Val et al. (2019).

The model of Fernández-Val et al. (2019) is di�erent from that of this paper in that the selection

rule in their model is not binary and that the error term in the outcome equation can be multi-

dimensional, and their identi�cation strategy relies on the control function approach of Imbens and

Newey (2009). Nevertheless, the model in this paper can incorporate such a class of selection rules

with the control function approach as shown earlier.

4 Semiparametric Models

While fully nonparametric models are attractive as they are robust to model misspeci�cation,

one important and practical issue is that it is di�cult to estimate parameters in them when the

dimension of covariate is large. Although the CRE approach allows us to consider �exible and

general models, the number of covariates involved in estimating parameters can be very large and

thus the fully nonparametric model presented in the previous section may not be practically useful.

To address such issues, I propose some semiparametric models and study identi�cation of parameters

in those models.

4.1 Index Models

One can impose an index structure on the structural function r , and this is originally motivated

by the original CRE approach of Mundlak (1978) and Chamberlain (1980). Speci�cally, I impose

the following assumption.

Assumption 1′. Let u ∈ U be given. For all t ∈ {1, 2, ..., T},

QUt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = r(X
′
δ(u), Pt), (10)

where δ = (δ
′

1, δ
′

2, ..., δ
′

T )
′
and δt ∈ Rdx for all t.

The index structure is consistent with the CRE speci�cation of Chamberlain (1980) and reduces

the dimension of the structural function r, while allowing for nonseparability between the index

and Pt. This semiparametric speci�cation requires additional assumptions for identi�cation of the

index coe�cient vector δ, and these assumptions depend on Xt being continuous or discrete. To

make the role of each type of regressor, I assume that Xt = (Xc′

t , X
d′

t )
′
, where Xc

t ∈ Rdxc is a vector
of continuous regressors and Xd

t ∈ Rdxd is a vector of discrete regressors. Consequently, I partition
the coe�cient δ into two parts. That is, I assume that δt = (δc

′

t , δ
d′

t )
′
, where δct = (δc1t, δ

c
2t, ..., δ

c
dxct

)
′

and δdt = (δd1t, δ
d
2t, ..., δ

d
dxdt

)
′
, and impose the following assumption.
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Assumption 2′. Let T ≥ 3. For any u ∈ U ⊆ (0, 1), the following conditions hold:

(i) For each t = 1, 2, ..., T , there exists a known value x̄(u) ∈ Supp(Xt) ⊆ Rdx such that

m(x̄(u), γ;u) = γ ;

(ii) Let x ∈ Supp(Xt) and γ ∈ Supp(r(X′δ, h(Xt, Zt))) be given. For any t, s ∈ {1, 2, ..., T} with
t 6= s, there exists a non-empty subset X̃S−t,s(x, x̄(u)) of Supp(X

′

−t,sδ−t,s|(Xt, Xs) = (x, x̄(u)))

and such that, for any x−t,s ∈ X̃S−t,s(x, x̄(u)), r(x
′

0δ, p) = γ for some p ∈ Supp(h(x, Zt)|X =

x0) and Pr(X−t,s ∈ X̃−t,s(x, x̄(u))) > 0, where x0 = (Xt = x,Xs = x̄(u)),X−t,s = x−t,s);

(iii) For any t = 1, 2, ..., T and for any x ∈ Supp(Xt) and z ∈ Supp(Zt) ⊆ Rdz , there exists a

non-empty set Zs(z) ⊆ Supp(Zs) for some s ∈ {1, 2, ..., T} such that, for any z̃ ∈ Zs(z),
ht(x, z) = hs(x̄(u), z̃) and Pr(Zs ∈ Zs(z)) > 0.

(iv) δc1t = 1 for all t.

(v) m(·, ·) is di�erentiable with respect to the second argument, and r(·, ·) is di�erentiable with

respect to the �rst argument.

(vi) r(·, ·) is invertible with respect to the �rst argument.

Conditions (i), (ii), and (iii) in Assumption 2′ are almost the same as conditions (i), (ii), and

(iii) in Assumption 2, respectively. Condition (iv) � (vi) in Assumption 2 are additionally imposed

to identify the �nite-dimensional parameter δ. Condition (iv) is a normalization, which is very

standard in the literature (e.g. Escanciano et al. (2016)). It requires that there exist at least on

continuous regressor whose the coe�cient is nonzero. Condition (v) imposes some smoothness on m

and r, and this condition allows one to identify δct 's. It is worth pointing out that if Xt consists only

of continuous regressors, the coe�cients δct 's are be identi�ed without condition (vi) in Assumption

2′. Condition (vi) can be implied by strict monotonicity of r(·, ·) with respect to its �rst argument,

and Escanciano et al. (2016) also impose a similar condition to identify the coe�cients on discrete

regressors. To motivate this assumption, consider the linear panel quantile model in Example 2.2.

It can easily be shown that QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = Xtβ + Xδ + g(Pt) for some unknown

function g(·) and that r(a, p) = a+g(p). In this case, the structural function r is strictly increasing

in its �rst argument, and therefore condition (vi) is satis�ed. In the wage equation example, the

X
′
δ can be considered as the ability of individual, and it is natural to assume that the structural

function r is monotonically increasing in X
′
δ. A similar assumption is made by Evdokimov (2010),

without considering the CRE approach.

The following theorem demonstrates that the parameters of the semiparametric model in (10)

are identi�ed under Assumptions 1′ and 2′.

Theorem 4.1. Let u ∈ U be given and Assumption 1′ hold. Suppose that conditions (i) � (v) in

Assumption 2′ are satis�ed. Then, for each t = 1, 2, ..., T , m(·, ·;u) and r(·, ·;u) are identi�ed over

Supp(Xt, r(X
′
δ, ht(Xt, Zt))) and the set ∪Tt Supp(X

′
δ, ht(Xt, Zt)), respectively, and δct 's are also

identi�ed. If condition (vi) in Assumption 2′ additionally holds, then δdt 's are also identi�ed.

Proof. Let t ∈ {1, 2, ..., T} be given. Under conditions (i) through (iii) in Assumption 2′, the

structural function m is identi�ed over it support and one can show that

r(X
′
δ, Pt) = m−1(Xt, QYt|X,Zt,Dt=1(u|X, Zt)) (11)
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by using the same argument of the proof of Theorem 3.1. In addition, the structural function r is

also identi�ed from (11) over its support in a similar way to the proof of Theorem 3.1.

I �rst identify the coe�cients on the continuous regressors δct 's. Choose s ∈ {1, ..., t − 1, t +

1, ..., T}. Taking derivative with respect to Xc
1s, one obtains that

r1(X
′
δ, Pt) = m−1

2 (Xt, QYt|X,Zt,Dt=1(u|X, Zt))
∂QYt|X,Zt,Dt=1(u|X, Zt)

∂Xc
1s

. (12)

Pick any k ∈ {2, 3, ...., dx}. Taking derivative with respect to Xc
ks yields that

r1(X
′
δ, Pt)δ

c
ks = m−1

2 (Xt, QYt|X,Zt,Dt=1(u|X, Zt))
∂QYt|X,Zt,Dt=1(u|X, Zt)

∂Xc
ks

. (13)

As a result, one can see that δcks is identi�ed by the ratio between (12) and (13), and therefore

one can identify δ
′c
t for all t ∈ {1, 2, ..., T}. Note that to identify δct , one can consider the model

restriction in (11) for some di�erent time period s and use the same argument.

By the invertibility condition (condition (vi) in Assumption 2′), one obtains that

X
′
δ = r−1(m−1(Xt, QYt|X,Zt,Dt=1(u|X, Zt)), Pt).

Using the variation in the discrete regressor Xd
t , one can identify δdt 's. �

One can also consider an index structure for structural function m, and this is in particular

useful when the dimension of Xt is large. Speci�cally, if it is assumed that m(Xt, γ) = m(X
′

tβ, γ),

then one can use a similar argument in the proof of Theorem 4.1 under similar conditions for m to

those for r. These conditions include (i) the di�erentiability and invertibility of m with respect to

its �rst argument and (ii) a normalization condition for β.

4.2 Additively Separable Models

Additively separable models are very popular in empirical studies as they are very tractable. In

particular, one can use a location-scale model for quantile regression to allow for general and

�exible speci�cations even with additive separability. The following assumption imposes additive

separability between Xt and r as well as a parametric speci�cation for structural function m.

Assumption 1′′. Let u ∈ U be given. For all t ∈ {1, 2, ..., T},

QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = X
′

tβ(u) + X
′
δ(u) + g(Pt;u). (14)

Equation (14) is corresponding to the model considered in Example 2.2, and it is a special case

of the nonparametric model in (5). The quantile restriction in Assumption 1′′ is similar to that of

Buchinsky (1998) and the conditional mean restriction of Das et al. (2003).

While it is evident that Assumption 1′′ restricts the type of heterogeneity that can be allowed

in the model, it provides substantial identifying power. If Assumption 1′′ holds and some rank

condition is satis�ed, one can weaken the condition on the number of time periods that is needed

for identi�cation. The following assumption provides a set of identi�cation conditions for model

(14).
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Assumption 2′′. Let T ≥ 2. For any u ∈ U ⊆ (0, 1), the following conditions hold:

(i) For any t 6= s, Pr
(
rank

(
(Xt −Xs) · (Xt −Xs)

′
)

= dx

)
= 1;

(ii) For any t 6= s and (x
′

t, x
′

s)
′ ∈ Supp(Xt, Xs), there exists Z((x

′

t, x
′

s)
′
) ⊆ Supp(Zt, Zs) such

that Pr(Z((x
′

t, x
′

s)
′
)) > 0 and ht(xt, zt) = hs(xs, zs) for all (z

′

t, z
′

s)
′ ∈ Z((x

′

t, x
′

s)
′
);

Condition (i) in Assumption 2′′ is a rank condition. It requires that the time-varying covariate

Xt have su�cient variation across time periods, and this condition is standard in the literature

on panel data models. It is worth noting that this condition rules out the case where Xt contains

some time-invariant regressors, such as a constant regressor. Condition (ii) is similar to condition

(iii) in Assumption 2, which requires the excluded variable Zt to have su�cient variation. If Zt has

a large support and the selection is determined by a threshold crossing equation model, then this

condition is likely to be met. Condition (iii) is likely to be stronger than the relevance condition

of the excluded variable proposed by Das et al. (2003). Their identi�cation condition, however,

requires a location normalization for g as it is identi�ed up to an additive constant. On the other

hand, condition (iii) allows to identify g without imposing such a normalization.

The next theorem establishes the identi�cation of β, δ, and g(·) under these conditions.

Theorem 4.2. Let u ∈ U be given and Assumptions 1′′ and 2′′ hold. Then, β(u) and δ(u) are

identi�ed. Moreover, g(·;u) is identi�ed over ∪Tt=1Supp(Pt).

Proof. For simplicity of notation, I assume that Xt is a continuous random variable.

Identi�cation of δ is from the following derivative:

δs =
∂QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1)

∂Xs
,

where t 6= s. Since δ ∈ RT and there are T × (T − 1) equations, one can identify δ.

For identi�cation of β, pick any t, s ∈ {1, 2, ..., T} such that t 6= s. Then,

QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1)−QYs|X,Zs,Ds=1(u|X, Zs, Ds = 1) = (Xt −Xs)
′
β + g(Pt)− g(Ps).

Taking conditional expectation on (Z
′

t , Z
′

s)
′ ∈ Z((X

′

t , X
′

s)
′
), one obtains that

E[QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1)−QYs|X,Zs,Ds=1(u|X, Zs, Ds = 1)|Xt, Xs, (Z
′

t , Z
′

s)
′
∈ Z((X

′

t , X
′

s)
′
)]

= (Xt −Xs)
′
β

and this condition expectation is well-de�ned by condition (ii) in Assumption 2′′. Therefore, by

condition (i) in Assumption 2′′, one can show that

β =
(

(Xt −Xs) · (Xt −Xs)
′
)−1

.(Xt −Xs)

× E[QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1)−QYs|X,Zs,Ds=1(u|X, Zs, Ds = 1)|Xt, Xs, (Z
′

t , Z
′

s)
′
∈ Z((X

′

t , X
′

s)
′
)].

