Introduction
 The model
 Linear-quadratic framework
 Model analysis
 Conclusion

 0000000000000
 0000000
 0000000
 0000000
 000000
 000000

Gains from Monetary Policy Cooperation under Dollar Pricing

Myunghyun Kim

Sungkyunkwan University

May 2021

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction •000000000000	The model	Linear-quadratic framework 0000000	Model analysis	Conclusion 00000
Introduction				
Definitions				

- Producer currency pricing (PCP): Firms set all prices in their own currency
- Local currency pricing (LCP): Home (Foreign) firms set export prices in Foreign (Home) currency and domestic prices in their own currency
- Dollar pricing (DP): Home firms set all prices in their own currency (PCP), while Foreign firms set export prices in Home currency and domestic prices in their own currency (LCP)
 - Under DP, every international trade transaction is priced in U.S. dollars (Home currency)

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Introduction o●ooooooooooo	The model	Linear-quadratic framework 0000000	Model analysis 000000000000	Conclusion 00000
Introduction				
Motivation				

- Almost every international trade transaction is priced in U.S. dollars
 - Gopinath and Rigobon 2008: 90% of U.S. imports and 97% of U.S. exports are priced in U.S. dollars for the period 1994-2005
- This suggests that open economy models with symmetric export pricing, i.e. PCP models or LCP models, do not seem to be plausible
 - In symmetric export pricing models, more than one currency are used in international trade transactions

Introduction 000000000000	The model 000000	Linear-quadratic framework 0000000	Model analysis 0000000000000	Conclusion 00000
Introduction				
Motivation				

- Dominant role of the U.S. dollar in international trade can have significant influences on the transmission of shocks across countries, and hence welfare
- Nevertheless, most studies have not considered the dominant role of the U.S. dollar in international trade
 - Almost all researchers still use two-country models with symmetric export pricing (either PCP or LCP) to study optimal monetary policy in open economies

Introduction 000000000000	The model	Linear-quadratic framework 0000000	Model analysis	Conclusion 00000
Introduction				
Aim				

- Construct a two-country model with asymmetric export pricing (i.e. DP model)
- Derive quadratic loss functions of cooperative and noncooperative policymakers
- Compute welfare gains from monetary policy cooperation in the DP model, and examine
 - whether welfare gains from cooperation exist
 - whether the gains are larger than those in the LCP and PCP models
 - whether Home (U.S.) gains are greater than Foreign (rest of the world) gains

Introduction 000000000000	The model	Linear-quadratic framework 0000000	Model analysis	Conclusion 00000
Introduction				
Literature				

- Related to the literature on optimal monetary policy in open economies and export price setting
 - PCP: Clarida, Galí and Gertler (2002), Benigno and Benigno (2006), etc.

• LCP: Engel (2011), Fujiwara and Wang (2017), etc.

Introduction 000000000000	The model	Linear-quadratic framework 0000000	Model analysis 0000000000000	Conclusion 00000
Introduction				
Literature				

- Few studies assume DP
 - Corsetti and Pesenti (2007), Devereux, Shi and Xu (2007), Goldberg and Tille (2009): consider one-period stochastic models with one-period ahead price setting (and thus fully sticky prices)
 - Mukhin (2018): Do not utilize the linear-quadratic framework, do not explicitly calculate the welfare gains, and focuse only on cooperation
 - Egorov and Mukhin (2020): Do not utilize the linear-quadratic framework, do not explicitly calculate the welfare gains and assume the U.S. as a small open economy
 - $\Rightarrow\,$ This paper is complementary to Mukhin (2018) and Egorov and Mukhin (2020)

Introduction 000000●000000	The model	Linear-quadratic framework 0000000	Model analysis	Conclusion 00000
Introduction				
Illustration				

• PCP model

- Exist the inefficiency arising from the internal relative price (P_F/P_H) misalignments
 - National CB can manipulate the internal relative price to improve its welfare through nominal exchange rate adjustment
 - Note that the internal relative price and the terms of trade are equalized under PCP since LOOP holds

 \Rightarrow Small gains from monetary policy cooperation

Introduction 0000000000000	The model	Linear-quadratic framework 0000000	Model analysis 0000000000000	Conclusion 00000
Introduction				
Illustration				

- LCP model
 - Does not exist the inefficiency arising from the internal relative price misalignments
 - Import prices are set in local currencies \rightarrow CB cannot control the price to improve welfare through nominal exchange rate adjustment
 - Do exist the inefficiency arising from currency misalignments (deviations from the LOOP)
 - LOOP does not hold → CB can engineer the currency misalignments to improve welfare through nominal exchange rate adjustment
- \Rightarrow Small gains from cooperation but larger than PCP model

Introduction 00000000●0000	The model	Linear-quadratic framework 0000000	Model analysis 0000000000000	Conclusion 00000
Introduction				
Illustration				

- DP model
 - Exist the inefficiencies arising from both the internal relative price and currency misalignments
 - LOOP partially holds. LOOP for Home goods holds but that for Foreign goods does not hold
 - Home cannot control the internal relative price, since its import prices are set in Home currency by Foreign firms
 - But Foreign can control the internal relative price through nominal exchange rate adjustment, because its import prices are set in Home currency

Introduction 00000000000000	The model	Linear-quadratic framework 0000000	Model analysis	Conclusion 00000
Introduction				
Illustration				

- DP model
 - Since LOOP for Foreign goods does not hold, Foreign can control currency misalignments by adjusting the nominal exchange rate
 - But Home cannot, because LOOP for Home products holds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction 000000000●00	The model	Linear-quadratic framework 0000000	Model analysis	Conclusion 00000
Introduction				
Illustration				

- In the DP model, there is one more inefficiency compared to the PCP and LCP models
- $\Rightarrow\,$ Gains from cooperation are greater than those in the PCP and LCP models
 - Only Foreign can control both the internal relative price and currency misalignments through nominal exchange rate adjustment

- \Rightarrow Rationalize the fact that the U.S. designates currency manipulators to protect its welfare
- \Rightarrow Home gains are larger

Introduction 000000000000	The model	Linear-quadratic framework 0000000	Model analysis 0000000000000	Conclusion 00000
Introduction				
Illustration				

- Under log utility, unitary elasticity of substitution between Home and Foreign goods and no home bias, there are no gains from cooperation in the PCP and LCP models
 - In the PCP model with log utility and unitary elasticity of substitution, the internal relative price interdependence is absent → no gains from cooperation
 - In symmetric models such as the LCP and PCP models, the Home internal relative price and the inverse of the Foreign internal relative price are equal → combining this and no home bias generates constant real exchange rate → there are no deviations from the LOOP in the LCP model → no gains from cooperation

Introduction 000000000000●	The model	Linear-quadratic framework 0000000	Model analysis 0000000000000	Conclusion 00000
Introduction				
Illustration				

- In the DP model, the internal relative price interdependence disappears under the conditions
- However, there are still currency misalignments
 - Thanks to the asymmetry of the DP model, the LOOP still does not hold for Foreign products

⇒ There are gains from monetary policy cooperation even under the conditions

Introduction	The model	Linear-quadratic framework	Model analysis	Conclusion
000000000000	00000	000000	000000000000	00000
The model				

The model

<□ > < @ > < E > < E > E のQ @

Introduction	The model 0●0000	Linear-quadratic framework 0000000	Model analysis 0000000000000	Conclusion 00000
The model				
Overview				

- The world economy consists of two countries: Home (U.S.) and Foreign (rest of the world)
- Home and Foreign are symmetric with exception of export pricing
 - Firms in Home set all prices in their own currency, while those in Foreign set export prices in Home currency and domestic prices in their own currency
 - Hence, only Home currency (U.S. dollar) is used in international trade
- The population size in each country is normalized to one and asset markets are complete