Since β and δ are identi�ed, g(·) is also identi�ed over ∪Tt=1Supp(Pt) from equation (14). �
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5 Estimation

Letm0, r0, and ht,0 be the true parameter values form, r, and ht, respectively. For a generic random

vector A, vec(A) denotes the vectorization of A. Let {Wi ≡ (Yi,X
′

i,Z
′

i,D
′

i)
′

: i = 1, 2, ...N} be
the data, where Xi ≡ (vec(Xi1)

′
, ..., vec(XiT )

′
)
′
and Zi ≡ (vec(Zi1)

′
, ..., vec(ZiT )

′
)
′
. The model

implication (6) suggests estimation strategies based on the standard quantile regression. That is,

assuming that the selection probability Pit = ht,0(Xit, Zit) is observed, one can estimate functions

m and r by solving the following minimization problem:

max
(m,r)∈M×R

1

nT

n∑
i:Dit=1

T∑
t

ρu(Yit −m(Xit, r(Xi, Pit;u);u)), (15)

where ρu(x) = x(1(x < 0)− u), n is the number of individuals who are selected, andM and R are

classes of admissible functions for m(·, ·;u) and r(·, ·;u), respectively. Note that the observations

that are used for estimation are those who are selected. I assume that n/N → n∗ ∈ (0, 1). Under

this assumption, the asymptotic analysis can be based on n.

Since the selection probability Pit is not directly observed from the data, the maximization

problem in (15) is infeasible. I propose a two-step estimation procedure. Recall that the selection

probability is a function of (X
′

it, Z
′

it)
′
, ht,0(Xit, Zit), and I assume that ht,0 ∈ H for some space of

functions for all t = 1, 2, ..., T . This selection probability for each t is estimated in the �rst step, and

the estimate is denoted by P̂it = ĥt,n(Xit, Zit), where ĥt,n(·, ·) is an estimator of ht,0(·, ·). There

are several methods to estimate the selection probability, including some parametric estimators,

the semiparametric estimators of Klein and Spady (1993), and nonparametric estimators such as

the series logit estimators in Hirano et al. (2003). Then, one solves (15) with replacing Pit with P̂it

to estimate m0 and r0 in the second step.

I use sieve methods to estimate functionsm and r. Sieve estimation is useful to impose additional

structures of the model, such as additive separability, and easy to implement in practice. Speci�cally,

let Mn and Rn be appropriate sieve spaces for M and R, respectively. Note that, since one can

consider the sieve methods to estimate ht,0, I allow the parameter space H to depend on the sample

size n, and denote it by Hn.15 Then, a feasible sieve estimator for (m(·, ·;u), r(·, ·;u)), denoted by

(m̂n(·, ·;u), r̂n(·, ·;u)), is de�ned as follows:

(m̂n(·, ·;u), r̂n(·, ·;u)) ≡ arg max
(m,r)∈Mn×Rn

1

nT

n∑
i:Dit=1

T∑
t

ρu(Yit −m(Xit, r(Xi, P̂it;u);u)). (16)

The choice of sieve spaces depends on the class of functions and support of unknown function.

I introduce one of the most popular classes of functions, which is called the Hölder class. Let

f : D → R where D ⊆ Rdx for some integer dx ≥ 1. Let ω = (ω1, ..., ωdx) be a dx-tuple of

nonnegative integers, and de�ne the di�erential operator as ∇ωf ≡ ∂|ω|

∂x
ω1
1 ∂x

ω2
2 ···∂x

ωdx
dx

f(x), where

x = (x1, x2,..., xdx) ∈ D and |ω| ≡
∑dx
i=1 ωi. Let [p] be the integer part of p ∈ R+, then a function

f : X → R is called p-smooth if it is [p] times continuously di�erentiable on X and for all ω such

that |ω| = [p] and for some ν ∈ (0, 1] and constant c > 0, |∇ωf(x) − ∇ωf(y)| ≤ c · ||x − y||νE for

15Hn may not vary across the sample size in some cases. In particular, Hn = H for all n ≥ 1 for parametric
estimation.
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all x, y ∈ X , where || · ||E is the Euclidean norm. Let C[p](X ) denote the space of all [p] times

continuously di�erentiable real-valued functions on X . A Hölder ball with smoothness p is de�ned

as follows:

ΛpC(X ) ≡ {f ∈ C[p](X ) : sup
|ω|≤[p]

sup
x∈X
|∇ωf(x)| ≤ C, sup

|ω|=[p]

sup
x,y∈X ,x 6=y

|∇ωf(x)−∇ωf(y)|
||x− y||νE

≤ C},

where C is a positive �nite constant. I assume thatM andR are Hölder balls with possibly di�erent

degrees of smoothness.

When an unknown function is in a Hölder ball and its support is the unit interval, one can

use polynomial, triometric polynomial, or spline sieve spaces. If the support is unbounded, then

Hermite polynomial sive spaces can be used. For the detailed discussion on the choice of sieve

spaces, one can refer to Chen (2007).

It is worth noting that none of the structural functions depend on endogenous regressors, and

therefore it does not su�er from an ill-posed inverse problem. In addition, it is also possible to

incorporate penalty as in Chen and Pouzo (2012), but estimation with penalization is not considered

in this paper.16

6 Asymptotic Theory for Nonparametric Two-Step Estima-

tors

In this section, I provide the asymptotic theory for the sieve estimator of (m0, r0). The objective

function of the maximization problem (16) contains (possibly nonparametrically) generated regres-

sors. I adapt the approach proposed by Hahn et al. (2018a) who consider nonparametric two-step

sieve estimation. All mathematical proofs for theorems in this section are presented in the appendix.

I assume that h1,0 = h2,0 = ... = hT,0 ≡ h0 for simplicity in establishing the asymptotic theory,

but the asymptotic theory developed in this paper can allow the selection probability function to

vary across time. Let θ = (m, r)
′
and α = (m, r, h)

′
. The parameter spaces for θ, h, and α are

denoted by Θ, H, and A, respectively. Let lu(Wi, θ, h) ≡
∑
tDitρu(Yit −m(Xit, r(Xi, Pit;u);u)).

Then, Lu,n(W, α) = 1
n

∑
i lu(Wi, α) and Lu,0(α) = E[Lu,n(W, α)]. I assume that for each t, the

conditional distribution function of Y ∗t on X and Zt is absolutely continuous with respect to the

Lebesgue measure, so that it admits its density function fY ∗t |X,Zt .

I de�ne several norms that are used in this paper. Let ||·||∞ and ||·||2 denote the supremum-norm

and L2-norm on a function space, respectively. For any θ, θ̃ ∈ Θ, de�ne dΘ,∞(θ, θ̃) ≡ ||m(x, γ) −
m̃(x, γ)||∞+||r(x, p)−r̃(x, p)||∞ and ||θ−θ̃||2Θ,2 ≡ ||m(x, γ)−m̃(x, γ)||22+||r(x, p)−r̃(x, p)||22. For any
α, α̃ ∈ A, let dA,∞(α, α̃) ≡ dΘ,∞(θ, θ̃)+||h(x, z)−h̃(x, z)||∞ and ||α−α̃||2A,2 ≡ ||θ−θ̃||2Θ,2+||h−h̃||22.
Similarly, I de�ne the Euclidean norm on A as ||α− α̃||2A,E ≡ |m− m̃|2 + |r − r̃|2 + |h− h̃|2.

6.1 Consistency and Convergence Rates

I �rst show the consistency of the sieve estimator for θ0, θ̂n, with respect to the sup-norm. To

establish consistency, I consider the following assumptions.

16Related to penalization, Chen and Pouzo (2012) argue that estimation without penalty can be applied when the
parameters of interest are some smooth functions.
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Assumption 3. (i) The data {Wi = (Wi1, ...,WiT )
′

: i = 1, 2, ...n} are i.i.d across i, and {Wit :

t = 1, 2, ..., T} is stationary for each i = 1, 2, ..., n; (ii) for any t = 1, 2, ..., T , the conditional

distribution of Y ∗t on X and Zt is absolutely continuous with respect to the Lebesgue measure, and

its conditional density function fY ∗t |X,Zt satis�es that 0 < infy∈R,(x,z)∈Supp(X,Zt) fY ∗t |X,Zt(y|x, z) <
supy∈R,(x,z)∈Supp(X,Zt) fY ∗t |X,Zt(y|x, z) <∞; (iii) for any t = 1, 2, ..., T , E[|Y ∗t |] and E[|qu(Xi, Zit)|]
are uniformly bounded; (iv) for each t = 1, 2, ..., T , the supports of Xit and Zit are compact.

Assumption 4. (i) m0 ∈ M ≡ Λpmcm (M) and r0 ∈ R ≡ Λprcr (Supp(X, h0(Xt, Zt)) with pm > 1 and

pr > 1, m0(x, γ) and r0(x, p) are continuously di�erentiable with respect to γ and p, respectively,

and the derivatives are uniformly bounded; (ii) there exist measurable functions A(x, zt) and A(x, zt)

such that for any α, α̃ ∈ A and for any x = (xt,x−t) ∈ Supp(X) and zt ∈ Supp(Zt),

A(x, zt)||α− α̃||2A,E ≤ {m(xt, r(x, h(xt, zt)))− m̃(xt, r̃(x, h̃(xt, zt)))}2 ≤ A(x, zt)||α− α̃||2A,E

and E[A(X, Zt)
2
],E[A(X, Zt)

2
] <∞.

Assumption 5. (i) Mn = {mn(x, γ) = φ
km,n
m (x, γ)

′
βm,n : supx,γ |mn(x, γ)| ≤ cm}, Rn =

{rn(x, p) = φ
kr,n
r (x, p)

′
βr,n : supx,p |rn(x, p)| ≤ cr}, where km,n and kr,n are some positive non-

decreasing integer sequences such that km,n, kr,n → ∞, max(km,n, kr,n) = o(n); (ii) let Qm,t ≡
E[φ

km,n
m (xt, rn(X, Pt)) ·φ

km,n
m (xt, rn(X, Pt))

′
] and Qr,t ≡ E[φ

kr,n
r (X, Pt) ·φ

kr,n
r (X, Pt)

′
], then for any

t, the eigenvalues of Qm,t and Qr,t are bounded above and away from zero uniformly over all n.

Assumption 3 imposes conditions on the data generating process. Note that the �rst condition of

Assumption 3 allows for serial correlation as it only requires the data be i.i.d. across the individuals.

Condition (ii) in Assumption 3 is standard for quantile regression models. Condition (iii) is a mild

condition on moments of the dependent variable and conditional quantile function.

Assumption 4 speci�es the parameter space for the structural functions m and r. Condition

(ii) is implied by some smoothness conditions on m and r. This can be considered as a variant

of an assumption that is imposed for nonlinear quantile regression.17 This condition implies that

E[{m(Xit, r(Xi, h(Xit, Zit)))− m̃(Xit, r̃(Xi, h̃(Xit, Zit)))}2] � ||α− α̃||2A,2.
Assumption 5 de�nes sieve spaces for M and R. The choice of sieve spaces depends on the

parameter spaces and support conditions. When the parameters of interest belong to a Hölder space

and the supports are compact, one can use �nite-dimensional linear sieve spaces, such as polynomial,

trigonometric, or B-spline sieve spaces. Assumption 5, together with Assumption 4-(i) ensures that

the sieve spaces approximate the parameter spaces well. Condition (ii) of Assumption 5 is standard

in the literature on sieve or series estimation (cf. Newey (1997) and Chen and Christensen (2018)).

Note that the sieve spaces are linear �nite-dimensional, and thus the maximization problem in (16)

becomes a �nite-dimensional optimization problem.

Assumptions 4 and 5 together imply that there exist {β∗m,n}∞n=1 and {β∗r,n}∞n=1 such that

sup |m0(x, γ) − φ
km,n
m (x, γ)

′
β∗m,n| = O(k−σmm,n ) and sup |r0(x, p) − φ

km,n
r (x, p)

′
β∗r,n| = O(k−σrr,n ) for

some σm, σr > 0. When the polynomial or spline sieve spaces are used for m0 and r0, Assump-

tion 4-(i) implies that σm = pm/(dx + 1) and σr = pr/(Tdx + 1) (Newey (1997)). I denote the

sequences of functions {φkm,nm (x, γ)
′
β∗m,n}∞n=1 and {φkr,nr (x, p)

′
β∗r,n}∞n=1 by {πnm0}n and {πnr0}n,

respectively. It is also worth mentioning that Assumption 4-(i) and Assumption 5 together imply

17See, for example, Koenker (2005, p.124).

21



thatMn ⊆Mn+1 and Rn ⊆ Rn+1 for all n ≥ 1 and that ∪∞n=1Mn =M and ∪∞n=1Rn = R, where,
for a set A, A is the closure of A.

The next assumption imposes conditions on the �rst-step estimator. Before providing the as-

sumption, I introduce additional notations. For a (dx + 1) tuple ω and a (Tdx + 1) tuple ω
′
of non-

negative integers, let ζκ,m(km,n) ≡ supx,γ ||∇ωφ
km,n
m (x, γ)||E and ζκ,m(kr,n) ≡ supx,p ||∇ωφ

kr,n
r (x, p)||E .

Bounds on these quantities depend on km,n, kr,n, and sieves. For example, it is well-known that

ζκ,m(km,n) = k1+2κ
m,n for polynomial sieves and ζκ,m(km,n) = k

1
2 +κ
m,n for spline sieves (cf. Newey

(1997)).