Introduction 0000000000000	The model 00●000	Linear-quadratic framework 0000000	Model analysis	Conclusion 00000
The model				
Households				

• Utility:

$$W_{H} = \mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \left[\frac{C_t^{1-\sigma}}{1-\sigma} - \chi \frac{h_t^{1+\omega}}{1+\omega} \right]$$
(1)

• Aggregate consumption:

$$C_{t} = \left\{ (1 - \gamma)^{\frac{1}{\eta}} C_{H,t}^{\frac{\eta-1}{\eta}} + \gamma^{\frac{1}{\eta}} C_{F,t}^{\frac{\eta-1}{\eta}} \right\}^{\frac{\eta}{\eta-1}}$$
(2)

• LOOP partially holds

$$P_{H,t} = E_t P_{H,t}^*, \quad P_{F,t} \neq E_t P_{F,t}^* \tag{3}$$

Introduction 0000000000000	The model 000●00	Linear-quadratic framework 0000000	Model analysis 0000000000000	Conclusion 00000
The model				

Relative prices

• Home and Foreign currency misalignment (deviations from the LOOP):

$$m_t = rac{E_t P_{H,t}^*}{P_{H,t}} = 1, \quad m_t^* = rac{E_t P_{F,t}^*}{P_{F,t}}$$
 (4)

• Home and Foreign internal relative prices, s_t and s_t^* :

$$s_t = \frac{P_{F,t}}{P_{H,t}}, \quad s_t^* = \frac{P_{H,t}^*}{P_{F,t}^*}$$
 (5)

• Home and Foreign terms of trade, au_t and au_t^* , are

$$\tau_t = \frac{P_{F,t}}{E_t P_{H,t}^*}, \quad \tau_t^* = \frac{E_t P_{H,t}^*}{P_{F,t}}$$
(6)

Note that $au_t = s_t$ but $au_t^* \neq s_t^*$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction 0000000000000	The model 0000●0	Linear-quadratic framework 0000000	Model analysis 000000000000	Conclusion 00000
The model				
Firms				

• Production:

$$Y_t(j) = \exp(z_t) h_t(j) \tag{7}$$

• Firms' resource constraints:

$$Y_t(j) = C_{H,t}(j) + C^*_{H,t}(j)$$
(8)

Introduction	The model	Linear-quadratic framework	Model analysis	Conclusion
000000000000	00000	000000	000000000000	00000

Price setting and aggregate resource constraints

• Home firm
$$j$$
 maximizes

$$\mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \theta^{t-t_0} Q_{t_0,t} \left[(1+\mu) P_{H,t_0}(j) \left\{ C_{H,t}(j) + C_{H,t}^*(j) \right\} - MC_t Y_t(j) \right]$$
(9)

• Foreign firm *j** maximizes

$$\mathbb{E}_{t_{0}}\sum_{t=t_{0}}^{\infty}\theta^{t-t_{0}}Q_{t_{0},t}^{*}\left[(1+\mu)\left\{P_{F,t_{0}}^{*}(j^{*})C_{F,t}^{*}(j^{*})+\frac{P_{F,t_{0}}(j^{*})}{E_{t}}C_{F,t}(j^{*})\right\}-MC_{t}^{*}Y_{t}^{*}(j^{*})\right]$$
(10)

• Aggregate resource constraints:

$$Y_{t} = \Delta_{t} C_{H,t} + \Delta_{t} C_{H,t}^{*}, \quad Y_{t}^{*} = \Delta_{F,t} C_{F,t} + \Delta_{F,t}^{*} C_{F,t}^{*}$$
(11)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

troduction	The model	Linear-quadratic framework	Model analysis	Conclusion
000000000000	000000	000000	0000000000000	00000

Linear-quadratic framework

Introduction	The model	Linear-quadratic framework	Model analysis	Conclusion
000000000000	000000	000000	000000000000	00000

Linear constraints

• NKPCs:

$$\begin{aligned} \hat{\pi}_{H,t} &= \beta \mathbb{E}_t \left[\hat{\pi}_{H,t+1} \right] + \delta \left\{ (\sigma + \omega) \hat{Y}_t - (1 + \omega) z_t - \gamma (1 - \eta \sigma) \left(\hat{s}_t^* - \hat{e}_t \right) - \gamma (1 - \eta \sigma) \hat{m}_t^* \right\} \\ (12) \\ \hat{\pi}_{F,t}^* &= \beta \mathbb{E}_t \left[\hat{\pi}_{F,t+1}^* \right] + \delta \left\{ (\sigma + \omega) \hat{Y}_t^* - (1 + \omega) z_t^* + \gamma (1 - \eta \sigma) \left(\hat{s}_t^* - \hat{e}_t \right) - \gamma \eta \sigma \hat{m}_t^* \right\} \\ (13) \\ \hat{\pi}_{F,t} &= \beta \mathbb{E}_t \left[\hat{\pi}_{F,t+1} \right] + \delta \left\{ (\sigma + \omega) \hat{Y}_t^* - (1 + \omega) z_t^* + \gamma (1 - \eta \sigma) \left(\hat{s}_t^* - \hat{e}_t \right) + (1 - \gamma \eta \sigma) \hat{m}_t^* \right\} \\ (14) \end{aligned}$$

・ロ> < 回> < 回> < 回> < 回> < 回

Introduction	The model	Linear-quadratic framework	Model analysis	Conclusion
0000000000000	000000	000000	000000000000	00000

Linear constraints

$$\hat{Y}_t - \hat{Y}_t^* + \eta(1-\gamma)\hat{\rho}_{H,t} + \eta\gamma\hat{\rho}_{H,t}^* - \frac{1-2\gamma}{\sigma}\hat{e}_t - \eta(1-\gamma)\hat{\rho}_{F,t}^* - \eta\gamma\hat{\rho}_{F,t} = 0 \quad (15)$$

$$\hat{\pi}_{H,t} = \hat{\pi}_t + \hat{\rho}_{H,t} - \hat{\rho}_{H,t-1}$$
 (16)

$$\hat{\pi}_{H,t}^* = \hat{\pi}_t^* + \hat{p}_{H,t}^* - \hat{p}_{H,t-1}^*$$
(17)

$$\hat{\pi}_{F,t}^* = \hat{\pi}_t^* + \hat{\rho}_{F,t}^* - \hat{\rho}_{F,t-1}^*$$
(18)

$$\hat{\pi}_{F,t} = \hat{\pi}_t + \hat{\rho}_{F,t} - \hat{\rho}_{F,t-1}$$
 (19)

$$(1-\gamma)\hat{\rho}_{H,t}+\gamma\hat{\rho}_{F,t}=0 \tag{20}$$

$$(1 - \gamma)\hat{\rho}_{F,t}^* + \gamma \hat{\rho}_{H,t}^* = 0$$
(21)

$$\hat{p}_{H,t} = \hat{p}_{H,t}^* + \hat{e}_t$$
 (22)

$$\hat{m}_t^* = \hat{\rho}_{F,t}^* + \hat{e}_t - \hat{\rho}_{F,t}$$
(23)

$$\hat{s}_t^* = \hat{\rho}_{H,t}^* - \hat{\rho}_{F,t}^* \tag{24}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 目 めんの