Assumption 6. (i) h0 ∈ H ≡ Λphch (Supp(Xt, Zt)) with ph >
dx+dz

2 ; (ii) there exists a positive non-

increasing sequence δ∗h,n such that δ∗h,n ↓ 0 and ||ĥn − h0||2 = Op(δ
∗
h,n); (iii) ζ1,m(km,n) · ζ1,r(kr,n) ·

δ∗h,n log(log(n)) = o(1).

Condition (i) in Assumption 6 de�nes the parameter space for h0. Condition (ii) in Assumption

6 requires that the �rst-step estimator converge at a suitable rate with respect to the L2-norm. This

condition is a high-level condition but easy to verify in practice. For example, δ∗h,n = n−1/2 with

standard parametric estimators of the selection probability. For series estimation of h0(x, z), the

convergence rate depends on the number of series terms to approximate h0 and some smoothness

conditions (e.g. Newey (1997)). Condition (iii), along with Assumption 5, further restricts the

rates km,n and kr,n. Once the convergence rate of the �rst-step estimator is established, this can be

satis�ed with a proper choice of km,n and kr,n. The terms ζ1,m(km,n) and ζ1,r(kr,n) appear in the

condition due to the nonlinearity of the conditional quantile function with respect to the selection

probability.

The following theorem establishes the consistency of sieve estimator θ̂n with respect to the

sup-norm dΘ,∞(·, ·).

Theorem 6.1. Suppose that Assumptions 1, 2, and 3 � 6 are satis�ed. Then, dΘ,∞(θ̂n, θ0) = op(1).

Now I establish the convergence rate of the sieve estimator θ̂n with respect to L2-norm. The

following theorem s provides the L2-convergence rate of the sieve estimator θ̂n under the same

conditions in Theorem 6.1.

Theorem 6.2. Suppose that the conditions in Theorem 6.1 are satis�ed. Then,

||θ̂n−θ0||Θ,2 = Op

(√
km,n
n

+ k−(pm/(dx+1))
m,n +

√
kr,n
n

+ k−(pr/(Tdx+1))
r,n + ζ1,m(km,n) · ζ1,r(kr,n) · δ∗h,n

)
.

The L2-convergence rate of the sieve estimator θ̂n can be divided into three components. The

�rst component
√

km,n
n +

√
kr,n
n re�ects the convergence rate of the variance term of the estimator θ̂n.

The rate increases as km,n or kr,n increases. The second component k
−(pm/(dx+1))
m,n + k

−(pr/(Tdx+1)
r,n

is the convergence rate of the approximation error, which decreases as km,n or kr,n increases. These

are consistent with the standard convergence rate of sieve or series estimators (e.g. Newey (1997)

and Chen (2007)). The last component ζ1,m(km,n) ·ζ1,r(kr,n) ·δ∗h,n re�ects the e�ect of the �rst-step

estimator on the convergence rate of θ̂n, and similar results are found in, for example, Newey et al.

(1999) and Imbens and Newey (2009). The term ζ1,m(km,n) · ζ1,r(kr,n) appears due to nonlinearity

of the conditional quantile function, which is consistent with the result in Hahn et al. (2018b,
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(Lemma 2.2)). It is worth pointing out that the sieve estimator θ̂n does not su�er from an ill-posed

inverse problem, so it is not required to take the degree of ill-posedness into account to obtain the

convergence rate.18

The result in Theorem 6.2 is useful to derive the convergence rate of the sieve estimator of the

conditional quantile function g0(Xi, p) ≡ m0(Xit, r0(Xi, p)). Let ĝn(Xi, p) ≡ m̂n(Xit, r̂n(Xi, p)) be

the sieve estimator of g0. Then, one obtains the following result:

Corollary 6.3. Suppose that the conditions in Theorem 6.2 hold. Then,

||ĝn−g0||2 = Op

(√
km,n
n

+ k−(pm/(dx+1))
m,n +

√
kr,n
n

+ k−(pr/(Tdx+1))
r,n + ζ1,m(km,n) · ζ1,r(kr,n) · δ∗h,n

)
.

6.2 Asymptotic Normality for Regular Functionals

In this section, I establish the asymptotic normality of regular functionals. I adopt the approach of

Hahn et al. (2018a) who provide a set of conditions under which the two plug-in sieve estimator of

a (regular) functional is asymptotically normal. To this end, I assume that the �rst-step estimator

is estimated by the sieve (or series) method. Since E[Dit|Xit, Zit] = h0(Xit, Zit), one can use the

series method. Alternatively, one can use the series logit estimator in Hirano et al. (2003).

Many functionals of interest are functionals of the conditional quantile function, not just of the

structural functions m and r. Therefore, I consider ĝn itself as the second-step estimator and focus

on the functionals of (g0, h0). For simplicity of notation, I rede�ne the true parameter value in

terms of g0 and h0 (i.e. α0 ≡ (g0, h0)
′ ∈ A), and a generic element in A is denoted by α. I denote

the convergence rate of ĝn provided in Corollary 6.3 by δ∗g,n. De�ne δh,n ≡ δ∗h,n · log(log n) and

δg,n ≡ δ∗g,n · log(log n), and it is assumed that δh,n and δg,n are o(1). Let Nh ≡ {h ∈ H : ||h−h0||2 ≤
δh,n} and Ng ≡ {g ∈ G : ||g − g0||2 ≤ δg,n} be shrinking neighborhoods of h0 and g0, respectively,

with G is the parameter space of g0. Then, de�ne Nh,n ≡ Nh ∩ Hn and Ng,n ≡ Ng ∩ Gn where Gn
the sieve space for G. The sieve space Gn can be taken asMn ◦Rn where ◦ means the composition

operator. Then, (ĝn, ĥn) ∈ Ng,n × Nh,n ≡ Nα,n with probability approaching to one (wpa1). Let

Nα ≡ {α ∈ A : ||α− α0||A,2 ≤ δα,n} where δα,n = max(δg,n, δh,n).

Suppose that L1,n(Wi, h) − L1,n(Wi, h0) is approximated by ∆1(Wi, h0)[h − h0] ≡
∑
t(Dit −

h0(Xit, Zit)) · [h− h0] which is linear in [h− h0]. For any h1, h2 ∈ Nh,n, de�ne

||h1 − h2||21,∆ ≡ −
∂E [∆1(W, h0 + τ [h1 − h2])[h1 − h2]]

∂τ
,

and this is a norm on Nh. Let ho,n be the projection of h0 on Hn under the norm || · ||1,∆. Let

V1,n be the closed linear span of Nh,n − {ho,n} under the norm || · ||1,∆, and let

< vh1 , vh2 >1,∆≡ −
∂E [∆1(W, h0 + τvh2

)[vh1
]]

∂τ

∣∣∣∣∣
τ=0

denote the inner product on V1,n. It is clear that this inner product induces the norm || · ||1,∆,
18For nonparametric instrumental variables (NPIV) regression, the convergence rates are usually slower than the

standard convergence rate in the literature on nonparametric estimation because of ill-posed inverse problems. For
sieve estimation, this is re�ected by the sieve measure of ill-posedness. See, for example, Blundell et al. (2007) and
Chen and Pouzo (2012).
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and therefore (V1,n, || · ||1,∆) is a Hilbert space. In addition, V1 denotes the closed linear span of

Nh − {h0} under the norm || · ||1,∆.
Let g(X, Zt;h) ≡ m(Xt, r(X, h(Xt, Zt))). Note that, by Knight's identity, for any g ∈ Ng,n,

lu(W, g, h0)− lu(W, g0, h0) = ∆2(W, g0, h0)[g − g0] +R2(W, g, g0), where

∆2(W, g0, h0)[g − g0] ≡
∑
t

[{g(Xi, Zit;h0)− g0(Xi, Zit;h0)} · {u− 1(Yit ≤ g0(Xi, Zit;h0)}],

R2(W, g, g0) ≡ −
∑
t

∫ g(Xi,Zit;h0)−g0(Xi,Zit;h0)

0

{1(Yit ≤ g0(Xi, Zit;h0) + s)− 1(Yit ≤ g0(Xi, Zit;h0))}ds.

(17)

Then, ∆2(W, g0, h0)[g − g0] is linear in [g − g0]. Let

||g1 − g2||22,∆ ≡ −
∂E [∆2(W, g0 + τ [g1 − g2], h0)][g1 − g2]]

∂τ

∣∣∣∣∣
τ=0

= E

[∑
t

fY ∗t |X,Zt(g0(Xi, Zit;h0))|g1 − g2|2
]

be a norm on Ng and denote go,n be the projection of g0 on Gn under the norm || · ||2,∆. Let V2,n

be the closed linear span of Ng,n − {go,n} under the norm || · ||2,∆, and for any vg1
, vg2

∈ V2,n, let

< vg1 , vg2 >2,∆≡ −
∂E [∆2(W, g0(X, Zt;h0) + τvg2

, h0)[vg1
]]

∂τ

∣∣∣∣∣
τ=0

be the corresponding inner product on V2,n. Then, (V2,n, || · ||2,∆) is a Hilbert space. Denote the

closed linear span of Ng − {g0} under || · ||2,∆ by V2.

Let f : A → R be a functional and de�ne for each v ∈ V1,n and ṽ ∈ V2,n,

∂hf(α0)[v] ≡ ∂f(g0, h0 + τv)

∂τ

∣∣∣∣∣
τ=0

,

∂gf(α0)[ṽ] ≡ ∂f(g0 + τ ṽ, h0)

∂τ

∣∣∣∣∣
τ=0

.

I assume that ∂hf(α0)[·] : V1 → R and ∂gf(α0)[·] : V2 → R are linear functionals. Since e

(V1,n, || · ||1,∆) and (V2,n, || · ||2,∆) are �nite-dimensional Hilbert spaces, every linear functional is

continuous and hence bounded. By the Riesz representation theorem, there exists v∗hn ∈ V1,n such

that for any v ∈ V1,n,

∂hf(α0)[v] =< v∗hn , v >1,∆ and ||v∗hn ||
2
1,∆ = sup

v∈V1,n−{0}

|∂hf(α0)[v]|2

||v||21,∆
<∞. (18)

Similarly, there exists v∗gn ∈ V2,n such that for any v ∈ V2,n,

∂gf(α0)[v] =< v∗gn , v >2,∆ and ||v∗gn ||
2
2,∆ = sup

v∈V2,n−{0}

|∂gf(α0)[v]|2

||v||22,∆
<∞. (19)
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For any v = (vh, vg) ∈ V ≡ V1 × V2, de�ne

∂βf(α0)[v] ≡ ∂hf(α0)[vh] + ∂gf(α0)[vg].

I impose the following assumption on the functional f :

Assumption 7. limn→∞ ||v∗hn ||
2
1,∆ <∞ and limn→∞ ||v∗gn ||

2
2,∆ <∞.

Assumption 7 means that the functional is regular. Since V1 and V2 are in�nite-dimensional

Hilbert spaces, one cannot directly invoke the Riesz representation theorem for ∂hf(α0)[·] and
∂gf(α0)[·] on V1 and V2, respectively. On the other hand, Assumption 7 imposes that the linear

functionals ∂hf(α0)[·] and ∂gf(α0)[·] on V1 and V2, respectively, are bounded, and thus one can

apply the Riesz representation theorem for ∂hf(α0)[·] and ∂gf(α0)[·] on V1 and V2, respectively.

For any vg ∈ V2, let Γg(α0)[vg] ≡ −
∑
t E[FY ∗t |X,Zt(m0(Xit, r0(Xi, h0(XitZit))))vg] and de�ne

Γ(α0)[vh, vg] ≡
∂Γg(g0, h0 + τvh)[vg]

∂τ

∣∣∣∣∣
τ=0

= −
∑
t

E[fY ∗t |X,Zt(m0(Xit, r0(Xi, h0(XiZit)))) · ∂γm0(Xit, r0(Xi, h0(XiZit)))

× ∂pr0(Xi, h0(XitZit)) · vg · vh] (20)

for any vh ∈ V1. Then, Γ(α0)[·, ·] is a bilinear functional on V. De�ne v∗Γn ∈ V1,n as

Γ(α0)[vh, v
∗
gn ] =< vh, v

∗
Γn >1,∆

for all vh ∈ V1,n, where v
∗
gn is the same as in (19). Let

||v∗n||sd ≡ V ar

[
n−1/2

n∑
i

{
∆1(Wi, h0)[v∗hn ] + ∆1(Wi, h0)[v∗Γn ] + ∆2(Wi, β0)[v∗gn ]

}]
.

To establish the asymptotic normality of f(α̂n), I impose additional assumptions.