Introduction

The model

Linear-quadratic framework

Model analysis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Conclusion

Quadratic loss functions

• Under cooperation:

$$\mathcal{L}^{W} = \frac{1}{2} \mathbb{E}_{t_{0}} \sum_{t=t_{0}}^{\infty} \beta^{t-t_{0}} \begin{bmatrix} (1+\omega) \left(\hat{Y}_{t} - z_{t}\right)^{2} + (1+\omega) \left(\hat{Y}_{t}^{*} - z_{t}^{*}\right)^{2} + \Gamma \Sigma^{2} \hat{e}_{t}^{2} \\ + \frac{\varepsilon}{\delta} \left\{ \hat{\pi}_{H,t}^{2} + (1-\gamma) \hat{\pi}_{F,t}^{*2} + \gamma \hat{\pi}_{F,t}^{2} \right\} + \Gamma \left(\eta \hat{\rho}_{F,t} - \frac{\hat{e}_{t}}{\sigma} - \eta \hat{\rho}_{F,t}^{*} \right)^{2} \\ + (\sigma - 1) \left\{ \left(\hat{Y}_{t} + \gamma \Sigma \hat{e}_{t} + \eta \hat{\rho}_{H,t} \right)^{2} + \left(\hat{Y}_{t}^{*} - \gamma \Sigma \hat{e}_{t} + \eta \gamma \hat{\tau}_{t} \right)^{2} \right\} \\ + \eta (1-\eta) \left\{ (1-\gamma) \hat{\rho}_{H,t}^{2} + \gamma \hat{\rho}_{F,t}^{2} + (1-\gamma) \hat{\rho}_{F,t}^{*2} + \gamma \hat{\rho}_{H,t}^{*2} \right\} \\ + t.i.p + \mathcal{O} \left(||\xi_{t}||^{3} \right)$$
(25)

Quadratic loss functions

• Home loss function under noncooperation:

$$L = \frac{1}{2} \mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \begin{bmatrix} \{1 - \Omega_1(1+\omega)\}(1+\omega)\left(\hat{Y}_t - z_t\right)^2 + (1 - \omega\Omega_1)\Gamma\Sigma^2 \hat{e}_t^2 \\ + \frac{\varepsilon}{\delta}(1 - (1+\omega)\Omega_1)\hat{\pi}_{H,t}^2 + \frac{\varepsilon}{\delta}((1-\gamma)\omega\Omega_1 - \Omega_3)\hat{\pi}_{F,t}^{*2} \\ + \gamma \frac{\varepsilon}{\delta}(\omega\Omega_1 + \Omega_2)\hat{\pi}_{F,t}^2 + \Gamma\omega\Omega_1\left(\eta\hat{\rho}_{F,t} - \frac{\hat{e}_t}{\sigma} - \eta\hat{\rho}_{F,t}^*\right)^2 \\ + (\sigma - 1)\left\{\hat{Y}_t + \gamma\Sigma\hat{e}_t + \eta\hat{\rho}_{H,t}\right\}^2 \\ + (1 - \eta)(\eta(1 - \omega\Omega_1) - \Omega_2)\left\{(1 - \gamma)\hat{\rho}_{H,t}^{*2} + \gamma\hat{\rho}_{F,t}^{*2}\right\} \\ + (1 - \eta)\left(\eta\omega\Omega_1 + \frac{1}{\gamma}\gamma\Omega_2\right)\left\{(1 - \gamma)\hat{\rho}_{H,t}^2 + \gamma\hat{\rho}_{F,t}^{*2}\right\} \\ + \Omega_1\left\{(1 - \sigma)\hat{Y}_t - \sigma\gamma\Sigma\hat{e}_t + (1 - \sigma\eta)\hat{\rho}_{H,t}\right\}^2 \\ - \Omega_3\left\{(\omega + 1)(\hat{Y}_t^* - z_t^*) + \gamma\left(\eta\hat{\rho}_{F,t} - \frac{\hat{e}_t}{\sigma} - \eta\hat{\rho}_{F,t}^*\right)\right\}^2 \\ + \gamma\Omega_2\left\{(\omega + 1)(\hat{Y}_t^* - z_t^*) - (1 - \gamma)\left(\eta\hat{\rho}_{F,t} - \frac{\hat{e}_t}{\sigma} - \eta\hat{\rho}_{F,t}^*\right)\right\}^2 \\ - \gamma\Omega_2\left\{(1 - \sigma)\left(\hat{Y}_t + \gamma\Sigma\hat{e}_t + \eta\hat{\rho}_{H,t}\right) + (1 - \eta)\hat{\rho}_{F,t}\right\}^2 \\ + t.i.p + \mathcal{O}\left(||\xi_t||^3\right),$$

Introduction	The model	Linear-quadratic framework	Model analysis	Conclusion
000000000000	000000	0000000	000000000000	00000

Quadratic loss functions

• Foreign loss function under noncooperation:

$$\mathcal{L}^{*} = \frac{1}{2} \mathbb{E}_{t_{0}} \sum_{t=t_{0}}^{\infty} \beta^{t-t_{0}} \begin{cases} \Omega_{1} \left\{ (\omega+1)(\hat{Y}_{t}-z_{t}) \right\}^{2} + (1+\omega) \left(\hat{Y}_{t}^{*}-z_{t}^{*}\right)^{2} + \omega \Omega_{1} \Gamma \Sigma^{2} \hat{e}_{t}^{2} \\ + \frac{\varepsilon}{\delta} (1+\omega) \Omega_{1} \hat{\pi}_{H,t}^{2} + \frac{\varepsilon}{\delta} (\Omega_{3} + (1-\gamma)(1-\omega\Omega_{1})) \hat{\pi}_{F,t}^{*2} \\ + \gamma \frac{\varepsilon}{\delta} ((1-\omega\Omega_{1}) - \Omega_{2}) \hat{\pi}_{F,t}^{2} \\ + \gamma \frac{\varepsilon}{\delta} ((1-\omega\Omega_{1}) - \Omega_{2}) \hat{\pi}_{F,t}^{2} \\ + (1-\omega\Omega_{1}) \left(\eta \hat{\rho}_{F,t} - \frac{\hat{e}_{t}}{\sigma} - \eta \hat{\rho}_{F,t}^{*} \right)^{2} \\ + (\sigma-1) \left\{ \hat{Y}_{t}^{*} - \gamma \Sigma \hat{e}_{t} + \eta \gamma \hat{\tau}_{t} \right\}^{2} \\ + (1-\eta) (\Omega_{2} + \eta \omega\Omega_{1}) \left\{ (1-\gamma) \hat{\rho}_{F,t}^{2} + \gamma \hat{\rho}_{F,t}^{*2} \right\} \\ + (1-\eta) (\eta (1-\omega\Omega_{1}) - \Omega_{2}) \left\{ (1-\gamma) \hat{\rho}_{H,t}^{2} + \gamma \hat{\rho}_{F,t}^{2} \right\} \\ + (1-\eta) (\eta (1-\omega\Omega_{1}) - \Omega_{2}) \left\{ (1-\gamma) \hat{\rho}_{H,t}^{2} + \gamma \hat{\rho}_{F,t}^{2} \right\} \\ - \Omega_{1} \left\{ (1-\sigma) \hat{Y}_{t} - \sigma \gamma \Sigma \hat{e}_{t} + (1-\sigma\eta) \hat{\rho}_{H,t} \right\}^{2} \\ - \Omega_{3} \left\{ (\omega+1) (\hat{Y}_{t}^{*} - z_{t}^{*}) + \gamma \left(\eta \hat{\rho}_{F,t} - \frac{\hat{e}_{t}}{\sigma} - \eta \hat{\rho}_{F,t}^{*} \right) \right\}^{2} \\ - \gamma \Omega_{2} \left\{ (\omega+1) (\hat{Y}_{t}^{*} - z_{t}^{*}) - (1-\gamma) \left(\eta \hat{\rho}_{F,t} - \frac{\hat{e}_{t}}{\sigma} - \eta \hat{\rho}_{F,t}^{*} \right) \right\}^{2} \\ + \gamma \Omega_{2} \left\{ (1-\sigma) \left(\hat{Y}_{t} + \gamma \Sigma \hat{e}_{t} + \eta \hat{\rho}_{H,t} \right) + (1-\eta) \hat{\rho}_{F,t} \right\}^{2} \\ + \tau i.p + \mathcal{O} \left(||\xi_{t}||^{3} \right),$$