Assumption 8. The following conditions hold:

(i) lim infn ||v∗n||sd > 0; (ii) the functional f(·) satis�es

sup
α∈Nα,n

∣∣∣∣∣f(α)− f(α0)− ∂gf(α0)[α− α0]

||v∗n||sd

∣∣∣∣∣ = o
(
n−1/2

)
;

(iii) the following condition holds:

1

||v∗n||sd
max

{∣∣∣∣∣∂hf(α0)[ho,n − h0]

∣∣∣∣∣,
∣∣∣∣∣∂gf(α0)[go,n − g0]

∣∣∣∣∣
}

= o
(
n−1/2

)
.

Condition (i) implies that the sieve variance is asymptotically bounded away from zero. Con-

dition (ii) is implied if the functional is well-approximated uniformly on the neighborhood of α0.

Condition (iii) is an over�tting condition that guarantees the sieve approximation errors converge

to zero at a faster rate than a certain rate (n−1/2||v∗n||sd). Assumption 8 can be veri�ed once a

functional of interest is given.
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Let (u∗hn , u
∗
gn , u

∗
Γn

) ≡ ||vn||−1
sd (v∗hn , v

∗
gn , v

∗
Γn

) and µn[f ] ≡ 1
n

∑n
i [f(Wi) − E[f(Wi)]] be an em-

pirical process indexed by f .

Assumption 9. (i) The following condition is satis�ed:∣∣∣∣∣ < ĥn − ho,n, u∗hn + u∗Γn >1,∆ −µn
[
∆1(W, h0)[u∗hn + u∗Γn ]

] ∣∣∣∣∣ = Op(κn);

(ii) the following convergence in distribution holds:

1√
n

n∑
i

{
∆1(Wi, h0)[u∗hn + u∗Γn ] + ∆2(Wi, g0, h0)[u∗gn ]

} d→ N(0, 1);

(iii) κn · δ∗
−1

g,n = o(1) with κn = o(n−1/2) and ||u∗gn ||2,∆ = O(1).

Assumption 9 corresponds to Assumption 3.3 in Hahn et al. (2018a). The �rst condition is a

high-level condition, and it can be veri�ed once the �rst-stage estimation method is chosen. The

second condition can be veri�ed by using some appropriate central limit theorem. The last condition

is mild as δ∗g,n is a convergence rate of a nonparametric estimator, which is not faster than
√
n.

Assumption 10. (i) For all t = 1, 2, ..., T , the conditional density function fY ∗t |X,Zt(y|x, zt) is

continuously di�erentiable with respect to y, and its derivative f
′

Yt|X,Zt(y|x, zt) is uniformly bounded;

(ii) the functions m0(x, γ) and r0(x, p) are twice-continuously di�erentiable with respect to γ and

p, respectively, and the second-order derivatives are uniformly bounded.

Assumption 11. Let suph∈Nh,n |h(x, z)−h0(x, z)| = O(δ∗ sup
h,n ) and δsup

h,n ≡ δ
∗ sup
h,n log(log(n)) = o(1).

Then, the following conditions hold:

(i) ζ1,m(km,n)2 · ζ1,r(kr,n)2 · δ2
h,n(ζ0,m(km,n) + ζ0,r(kr,n)) · δθ,n = o(n−1);

(ii) δ3
θ,n · (ζ0,m(km,n) + ζ0,r(kr,n)) = o(n−1);

(iii) ζ1,m(km,n)3 · ζ1,r(kr,n)3 · δ2
h,nδ

sup
h,n = o(n−1);

(iv) δ2
θ,n · ζ1,m(km,n) · ζ1,r(kr,n) · δsup

h,n = o(n−1);

(v)
{
ζ2,m(km,n) · ζ1,r(kr,n)2 + ζ1,m(km,n) · ζ2,r(kr,n)

}
δ2
h,n = o(n−1/2);

(iv) ζ1,r(kr,n)δθ,nδh,n = o(n−1/2).

Assumption 10 strengthens the smoothness conditions on the conditional density function and

the structural functions m0 and r0. Assumption 11 restricts the rates of km,n, kr,n and possibly

kh,n where kh,n is the number of approximating functions for h0. Once the sieve space is chosen

and the convergence rates are derived, one can set the rates on km,n, kr,n and kh,n that satisfy

Assumption 11. The following theorem establishes the asymptotic normality of f(α̂n):

Theorem 6.4. Suppose that conditions in Theorem 6.2 hold. If Assumptions 7�11 additionally

hold, then
√
n
f(α̂n)− f(α0)

||v∗n||sd
d→ N(0, 1).
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7 Simulation

In this section, I present results of Monte-Carlo simulations to examine the �nite-sample perfor-

mance of the estimators. To this end, I consider the following model with T = 3:

QYt|X,Zt,Dt=1(u|X, Zt, Dt = 1) = Xtβ(u) + X
′
δ(u) +QUt|X,Zt,Dt=1(u|X, Zt, Dt = 1),

Dt = 1(Xtξ + Ztγ ≥ Vt),

where (Ut, Vt) ∼ BV N

((
0

0

)
,

(
1 0.3

0.3 1

))
and Xt and Zt are drawn from normal distributions.

The true parameter values are β(u) = 1 + 0.5 × QUt(u), δt(u) = 1 + 0.2 × QUt(u), ξ = −1, and

γ = 1. In the simulation, I assume that the �rst-stage equation is correctly speci�ed, and therefore

the parameters ξ and γ are estimated using a probit model.

I consider two sample sizes, N ∈ {500, 1000}, and I use the Hermite polynomial sieve spaces

to approximate the unknown function QUt|X,Zt,Dt=1(u|X, Zt, Dt = 1), and the order is set to be

proportional to N1/7.19 I focus on the root mean squared errors (RMSEs) of β(u) and δ(u) for

u ∈ {0.25, 0.5, 0.75} to investigate the �nite-sample performance, and obtain the results from 2000

iterations.

Tables 1 and 2 present the simulation results with sample sizes 500 and 1000, respectively. For

all quantile levels, the biases of the estimators are negligible and the standard deviations are also

small. Therefore, the results suggest that the semiparametric estimators of β(u) and δ(u) perform

well in �nite samples.

Table 1: Semiparametric Model, N = 500, T = 3

u = 0.25 u = 0.5 u = 0.75

Bias S.D. RMSE Bias S.D. RMSE Bias S.D. RMSE

β(u) -0.0011 0.0778 0.0778 0.0029 0.1104 0.1105 0.0018 0.0786 0.0787

δ1(u) 0.0025 0.0511 0.0511 0.0056 0.0448 0.0451 -0.0020 0.0510 0.0510

δ2(u) 0.0032 0.0503 0.0504 0.0025 0.0441 0.0441 -0.0033 0.0507 0.0508

δ3(u) -0.0054 0.0574 0.0576 -0.0055 0.0501 0.0504 0.0040 0.0533 0.0534

Table 2: Semiparametric Model, N = 1000, T = 3

u = 0.25 u = 0.5 u = 0.75

Bias S.D. RMSE Bias S.D. RMSE Bias S.D. RMSE

β(u) 0.0006 0.0665 0.0665 0.0016 0.0486 0.0486 -0.0006 0.0545 0.0545

δ1(u) 0.0036 0.0354 0.0355 0.0037 0.0315 0.0317 -0.0016 0.0354 0.0354

δ2(u) 0.0027 0.0356 0.0357 0.0023 0.0327 0.0328 -0.0018 0.0360 0.0360

δ3(u) -0.0056 0.0397 0.0401 -0.0085 0.0348 0.0358 0.0026 0.0388 0.0389

19The order of the Hermite polynomial is 4 when N = 500, whereas it is 5 when N = 1000.
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8 Conclusion

In this paper, I develop a nonparametric panel quantile regression model with sample selection.

The model is nonseparable and allows for time-invariant endogeneity in a similar spirit of the

�xed e�ects models. To resolve the time-invariant endogeneity of the regressors and the sample

selection bias, I adopt the CRE and control function approaches. In doing so, I avoid imposing

any parametric or semiparametric restrictions on the distribution of the unobserved error terms,

except for a conditional independence condition. The class of models is general and �exible enough

to be extended to address many empirical issues about data, such as time-varying endogeneity and

censoring. I study identi�cation of the structural functions of the model. Identi�cation requires

that the number of time periods be greater than or equal to 3 (T ≥ 3) and that there exist excluded

variables that a�ect the selection probability. For practically tractable estimation, I also suggest

some semiparametric models and present a set of identi�cation conditions for the semiparametric

models. Based on the identi�cation result, I use a two-step nonparametric sieve method to estimate

the model parameters. I establish the consistency and convergence rates of the two-step sieve

estimators under low-level conditions. I also provide a set of conditions under which the plug-in

estimate of a smooth functional of the parameter is asymptotically normal. A small Monte-Carlo

study with semiparametric models con�rms that the estimators perform well in �nite samples.
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A Proofs of the Results in Section 6

In this section, I provide mathematical proofs of the main results in Section 6. I introduce notation

that will be used in the proofs. For any positive real sequences {an} and {bn}, an . bn means

that there exist a �nite constant C > 0 and N ∈ N such that an ≤ Cbn for all n ≥ N . If

an . bn and bn . an, it is denoted by an � bn. Let (F , || · ||F ) be a metric space of real valued

function f : X → R. The covering number N(ε,F , || · ||F ) is the minimum number of || · ||F ε-balls

that cover F . The entropy is the logarithm of the covering number. An ε-bracket in (F , || · ||F )

is a pair of functions l, u ∈ F such that ||l||F , ||u||F < ∞ and ||u − l||F ≤ ε. The covering

number with bracketing N[](ε,F , || · ||F ) is the minimum number of || · ||F ε-brackets that cover

F . The entropy with bracketing is the logarithm of the covering number with bracketing. The

bracketing integral is de�ned as
∫ δ

0

√
logN[](ε,F , || · ||F )dε, and it is denoted by J[](δ,F , || · ||F ).

Let µn[f ] ≡ 1
n

∑
i{f(Wi)−E[f(Wi)]} be an empirical process indexed by f ∈ F for some space F .

Gn[f ] is an empirical process such that
√
nµn[f ] (i.e. Gn[f ] = 1√

n

∑
i{f(Wi)−E[f(Wi)]}). Recall

that ||ĥn − h0||2 = Op(δ
∗
h,n) by Assumption 6. Let C denote a generic positive and �nite constant.

It can be di�erent across where it appears.

Some empirical processes may not be measurable, and thus the expectation operator cannot be

applied to those processes. In such a case, one can replace the expectation operator with the outer

expectation operator. I use the notation E[·] mainly to indicate the expectation operator, but it

may also stand for the outer expectation if its argument is not measurable.

A.1 Proof of Theorem 6.1

Proof. Let B̃n(h0) ≡ {h ∈ Hn : ||h − h0||2 ≤ δh,n} with δh,n ≡ δ∗h,n · log(log(n)). I verify the con-

dition in Proposition B.1 in Section B. For Assumption C.1, recall that lu(Wi, α) =
∑
t ρu(Yit −

m(Xt, r(Xi, h(Xit, Zit);u);u)). For simplicity of notation, let qu(Xi, Zit) ≡ m0(Xt, r0(Xi, h0(Xit, Zit);u);u).

Then,

|E[lu(Wi, θ0, h0)|Xi,Zi,Di]|

=|
∑
t

E[ρu(Y∗it − qu(Xi, Zit))|Xi,Zi]|

≤
∑
t

[|{u
∫ ∞
qu(Xi,Zit)

{y − qu(Xi, Zit)}dFY ∗t |Xi,Zit(y|Xi, Zit)|

+ |(1− u)

∫ qu(Xi,Zit)

−∞
{y − qu(Xi, Zit)}dFY ∗t |Xi,Zit(y|Xi, Zit)}|]

.E[|Y ∗it − qu(Xi, Zit)||Xi, Zit],

where the �rst inequality holds by the triangle inequality and the second inequality is derived by

Jensen's inequality and the fact that max(u, 1 − u) ≤ 1. By condition (iii) in Assumption 3, one

obtains that |E[lu(Wi, θ0, h0)]| < ∞. Now I check condition (ii) in Assumption C.1. Take any

ε > 0. Following Knight's identity (Knight (1998)), one can obtain that

ρu(w)− ρu(w − v) = −v(u− 1(w ≤ 0)) +

∫ v

0

{1(w ≤ t)− 1(w ≤ 0)}dt.
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Applying the above identity with wit = Yit − qu(Xi, Zit) and vit = m(Xit, r(Xi, h0(Xit, Zit))) −
qu(Xi, Zit) such that dΘ,∞(θ, θ0) ≥ ε results in that

E[lu(Wi, θ0, h0)− lu(Wi, θ, h0)|Xi,Zi,Di]

=
∑
t

E[ρu(Yit − qu(Xi, Zit))− ρu(Yit −m(Xit, r(Xi, Zit)))|Xi,Zi,Di]

=
∑
t

E[

∫ vit

0

{1(wit ≤ τ)− 1(wit ≤ 0)}dτ |Xi,Zi,Di]

=
∑
t

∫ vit

0

FY ∗t |Xi,Zit(qu(Xi, Zit) + τ)− FY ∗t |Xi,Zit(qu(Xi, Zit))dτ

≥
∑
t

∫ vit

0

τdτf∗ ≥ f∗
∑
t

v2
it, (21)

where f∗ ≡ mint infy∈R,(x,p)∈Supp(X,Zt) fY ∗t |X,Zt(y|x, z) > 0 by Assumption 3-(ii). It is straightfor-

ward to see that E[lu(Wi, θ0, h0)− lu(Wi, θ, h0)] & ||θ − θ0||2Θ,2 by Assumptions (2) and 4-(ii). By

Lemma 2 in Chen and Shen (1998), ||θ−θ0||Θ,2 & dΘ,∞(θ, θ0)
1+ 1

2pθ and it leads to that for all n ≥ 1,

cn(ε) = Cε
2+ 1

pθ for some constant C > 0. With this construction, cn(ε) is a positive non-increasing

sequence and it obviously satis�es the condition lim infn cn(ε) > 0. Therefore Assumption C.1 is

satis�ed.

Now I verify Assumption C.2. Note that for given u ∈ U ,

|E[lu(Wi, πnθ0, h0)− lu(Wi, θ0, h0)]| ≤ E|l(Wi, πnθ0, h0)− l(Wi, θ0, h0)|

≤ max(u, 1− u)E|πnθ0 − θ0|

. sup
x,γ
|πnm0(x, γ)−m0(x, γ)|+ sup

x,p
|πnr0(x, p)− r0(x, p)|

= O
(
k−pm/(dx+1)
m,n

)
+O

(
k−pr/(T ·dx+1)
r,n

)
,

where the third line holds because supx,γ |m0,γ(x, γ)| < ∞, where m0,γ(x, γ) ≡ ∂m0(x,γ)
∂γ , and the

last equality holds by Assumption 4 and 5. Since km,n, kr,n → ∞ by Assumption 5, one can set

η2,n ≡ max
(
k
−pm/(dx+1)
m,n , k

−pr/(T ·dx+1)
r,n

)
= o(1).

Lastly, I verify Assumption C.3. De�ne Lu,n ≡ {lu(Wi, θ, h) : θ ∈ Θn, h ∈ B̃n(h0)}. I derive the
convergence rate η0,n by applying Theorem 2.14.2 in Van der Vaart and Wellner (1996). Note that

one can take a constant function as an envelope function of Lu,n by Assumption 4-(i). It remains

to calculate the bracketing integral of Lu,n. Note that

E|lu(Wi, θ, h)− lu(Wi, θ̃, h̃)|2 ≤ max(u, 1− u)
∑
t

E|θ(Wit, h)− θ̃(Wit, h̃)|2 . ||α− α̃||22

by Assumption 4-(ii). Applying Theorem 2.7.11 in Van der Vaart and Wellner (1996) results in

N[](Cαε,Lu,n, || · ||2) ≤ N(ε, Ãn, || · ||2) where Ãn ≡Mn×Rn× B̃n(h0) . It can also be easily shown

that

logN(ε,An, || · ||2) ≤ logN(
ε

4
,Mn, || · ||2) + logN(

ε

4
,Rn, || · ||2) + logN(

ε

2
, B̃n(h0), || · ||2)
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by the de�nition of the covering number. Therefore, for any δ > 0, one obtains that

J[](1,Lu,n, || · ||2) ≤
∫ 1

0

√
1 + logN(

ε

4
,Mn, || · ||2) + logN(

ε

4
,Rn, || · ||2) + logN(

ε

2
, B̃n(h0), || · ||2)dε.

By Lemma 2.5 in Van de Geer (2000), logN( ε4 ,Mn, d) ≤ kn,m log
(
1 + 16cm

ε

)
and logN( ε4 ,Rn, d) .

kr,n log
(
1 + 16cr

ε

)
. To get a bound on N( ε2 , B̃n, || · ||2), I apply Corollary 2.7.4 in Van der Vaart

and Wellner (1996). Since N(ε,F , || · ||) ≤ N[](ε,F , || · ||) for any class of real valued functions F
and any norm || · ||, it is enough to bound N[](

ε
2 , Bn(h0), || · ||2). Since Hn ⊆ H, B̃n(h0) ⊆ Bn(h0) ≡

{h ∈ H : ||h− h0||2 ≤ δh,n}. Note that, since the support of (X
′

t , Z
′

t) is compact by Assumption 3,

one can set the Mj = 0 for j's such that I1
j 's are outside the support of (X

′

t , Z
′

t), where I
1
j 's and

Mj 's are the same as de�ned in Corollary 2.7.4 in Van der Vaart and Wellner (1996). Pick any

V ∈ R such that (dx + dz)/ph ≤ V < 2, then it follows that

logN[](
ε

2
, Bn(h0), || · ||2) . ε−V δVh,n

by the de�nition ofBn(h0). This bound results in that
∫ 1

0

√
logN( ε2 , Bn(h0), || · ||2)dε . δV/2h,n

∫ 1

0
ε−V/2dε =

O(δ
V/2
h,n ) by the condition on V . Therefore,

J[](1,Lu,n, || · ||2) .
∫ 1

0

√
max(km,n, kr,n) log(1 +

C

ε
) +

∫ 1

0

√
logN(

ε

2
, Bn(h0), || · ||2)dε

.
√

max(km,n, kr,n) +
√
δVh,n.

Applying Theorem 2.14.2 in Van der Vaart and Wellner (1996) yields that

E

[
sup

θ∈Θn,h∈B̃n(h0)

|µn[lu(Wi, θ, h)]|

]
.

1√
n
J[](1,Lu,n, || · ||2) = O

√max(km,n, kr,n)

n
+

√
δVh,n
n

 ,

and thus one can set η0,n =
√

max(km,n,kr,n)
n +

√
δVh,n
n by the Markov inequality. By Assumption 5,

one obtains that η0.n → 0. For the second condition in Assumption C.3, note that

sup
θ∈Θn,h∈B̃n(h0)

|E[lu(Wi, θ, h)− lu(Wi, θ, h0)]|

≤ sup
θ∈Θn,h∈B̃n(h0)

max(u, 1− u)
∑
t

E|m(Xit, r(Xi, h(Xit, Zit)))−m(Xit, r(Xi, h0(Xit, Zit, )))|

≤ O (ζ1,m(km,n) · ζ1,r(kr,n) · δh,n)

and that ζ1,m(km,n) · ζ1,r(kr,n) · δh,n = o(1) by Assumption 6. Letting η1,n = ζ1,m(km,n) · ζ1,r(kr,n) ·
δh,n implies Assumption C.3. In all, all conditions in Proposition B.1 are satis�ed, and hence

dΘ.∞(θ̂n, θ0) = op(1). �

A.2 Proof of Theorem 6.2

Let δ∗h,n be the L2-convergence rate of ĥn. De�ne B1,K1,n(h0) ≡ {h ∈ H : ||h−h0||2 ≤ K1δ
∗
h,n}∩Hn,

B2,K2,n(θ0) ≡ {θ ∈ Θ : ||θ − θ0||Θ,2 ≤ K2} ∩Θn, and B2,K2,0(θ0) ≡ {θ ∈ Θ : ||θ − θ0||Θ,2 ≤ K2}.
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Proof. Since Assumptions 2�6 are su�cient for Assumptions C.1�C.3, it remains to show that

Assumption C.4 holds. For condition (i) in Assumption C.4, observe that

sup
h∈B1,K1,n

(h0)

|E[lu(W, πnθ0, h)− lu(W, θ0, h)]|2

. sup
h∈B1,K1,n

(h0)

max(u, 1− u)E
∑
t

|πnm0(Xit, πnr0(Xi, h(Xit, Zit)))−m0(Xit, r0(Xi, h(Xit, Zit)))|2

.O
(
k−2(pm/(dx+1))
m,n

)
+O

(
k−2(pr/(Tdx+1)
r,n

)
by Assumptions 4 and 5. Thus, one can set δ2

2,n � k
−2(pm/(dx+1))
m,n +k

−2(pr/(Tdx+1))
r,n , and it is obvious

that δ2n = o(1).

For condition (ii) in Assumption C.4, pick any θ ∈ B2,K2,n(θ0) and δ, δ̃ > 0 such that δ̃ <

||θ − θ0||Θ,2 < δ. Note that

E[lu(W, θ, h)− lu(W, θ0, h)] = E[lu(W, θ, h)− lu(W, θ0, h0) + lu(W, θ0, h0)− lu(W, θ0, h)]

and that

sup
h∈B1,K1,n

(h0)

E[lu(W, θ, h)−lu(W, θ0, h0)] ≤ sup
h∈B1,K1,n

(h0)

sup
{θ∈B2,K2,0

(θ0):δ̃<||θ−θ0||Θ,2<δ}
E[lu(W, θ, h)−lu(W, θ0, h0)].

Then, by applying Knight's identity with Assumption 3, there exists a �nite constant C̃ > 0 such

that

sup
{θ∈B2,K2,0

(θ0):δ̃<||θ−θ0||<δ}
E[lu(W, θ, h)− lu(W, θ0, h0)] ≤ −C̃||α− α0||2A,2 ≤ −C̃||θ − θ0||2Θ,2,

where the �rst inequality holds by Assumption 4 and the second inequality holds by de�nition

of the norms. Since 0 < δ̃ < δ, there exists a �nite constant Cδ > 0 such that δ̃ > δ/Cδ.

Therefore, E[lu(W, θ, h) − lu(W, θ0, h0)] ≤ −Cδ2 with C = C̃/Cδ > 0. Next, letting vit =

m0(Xit, r0(Xi, h0(Xit, Zit)))−m(Xit, r(Xi, h(Xit, Zit))), it can be shown that by Assumption 3-(ii),

E[lu(W, θ0, h0)− lu(W, θ0, h)] ≤ f̄
∑
t

Ev2
it . ||h0 − h||22 ≤ K1δ

∗2
h,n

uniformly over B1,K1,n(h0). Therefore,

sup
h∈B1,K1,n

(h0)

E[lu(W, θ, h)− lu(W, θ0, h)] ≤ K1δ
∗2
h,n − Cδ2

for some constant C > 0, and thus condition (ii) in Assumption C.4 is met with δ1,n � δ∗h,n.
I consider condition (iii) in Assumption C.4. De�ne L̃u,n ≡ {lu(W, θ, h) − lu(W, θ, h0) : θ ∈

B2,K2,n(θ0), h ∈ B1,K1,n(h0)}. Then, For any θ, θ̃ ∈ B2,K2,n(θ0) and h, h̃ ∈ B1,K1,n(h0), one obtains
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that

|{lu(W, θ, h)− lu(W, θ, h0)} − {lu(W, θ̃, h̃)− lu(W, θ̃, h0)}|

≤ |lu(W, θ, h)− lu(W, θ̃, h̃)|+ |lu(W, θ, h0)− lu(W, θ̃, h0)|

≤ |
∑
t

{m(Xit, r(Xi, h(Xit, Zit)))− m̃(Xit, r̃(Xi, h̃(Xit, Zit)))}|

+ |
∑
t

{m(Xit, r(Xi, h0(Xit, Zit)))− m̃(Xit, r̃(Xi, h0(Xit, Zit)))}|

. T · A(Xi, Zit)
2
· ||α− α̃||2A,E , (22)

where the last inequality holds by Assumption 4-(ii) and the Cauchy-Schwarz inequality. It is

straightforward to see that, by Assumptions 5 and 6,

|lu(W, θ, h)− lu(W, θ, h0)| ≤ |m(Xit, r(Xi, h(Xit, Zit)))−m(Xit, r(Xi, h0(Xit, Zit)))| . Fn(W),

(23)

where Fn(W) ≡ C ·|∂γφkm,n(x, γ)|·|∂pbkr,n(x, p)|·δ∗h,n for some C > 0 is an envelope function of L̃u,n,
and hence ||Fn(W)||2 . ζ1,m(km,n) ·ζ1,r(kr,n) ·δ∗h,n. I make use of Theorem 2.14.2 in Van der Vaart

and Wellner (1996) to obtain the convergence rate δn in condition (iii) of Assumption C.4. To this

end, it remains to calculate J[](1, L̃u,n, ||·||2). By equation (22) and Theorem 2.7.11 in Van der Vaart

and Wellner (1996), N[](ε||Fn||2, L̃u,n, || · ||2) ≤ N( εC ||Fn||2,Mn,K2
, || · ||2)×N( εC ||Fn||2,Rn,K2

, || ·
||2)× ε

C ||Fn||2, B1,K1n(h0), || · ||2). By Lemma 2.5 in Van de Geer (2000), one obtains that

J[](1, L̃u,n, || · ||2)

=

∫ 1

0

√
1 + logN[](ε||Fn||2, L̃u,n, || · ||2)dε

.
∫ 1

0

√
logN(

ε

C
||Fn||2,Mn,K2

, || · ||2) + logN(
ε

C
||Fn||2,Rn,K2

, || · ||2) + logN(
ε

C
||Fn||2, B1,K1n(h0), || · ||2)dε

=

∫ ||Fn||2/C
0

√
logN(ε,Mn,K2

, || · ||2) + logN(ε,Rn,K2
, || · ||2) + logN(ε, B1,K1n(h0), || · ||2)dε · C

||Fn||2
.
{√

km,n +
√
kr,n +

√
δ∗h,n

}
.

Applying Theorem 2.14.2 in Van der Vaart and Wellner (1996) yields that

E

[
sup

θ∈B2,K2,n
(θ0),h∈B1,K1,n

(h0)

|µn[lu(W, θ, h)− lu(W, θ, h0)]|

]

. O

((√
km,n +

√
kr,n + 1

)
· 1√

n
||Fn||2

)
= O

((√
km,n +

√
kr,n

)
· 1√

n
· ζ1,m(km,n) · ζ1,r(kr,n) · δ∗h,n)

)
≤ O

(((√
km,n +

√
kr,n

)
· 1√

n

)2

+
(
ζ1,m(km,n) · ζ1,r(kr,n) · δ∗h,n

)2)
,

where the last inequality holds by the fact that ab ≤ (a + b)2 for any a, b > 0. Therefore, one can
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set δ2
n �

((√
km,n +

√
kr,n

)
· 1√

n

)2

+
(
ζ1,m(km,n) · ζ1,r(kr,n) · δ∗h,n

)2

.

Lastly, I verify condition (iv) in Assumption C.4. I make use of Lemma 19.36 in Van der Vaart

(2000). Let B̃δ2,K2,n
(θ0) ≡ {θ ∈ B2,K2,n(θ0) : ||θ − θ0||Θ,2 ≤ δ} and B̃δ2,K2,0

(θ0) ≡ {θ ∈ B2,K2,0(θ0) :

||θ − θ0||Θ,2 ≤ δ}. De�ne Fn ≡ {lu(W, θ, h0)− lu(W, θ0, h0) : θ ∈ B̃δ2,K2,0
(θ0)}. Then,

sup
θ∈B̃δ2,K2,n

(θ0)

E
[
|lu(W, θ, h0)− lu(W, θ0, h0)|2

]
≤ sup
θ∈B̃δ2,K2,0

(θ0)

E
[
|lu(W, θ, h0)− lu(W, θ0, h0)|2

]
. sup
θ∈B̃δ2,K2,0

(θ0)

||θ − θ0||2Θ,2 ≤ δ2 (24)

under Assumption 4-(ii). Furthermore, Assumption 4-(i) implies that supω∈W,θ∈Θ |lu(w, θ, h0) −
lu(w, θ0, h0)| < ∞. It remains to calculate J[](Cδ,Fn, || · ||2). Equation (24) enables to apply

Theorem 2.7.11 in Van der Vaart and Wellner (1996), Let BδM,K2,n
(m0) ≡ {m ∈Mn : ||m−m0||2 ≤

min(δ,K2)} and BδR,K2,n
(r0) ≡ {r ∈ Rn : ||r − r0||2 ≤ min(δ,K2)}. Then, one can show that

N(Cδ, B̃δ2,K2,n
(θ0), || · ||Θ,2) ≤ N(C2 δ,B

δ
M,K2,n

(m0), || · ||2) ·N(C2 δ,B
δ
R,K2,n

(r0), || · ||2). By, together

with Assumption 5, Lemma 2.5 in Van de Geer (2000), one can show that N(C2 δ,B
δ
M,K2,n

(m0), || ·
||2) . km,n · log(1+ Ccm

δ ) and N(C2 δ,B
δ
R,K2,n

(r0), || · ||2) . kr,n · log(1+ Ccr
δ ) for some �nite constant

C > 0. Therefore,

J[](Cδ,Fn, || · ||2) =

∫ Cδ

0

√
1 + logN[](||l̄u||2ε,Fn, || · ||2dε .

√
max(km,n, kr,n)δ

by the same logic as earlier. Applying Lemma 19.36 in Van der Vaart (2000) leads to that

E

 sup
θ∈B̃δ2,K2,n

(θ0)

|µn [lu(W, θ, h0)− lu(W, θ0, h0)] |

 . 1√
n
J[](Cδ,Fn, ||·||2) .

1√
n

√
max(km,n, kr,n)δ,

and therefore one can set φn(δ) =
√

max(km,n, kr,n)δ. It is straightforward to see that the map δ 7→
δ−(1+ε)φn(δ) is decreasing for any ε ∈ (0, 1). Then, the condition (δθ,n)−2

√
max(km,n, kr,n)δθ,n .

√
n holds if one chooses δθ,n ≡

√
max(km,n,kr,n)

n , and Assumption 5 implies that δθ,n = o(1).

In all, by the fact that δ∗h,n ≤ ζ1,m(km,n) · ζ1,r(kr,n) · δ∗h,n and Proposition B.2, one obtains that

δ∗θ,n =

√
km,n
n

+ k−(pm/(dx+1))
m,n +

√
kr,n
n

+ k−(pr/(Tdx+1))
r,n + ζ1,m(km,n) · ζ1,r(kr,n) · δ∗h,n,

and this ends the proof. �

A.3 Proof of Theorem 6.4

To prove Theorem 6.4, it is required to verify Assumption C.5 in Section B. To this end, I present

several lemmas.

Lemma A.1. Suppose that the conditionsn in Theorem 6.4 hold. Then, equations (37) and (38)

in Assumption C.5 hold.
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Proof. By the de�nition of g∗ and using Knight's identity, one obtains that

lu(W, g∗, h)− lu(W, g, h)−∆2(W, g, h)[g∗ − g] = R2(W, g∗, g, h),

where ∆2(W, g, h)[g∗ − g] = ∆2(W, g, h)[±κn · u∗gn ] and R2(W, g∗, g, h) ≡ −
∑
t

∫ g∗−g
0

{1(Yt ≤
g(X, h(Xt, Zt)) + s) − 1(Yt ≤ g(X, h(Xt, Zt)))}ds. By de�nition, g∗ − g = ±κnu∗gn . Without loss

of generality, I assume that g∗ − g = κnu
∗
gn . Then, by the change of variable, s = κnq,

R2(W, g∗, g, h) = −κn
∑
t

∫ u∗gn

0

{1(Yt ≤ g(X, h(Xt, Zt)) + κnq)− 1(Yt ≤ g(X, h(Xt, Zt)))}dq

Therefore, (37) will hold if

sup
α∈Nα,n

|µn[R̃2(W, g, h)]| = op

(
n−1/2

)

where t R̃2(W, g, h) =
∑
t

∫ u∗gn
0
{1(Yt ≤ g(X, h(Xt, Zt)) + κnq) − 1(Yt ≤ g(X, h(Xt, Zt)))}dq. To

verify the condition, I apply Lemma 4.2 in Chen (2007). To this end, note that for any small δ > 0

and for any α ∈ Nα,

E

[
sup

α̃∈Nα,n,||α−α̃||A,∞≤δ
|R̃2(W, g, h)− R̃2(W, g̃, h̃)|2

]

≤E

[
sup

α̃∈Nα,n,||α−α̃||A,∞≤δ
|R2(W, g∗, g, h)−R2(W, g̃∗, g̃, h̃)|2

]

.E

[
sup

α̃∈Nα,n,||α−α̃||A,∞≤δ

∑
t

∫ u∗gn

0

|1(Yt ≤ g(X, h(Xt, Zt)) + κns)− 1(Yt ≤ g̃(X, h̃(Xt, Zt)) + κns)|ds

]

Note that by Assumption 4, for any x ∈ Supp(X) and zt ∈ Supp(Zt),

−A(x, zt) · δ ≤ g̃(x, h̃(xt, zt))− g(x, h(xt, zt)) ≤ A(x, zt) · δ

and that

g(x, h(xt, zt)) + A(x, zt) · δ ≥ g(x, h(xt, zt)) ≥ g(x, h(xt, zt))− A(x, zt) · δ.

Therefore,

|1(Yt ≤ g(X, h(Xt, Zt)) + κns)− 1(Yt ≤ g̃(X, h̃(Xt, Zt)) + κns)|

≤ 1(Yt ≤ g(X, h(Xt, Zt)) + κns+ A(X, Zt) · δ)− 1(Yt ≤ g(X, h(Xt, Zt)) + κns− A(X, Zt) · δ).
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This leads to that

E

[
sup

α̃∈Nα,n,||α−α̃||A,∞≤δ

∑
t

∫ u∗gn

0

|1(Yt ≤ g(X, h(Xt, Zt)) + κns)− 1(Yt ≤ g̃(X, h̃(Xt, Zt)) + κns)|ds

]

≤E

[
sup

α̃∈Nα,n,||α−α̃||A,∞≤δ

∑
t

1(u∗gn ≥ 0)

∫ u∗gn

0

|1(Yt ≤ g(X, h(Xt, Zt)) + κns)− 1(Yt ≤ g̃(X, h̃(Xt, Zt)) + κns)|ds

]

+ E

[
sup

α̃∈Nα,n,||α−α̃||A,∞≤δ

∑
t

1(u∗gn < 0)

∫ 0

u∗gn

|1(Yt ≤ g(X, h(Xt, Zt)) + κns)− 1(Yt ≤ g̃(X, h̃(Xt, Zt)) + κns)|ds

]

.E

[∑
t

∫ u∗gn

0

FYt|X,Zt(g(X, h(Xt, Zt)) + κns+ A(X, Zt) · δ))− FYt|X,Zt(g(X, h(Xt, Zt)) + κns− A(X, Zt) · δ)ds

]
.δ.

Therefore, condition (4.2.1) in Lemma 4.2 in Chen (2007) holds with s = 1/2 in its notation. By

Assumptions 4 and 6 and Theorem 2.7.1 in Van der Vaart and Wellner (1996), logN(Cε2,G, || ·
||∞) · logN(Cε2,H, || · ||∞) < ∞. In all, applying Lemma 4.2 in Chen (2007) results in that

supα∈Nα,n |µn[R̃2(W, g, h)]| = op
(
n−1/2

)
. This implies that (37) holds.

Recall that ∆2(W, g, h)[u∗gn ] =
∑
t{u− 1(Yt ≤ g(X, h(Xt, Zt))}u∗gn , and therefore

∆2(W, g, h)[u∗gn ]−∆2(W, g0, h0)[u∗gn ] =
∑
t

{1(Yt ≤ g0(X, h0(Xt, Zt)))− 1(Yt ≤ g(X, h(Xt, Zt)))}u∗gn .

By the same logic above, it follows that

sup
α∈Nα,n

|µn
[
∆2(W, g, h)[u∗gn ]−∆2(W, g0, h0)[u∗gn ]

]
| = op

(
n−1/2

)
,

which implies that it is Op(κn), and thus (38) also holds. �

Lemma A.2. Suppose that all conditions in Theorem 6.4 hold. Then, condition (ii) of Assumption

C.5 is satis�ed.

Proof. By (17) and Assumption 10, one can show that

K(g, h) = −E

[∫ g(X,Zt;h)−g0(X,Zt;h0)

0

FY ∗t |X,Zt(g0(X, Zt;h0) + s)− FY ∗t |X,Zt(g0(X, Zt;h0))ds

]

= −E

[∫ g(X,Zt;h)−g0(X,Zt;h0)

0

fY ∗t |X,Zt(g0(X, Zt;h0))s+ f
′

Y ∗t |X,Zt(g̃(X, Zt; h̃))s2ds

]

= −E
[
fY ∗t |X,Zt(g0(X, Zt;h0))

2
(g(X, Zt;h)− g0(X, Zt;h0))

2

]
− E[RK,1(X, Zt)],

where RK,1(X, Zt) ≡
∫ g(X,Zt;h)−g0(X,Zt;h0)

0
f
′

Y ∗t |X,Zt
(g̃(X, Zt;h0))s2ds and g̃(X, Zt; h̃) is between

g(X, Zt;h) and g0(X, Zt;h0). Similarly,

K(g∗, h) = −E
[
fY ∗t |X,Zt(g0(X, Zt;h0))

2
(g∗(X, Zt;h)− g0(X, Zt;h0))

2

]
− E[RK,2(X, Zt)]

with RK,2(X, Zt) ≡
∫ g∗(X,Zt;h)−g0(X,Zt;h0)

0
f
′

Y ∗t |X,Zt
(g̃∗(X, Zt; h̃

∗))s2ds for some g̃∗ and h̃∗. By the
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de�nition of g∗, one obtains that

K(g, h)−K(g∗, h) =
1

2

{
||g∗ − g0||2∆,2 − ||g − g0||2∆,2

}
+ E

[
±κnu∗gnfY ∗t |X,Zt(g0(X, Zt;h0)) (g(X, Zt;h)− g(X, Zt;h0))

]
+ E[RK,2(X, Zt)]− E[RK,1(X, Zt)].

Observe that

g(X, Zt;h)− g(X, Zt;h0) = ∂γm(Xt, r(X, h0(Xt, Zt))) · ∂pr(X, h0(Xt, Zt)) · (h− h0)

+

{
∂2
γm(Xt, r(X, h̄(Xt, Zt))) ·

(
∂pr(X, h̄(Xt, Zt))

)2
+ ∂γm(Xt, r(X, h̄(Xt, Zt))) · ∂2

pr(X, h̄(Xt, Zt))

}
· (h− h0)2,

where h̄ is between h and h0, and thus

K(g, h)−K(g∗, h) =
1

2

{
||g∗ − g0||2∆,2 − ||g − g0||2∆,2

}
+ E

[
±κnu∗gnfY ∗t |X,Zt(g0(X, Zt;h0))∂γm(Xt, r(X, h0(Xt, Zt))) · ∂pr(X, h0(Xt, Zt)) · (h− h0)

]
+ E[RK,2(X, Zt)−RK,1(X, Zt)± κnRK,3(X, Zt)]

with

RK,3(X, Zt) ≡
{
∂2
γm(Xt, r(X, h̃(Xt, Zt))) ·

(
∂pr(X, h̃(Xt, Zt))

)2

+ ∂γm(Xt, r(X, h̃(Xt, Zt))) · ∂2
pr(X, h̃(Xt, Zt))

}
× (h− h0)2 · u∗gnfY ∗t |X,Zt(g0(X, Zt;h0)|X, Zt).

By de�nition of Γ(α0)[vh, vg] in (20), it follows that

K(g, h)−K(g∗, h) = ∓κnΓ(α0)[(h− h0), u∗gn ] +
1

2

{
||g∗ − g0||2∆,2 − ||g − g0||2∆,2

}
+ E[RK,2(X, Zt)−RK,1(X, Zt)± κnRK,3(X, Zt)] + E[±κn ·RK,4(X, Zt)]

with

RK,4(X, Zt) = {∂γm(Xt, r(X, h0(Xt, Zt))) · ∂pr(X, h0(Xt, Zt))− ∂γm0(Xt, r0(X, h0(Xt, Zt))) · ∂pr0(X, h0(Xt, Zt))}

× fY ∗t |X,Zt(g0(X, Zt;h0)) · (h− h0).
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I �rst consider RK,1(X, Zt) and RK,2(X, Zt).

E[|RK,1(X, Zt)|] ≤ E

[∫ g(X,Zt;h)−g0(X,Zt;h0)

0

|f
′

Y ∗t |X,Zt(g̃(X, Zt;h0))s2|ds

]
. E

[
|g(X, Zt;h)− g0(X, Zt;h0)|3

]
. E

[
|g(X, Zt;h)− g0(X, Zt;h0)|2

]
· sup
x,zt

|g(x, zt;h)− g0(x, zt;h0)|,

where the second inequality holds by Assumption 10-(i). Then,

E
[
|g(X, Zt;h)− g0(X, Zt;h0)|2

]
. E

[
|g(X, Zt;h)− g(X, Zt;h0)|2

]
+ E

[
|g(X, Zt;h0)− g0(X, Zt;h0)|2

]
. ζ1,m(km,n)2 · ζ1,r(kr,n)2 · δ2

h,n + δ2
θ,n.

It follows that

sup |g(x, zt;h)− g(x, zt;h0)| . ζ1,m(km,n) · ζ1,r(kr,n) · δsup
h,n ,

and that

sup |g(x, zt;h0)− g0(x, zt;h0)| . (ζ0,m(km,n) + ζ0,r(kr,n)) · δθ,n

by Assumptions 4 and 5. Therefore, one obtains that E[|RK,1(X, Zt)|] = o(n−1) by Assumption 11.

Similarly,

E[|RK,2(X,Z)|] ≤
∑
t

∫ g∗(X,Zt;h)−g0(X,Zt;h0)

0

|f
′

Y ∗t |X,Zt(g̃
∗(X, Zt; h̃

∗))s2|ds

.
∑
t

E
[
|g∗(X, Zt;h)− g0(X, Zt;h0)|3

]
= o(n−1).

Now I consider E[|RK,3(X, Zt)|]. Note that

E[|RK,3(X, Zt)|] .
{
ζ2,m(km,n) · ζ1,r(kr,n)2 + ζ1,m(km,n) · ζ2,r(kr,n)

}
δ2
h,n = o(n−1/2)

by Assumption 11. Lastly, consider E[|RK,4(X, Zt)|]. By the Cauchy-Schwarz inequality,

E[|RK,4(X, Zt)|] .
√

E [G(X, Zt)2] · E [(h− h0)2]

where G(X, Zt) ≡ ∂γm(Xt, r(X, h0(Xt, Zt))) · ∂pr(X, h0(Xt, Zt)) − ∂γm0(Xt, r0(X, h0(Xt, Zt))) ·
∂pr0(X, h0(Xt, Zt)). Then, it follows that

E
[
G(X, Zt)

2
]
. E

[
∂pr(X, h0(Xt, Zt))

2 · {∂γm(Xt, r(X, h0(Xt, Zt)))− ∂m0(Xt, r(X, h0(Xt, Zt)))}2
]

+ E
[
{∂pr(X, h0(Xt, Zt))− ∂pr0(X, h0(Xt, Zt))}2

]
+ E

[
{r(X, h0(Xt, Zt))− r0(X, h0(Xt, Zt))}2

]
. ζ1,r(kr,n)2δ2

θ,n + δ2
θ,n +O

(
k−2(pr−1)/(Tdx+1)
r,n

)
+ δ2

θ,n

where the �rst inequality holds by Assumption 10 and the second inequality holds by Corollary 3.1
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in Chen and Christensen (2018). Therefore,

E[|RK,4(X, Zt)|] . ζ1,r(kr,n)δθ,nδh,n = o(n−1/2)

by Assumption 11. In all, it follows that

K(g, h)−K(g∗, h) = ∓κnΓ(β0)[(h− h0), u∗gn ] +
1

2

{
||g∗ − g0||2∆,2 − ||g − g0||2∆,2

}
+ o(n−1),

and thus Assumption C.5-(ii) holds. �

Proof of Thoerem 6.4

Proof. Assumption 7 restricts attention to the class of regular functionals. Note that for any vh ∈ V1

and vg ∈ V2, ||vh||1,∆ . ||vh||2 and ||vg||2,∆ . ||vg||2 under Assumption 3-(ii). Assumption 8,

together with Assumption 3-(ii), corresponds to Assumption 3.1 in Hahn et al. (2018a). Assumption

9 imply Assumption 3.3 in Hahn et al. (2018a). It remains to show that

∓κnΓ(α0)[(h− h0), u∗gn ] = ∓κnΓ(α0)[(h− h0,n), u∗gn ] + o(n−1).

Observe that

Γ(α0)[(h− h0), u∗gn ] = Γ(α0)[(h− h0,n), u∗gn ] + Γ(α0)[(h0,n − h0), u∗gn ]

and that∣∣∣Γ(α0)[(h0,n − h0), u∗gn ]
∣∣∣ =

∣∣∣∑
t

E[fY ∗t |X,Zt(m0(Xit, r0(Xi, h0(XiZit)))) · ∂γm0(Xit, r0(Xi, h0(XiZit)))

× ∂pr0(Xi, h0(XitZit)) · u∗gn · (h0,n − h0)]
∣∣∣

. sup |h0,n − h0| = o(n−1/2).

Therefore, ∓κnΓ(α0)[(h0,n − h0), u∗gn ] = o(n−1). This, together with Lemmas A.1 and A.2, implies

Assumption C.5, and the result follows by Proposition B.3. �

B Asymptotic Results in Hahn et al. (2018a)

In this section, I restate the asymptotic results in Hahn et al. (2018a) and Hahn et al. (2018b) to

make the proofs of the main results in this paper more concrete.

B.1 Consistency

I �rst present consistency and rate results in Hahn et al. (2018b). I slightly modify some parts of

assumptions if necessary, but such modi�cations do not a�ect the proof strategies in Hahn et al.

(2018b).
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Assumption C.1. (i) E[lu(Wi, α0)] > −∞; (ii) for all ε > 0, there exists some non-increasing

positive sequence cn(ε) such that for all n ≥ 1,

E[lu(Wi, α0)]− sup
{θ∈Θn:d(θ,θ0)≥ε}

E[lu(Wi, θ, h0)] ≥ cn(ε)

with lim infn cn(ε) > 0.

Assumption C.2. (i) θ0 ∈ Θ and d(·, ·) : Θ × Θ → R+ is a (pseudo-) metric; (ii) for all n ≥ 1,

Θn ⊆ Θn+1 ⊆ Θ and (iii) there exists πnθ0 ∈ Θn such that

|E[lu(Wi, πnθ0, h0)− lu(Wi, θ0, h0)]| = O(η2,n)

for some �nite positive non-increasing sequence η2,n with η2,n ↓ 0.

Assumption C.3. (i) There exists some �nite positive non-increasing sequence η0,n such that

η0,n ↓ 0 and supθ∈Θn,h∈Bn(h0) |En[lu(W, θ, h)]| = Op(η0,n); (ii) there is a �nite positive sequence

η1,n such that η1,n ↓ 0 and

sup
θ∈Θn,h∈Bn(h0)

|E[lu(Wi, θ, h)− lu(Wi, θ, h0)]| = O(η1,n).

Proposition B.1 (Consistency). Let u ∈ U be given. Suppose that Assumptions C.1, C.2 and C.3

hold. Then, d(θ̂n, θ0) = op(1).

Proof. See the proof of Theorem 5.1 in Hahn et al. (2018b). �

B.2 Rate of Convergence

I present a rate result which is similar to that of Hahn et al. (2018b), and the result is specialized

in the L2-convergence rate. Let B1,K1,n(h0) ≡ {h ∈ H : ||h− h0||2 ≤ K1δ
∗
h,n} ∩ Hn, B2,K2,n(θ0) ≡

{θ ∈ Θ : ||θ − θ0||2 ≤ K2} ∩ Θn, and B2,K2,0(θ0) ≡ {θ ∈ Θ : ||θ − θ0||2 ≤ K2}. To establish the

convergence rate of the two-step estimator, the following assumption is additionally required.

Assumption C.4. The following conditions hold:

(i) There exists some positive non-increasing sequence δ2
2,n such that

sup
h∈BK1

(h0)

|E[lu(W, πnθ0, h)− lu(W, θ0, h)]| = O(δ2
2,n)

for some constant K1 > 0;

(ii) for any small constant δ, δ̃ > 0 and for any θ ∈ BK2(θ0) with δ̃ < dΘ(θ, θ0) < δ, there exist

some positive non-increasing sequence δ1,n and �nite constants cK1,1, cK1,2 > 0 such that

sup
h∈B1,K1,n

(h0)

E[lu(W, θ, h)− lu(W, θ0, h)] ≤ cK1,1δ
2
1,n − cK1,2δ

2;

(iii) there exists a non-increasing sequence δn such that

sup
θ∈B2,K2,n

(θ0),h∈B1,K1,n
(h0)

|µn[lu(W, θ, h)− lu(W, θ, h0)]| = Op(δ
2
n);
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(iv) for all n large enough and for any su�ciently small δ,

E[ sup
{θ∈B2,K2,n

(θ0):||θ−θ0||2≤δ}
|µn[lu(W, θ, h0)− lu(W, θ0, h0)]| ≤ c1φn(δ)√

n
,

where c1 > 0 is some constant and φn(·) is some function such that δ−γφn(δ) is a decreasing

function for some γ ∈ (0, 2).

Assumption C.4 corresponds to Assumption 5.4 in Hahn et al. (2018b) with a minor modi�cation

for condition (ii).

Proposition B.2 (Convergence Rate). Let u ∈ U be given. Suppose that Assumptions C.1 � C.4

hold and that there exists a �nite non-increasing sequence δθ,n such that

(δθ,n)−2φn(δθ,n) ≤ c2
√
n.

If ||πnθ0 − θ0||Θ,2 = O(δ̃θ,n), then,

||θ̂n − θ0||Θ,2 = Op
(
δ∗θ,n

)
,

where δ∗θ,n ≡ δ1,n + δ2,n + δθ,n + δ̃n (or δ∗θ,n ≡ max
(
δ1,n, δ2,n, δθ,n, δ̃θ,n

)
).

Proof. I follow the proof of Theorem 5.2 in Hahn et al. (2018b). Let ω > 0 be a small constant.

Since θ̂n is consistent, one can choose a large KM > 0 such that

Pr(||θ̂n − θ0||Θ,∞ > KM ) ≤ ω. (25)

Since ||πnθ0−θ0||Θ,∞ = o(1), there exists a large constantKθ0 > 0 such that ||πnθ0−θ0||Θ,∞ < Kθ0 .

De�ne K∗M ≡ max(KM ,Kθ0) and

Θn(M) ≡ {θ ∈ Θn : 2Mδ∗θ,n < ||θ − θ0||Θ,2 < K∗M}.

Let IM,n(ω) ≡ Pr(||θ̂n − θ0||Θ,2 > 2Mδ∗θ,n). Then, by (25),

IM,n(ω) ≤ Pr(θ̂n ∈ Θn(M)) + ω. (26)

Claim B.1. Under the conditions,

IM,n(ω) ≤ Pr( sup
θ∈Θn,h∈B1,K1,n

(h0)

[I1,n(θ, h0) + I2,n(θ, h)] +K(δ2
n + δ2

2n) ≥ 0) + 5ω

for some constant K.

Proof of the Claim From the de�nition of θ̂n, one can choose some su�ciently large constant

K1 > 0 such that

Pr(Lu,n(θ̂n, ĥn)− Lu,n(πnθ0, ĥn) < 0) ≤ ω. (27)
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Combining (26) and (27), it follows that

IM,n(ω) ≤ Pr( sup
θ∈Θn(M)

Lu,n(θ, ĥn)− Lu,n(πnθ0, ĥn) ≥ 0) + 2ω. (28)

Considering the even in (28), it is straightforward to see that

Lu,n(θ, ĥn)− Lu,n(πnθ0, ĥn)

=µn[lu(W, θ, ĥn)− lu(W, πnθ0, ĥn)] + Lu,0(θ, ĥn)− Lu,0(πnθ0, ĥn)

=µn[lu(W, θ, ĥn)− lu(W, θ, h0)] + µn[lu(W, πnθ0, h0)− lu(W, πnθ0, ĥn)]

+ µn[lu(W, θ, h0)− lu(W, πnθ0, h0)]︸ ︷︷ ︸
=I1,n(θ,h0)

+Lu,0(θ, ĥn)− Lu,0(θ0, ĥn)︸ ︷︷ ︸
=I2,n(θ,ĥn)

+ Lu,0(θ0, ĥn)− Lu,0(πnθ0, ĥn). (29)

By Assumption C.4-(iii), one can choose a large constant K2 such that

Pr( sup
θ∈Θn(M)

µn[lu(W, θ, ĥn)− lu(W, θ, h0)] ≥ K2δ
2
n, ĥn ∈ N1,K1

)

≤ Pr( sup
θ∈B2,K∗

M
,n(θ0),h∈B1,K1,n

(h0)

|µn[lu(W, θ, h)− lu(W, θ, h0)]| ≥ K2δ
2
n) ≤ ω. (30)

Combining (28), (29), and (30), one obtains that

IM,n(ω) ≤ Pr




µn[lu(W, πnθ0, h0)− lu(W, πnθ0, ĥn)]

+Lu,0(θ0, ĥn)− Lu,0(πnθ0, ĥn)

+ sup
θ∈Θn(M)

[I1,n(θ, h0) + I2,n(θ, ĥn)] +K2δ
2
n

 ≥ 0, ĥn ∈ N1,K1

+ 4ω. (31)

By the de�nition of B2,K∗M ,n
(θ0), it is clear that πnθ0 ∈ B2,K∗M ,n

(θ0), and this, together with

Assumption C.4-(iii), implies that

Pr(µn[lu(W, πnθ0, h0)− lu(W, πnθ0, ĥn)] ≥ K2δ
2
n, ĥn ∈ N1,K1)

≤ Pr( sup
θ∈B2,K∗

M
,n(θ0),h∈B1,K1,n

(h0)

|µn[lu(W, θ, h0)− lu(W, θ, h)]| ≥ K2δ
2
n) ≤ ω. (32)

By the same argument for (31), one can show that

IM,n(ω) ≤ Pr




Lu,0(θ0, ĥn)− Lu,0(πnθ0, ĥn)

+ sup
θ∈Θn(M)

[I1,n(θ, h0) + I2,n(θ, ĥn)]

+2K2δ
2
n

 ≥ 0, ĥn ∈ B1,K1,n(h0)

+ 5ω. (33)

From Assumption C.4-(i), one can choose a large constant K3 such that

sup
h∈B1,K1,n

(h0)

|E[lu(W, θ0, h)− lu(W, πnθ0, h)]| ≤ K3δ
2
2n,
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and this implies that

Pr(Lu,0(θ0, ĥn)− Lu,0(πnθ0, ĥn) ≥ K3δ
2
2n, ĥn ∈ B1,K1,n(h0))

≤ Pr( sup
h∈B1,K1,n

(h0)

|E[lu(W, θ0, h)− lu(W, πnθ0, h)]| ≥ K3δ
2
2n) = 0.

Then, it follows that

IM,n(ω) ≤ Pr


 sup
θ∈Θn(M)

[I1,n(θ, h0) + I2,n(θ, ĥn)]

+2K2δ
2
n +K3δ

2
2n

 ≥ 0

+ 6ω (34)

by the same way as before. Therefore,

IM,n(ω) ≤ Pr


 sup
θ∈Θn(M)

[I1,n(θ, h0) + I2,n(θ, ĥn)]

+K(δ2
n + δ2

2n)

 ≥ 0, ĥn ∈ B1,K1,n(h0)

+ 6ω,

where K ≡ max{2K2,K3}. This ends the proof of the claim.

Claim B.2. Under the conditions,

Pr( sup
θ∈Θn(M),h∈B1,K1,n

(h0)

[I1,n(θ, h0) + I2,n(θ, h)] +K(δ2
n + δ2

2n) ≥ 0)

≤
∑

j≥M,2j−1·δ∗θ,n≤K
∗
M

Pr( sup
θ∈Θn,j

I1,n(θ, h0) ≥ cK1,222j −K − cK1,1)δ∗
2

θ,n,

where Θn,j ≡ {θ : 2jδ∗θ,n < ||θ − θ0||2 ≤ 2j+1δ∗θ,n}.

Proof of Claim Partition Θn(M) into countably in�nitely many disjoint pieces {Θn,j}∞j=M (i.e.

Θn(M) = ∪∞j=MΘn,j and Θn,j ∩Θn,j′ = ∅ for any j 6= j
′
). Then,

Pr( sup
θ∈Θn(M),h∈B1,K1,n

(h0)

[I1,n(θ, h0) + I2,n(θ, h)] +K(δ2
n + δ2

2n) ≥ 0)

≤
∑

j≥M,2j−1δ∗θ,n≤K
∗
M

Pr( sup
θ∈Θn,j ,h∈N1,K1

[I1,n(θ, h0) + I2,n(θ, h)] +K(δ2
n + δ2

2n) ≥ 0). (35)

Then, by Assumption C.4-(ii), one obtains that

sup
θ∈Θn,j ,h∈B1,K1,n

(h0)

I2,n(θ, h) = sup
θ∈Θn,j ,h∈B1,K1,n

(h0)

Lu,0(θ, h)− Lu,0(θ0, h)

≤ cK1,1δ
2
1n − cK1,2(2jδ∗θ,n)2

≤ (cK1,1 − cK1,222j)δ∗
2

θ,n. (36)

Combining (35) and (36) ends the proof of claim.
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Claim B.3. Under the conditions,

Pr( sup
θ∈Θn,j

I1,n(θ, h0) ≥ (cK1,222j −K − cK1,1)δ∗
2

θ,n) ≤ c1c2[2(j+1)γ +Kγ
ε ]

|cK1,2
22j −K − cK1,1|

where c denotes the generic constant and Kε is some constant.

Proof of Claim Using Markov inequity and triangular inequality results in

Pr( sup
θ∈Θn,j

I1,n(θ, h0) ≥ (cK1,222j −K − cK1,1)δ∗
2

θ,n) ≤
E[supθ∈Θn,j |µn[lu(W, θ, h0)− lu(W, πnθ0, h0)]|]

|(cK1,222j −K − cK1,1)δ∗
2

θ,n|

≤
E[supθ∈Θn,j |µn[lu(W, θ, h0)− lu(W, θ0, h0)]|]

|(cK1,222j −K − cK1,1)δ∗
2

θ,n|

+
E[|µn[lu(W, θ0, h0)− lu(W, πnθ0, h0)]|]

|(cK1,222j −K − cK1,1)δ∗
2

θ,n|
.

By Assumption C.4-(iv), it follows that

E[supθ∈Θn,j |µn[lu(W, θ, h0)− lu(W, θ0, h0)]|]
|(cK1,222j −K − cK1,1)δ∗

2

θ,n|
≤

c1φn(2j+1δ∗θ,n)
√
n|(cK1,222j −K − cK1,1)δ∗

2

θ,n|

=
c1(2j+1δ∗2n)γ

√
n|(cK1,222j −K − cK1,1)δ∗

2

θ,n|
·
φn(2j+1δ∗θ,n)

(2j+1δ∗θ,n)γ

≤ c1(2j+1)γ

|(cK1,222j −K − cK1,1)|
φn(δ∗θ,n)
√
nδ∗θ,n

≤ c1c2(2j+1)γ

|(cK1,222j −K − cK1,1)|
,

where the last two inequalities hold by the fact that δ 7→ φn(δ)/δγ is a decreasing function and the

de�nition of δθ,n.

Since ||πnθ0− θ0||Θ,2 = O(δ̃θ,n), choose Kε > 1 large enough so that ||πnθ0− θ0||2 ≤ Kεδ̃θ,n. By

C.4-(iv) and the same argument above, one obtains that

E[|µn[lu(W, θ0, h0)− lu(W, πnθ0, h0)]|]
|(cK1,222j −K − cK1,1)δ∗

2

θ,n|
≤

E[| supθ∈Θn:||θ−θ0||Θ,2≤Kεδ̃θ,n µn[lu(W, θ0, h0)− lu(W, θ, h0)]|]
|(cK1,222j −K − cK1,1)|

≤ c1c2K
γ
ε

|(cK1,222j −K − cK1,1)|
,

and therefore the claim holds. Then, it follows that

IM,n(ω) ≤
∑

j≥M,2j−1δ∗θ,n≤K
∗
M

c1c2[(2j+1)γ +Kγ
ε ]

|(cK1,222j −K − cK1,1)|
+ 5ω.

Since γ < 2, one can chooseM su�ciently large so that
∑
j≥M,2j−1δ∗θ,n≤K

∗
M

c1c2[(2j+1)γ+Kγ
ε ]

|(cK1,2
22j−K−cK1,1

)| ≤ ω,
which leads to that IM,n(ω) = Pr(||θ̂n − θ0||Θ,2 > 2Mδ∗θ,n) ≤ 6ω for su�ciently large n and M > 0.

This ends the proof. �
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B.3 Asymptotic Normality

The following assumption is a version of Assumption 3.2 in Hahn et al. (2018a), which is a high-level

assumption, that is needed to establish the asymptotic normality of functionals. For any g ∈ Ng,n,
let g∗ ≡ g ± κnu∗gn with κn = o(n−1/2), and recall that (u∗hn , u

∗
gn , u

∗
Γn

) ≡ ||vn||−1
sd (v∗hn , v

∗
gn , v

∗
Γn

).

Assumption C.5. (i) The following conditions hold:

sup
α∈Nα,n

∣∣∣∣∣µn [lu(W, g∗, h)− lu(W, g, h)−∆2(W, g, h)[±κnu∗gn ]
] ∣∣∣∣∣ = Op(κ

2
n), (37)

sup
α∈Nα,n

∣∣∣∣∣µn [∆2(W, g, h)[u∗gn ]−∆2(W, g0, h0)[u∗gn ]
] ∣∣∣∣∣ = Op(κn); (38)

(ii) de�ne K(g, h) ≡ E[lu(W, g, h)− lu(W, g0, h0)]. Then, uniformly over (h, g) ∈ Nα,n,

K(g, h)−K(g∗, h) = ∓κnΓ(α0)[h− ho,n] +
||g∗ − g0||22,∆ − ||g − g0||22,∆

2
+O(κ2

n).

Proposition B.3. Suppose that Assumptions 7, 8, 9, and C.5 hold. Then,

√
n
f(α̂n)− f(α0)

||v∗n||sd
d→ N(0, 1).

Proof. This result is a direct consequence of Theorem 3.1 in Hahn et al. (2018a). �
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