Introduction	The model	Linear-quadratic framework	Model analysis	Conclusion
0000000000000		000000●	000000000000	00000

Special case

Quadratic loss functions in a special case with log utility, unitary elasticity of substitution (Cobb-Douglas aggregate consumption) and no home bias ($\sigma = \eta = 1$ and $\gamma = 0.5$)

$$\begin{split} \mathcal{L} &= \frac{1}{2} \mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \left[\begin{array}{c} \frac{1}{2} (1+\omega) \left(\hat{Y}_t - z_t \right)^2 + \frac{1}{2} (1+\omega) \left(\hat{Y}_t^* - z_t^* \right)^2 \\ -\frac{\omega+1}{2} (\hat{Y}_t^* - z_t^*) \left(\hat{\rho}_{F,t} - \hat{e}_t - \hat{\rho}_{F,t}^* \right) \\ +\frac{1}{8} \left(\hat{\rho}_{F,t} - \hat{e}_t - \hat{\rho}_{F,t}^* \right)^2 + \frac{\varepsilon}{2\delta} \hat{\pi}_{H,t}^2 + \frac{\varepsilon}{2\delta} \hat{\pi}_{F,t}^2 \end{array} \right] + \text{t.i.p} + \mathcal{O} \left(\|\xi_t\|^3 \right), \\ \mathcal{L}^* &= \frac{1}{2} \mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \left[\begin{array}{c} \frac{1}{2} (1+\omega) \left(\hat{Y}_t - z_t \right)^2 + \frac{1}{2} (1+\omega) \left(\hat{Y}_t^* - z_t^* \right)^2 \\ +\frac{\omega+1}{2} (\hat{Y}_t^* - z_t^*) \left(\hat{\rho}_{F,t} - \hat{e}_t - \hat{\rho}_{F,t}^* \right) \\ +\frac{1}{8} \left(\hat{\rho}_{F,t} - \hat{e}_t - \hat{\rho}_{F,t}^* \right)^2 + \frac{\varepsilon}{2\delta} \hat{\pi}_{H,t}^2 + \frac{\varepsilon}{2\delta} \hat{\pi}_{F,t}^2 \end{array} \right] + \text{t.i.p} + \mathcal{O} \left(\|\xi_t\|^3 \right) \\ \mathcal{L}^w &= \frac{1}{2} \mathbb{E}_{t_0} \sum_{t=t_0}^{\infty} \beta^{t-t_0} \left[\begin{array}{c} (1+\omega) \left(\hat{Y}_t - z_t \right)^2 + (1+\omega) \left(\hat{Y}_t - z_t^* \right)^2 \\ +\frac{1}{4} \left(\hat{\rho}_{F,t} - \hat{e}_t - \hat{\rho}_{F,t}^* \right)^2 + \frac{\varepsilon}{\delta} \hat{\pi}_{H,t}^2 + \frac{\varepsilon}{2\delta} \hat{\pi}_{F,t}^2 + \frac{\varepsilon}{2\delta} \hat{\pi}_{F,t}^2 \end{array} \right] + \text{t.i.p} + \mathcal{O} \left(\left\|\xi_t\right\|^3 \right) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ○○○

 Introduction
 The model
 Linear-quadratic framework
 Model analysis
 Conclusion

 000000000000
 0000000
 0000000
 0000000
 000000
 000000

Model analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction	The model	Li
000000000000	000000	00

Linear-quadratic framework

Model analysis

Conclusion 00000

Calibration

- Parameter values are standard
- \bullet Nonetheless, I also use various values of $\sigma,\,\gamma$ and η in computing the gains from cooperation

Table: Parameter values

Parameter	Value	Definition
β	0.99	Discount factor
χ	1	Coefficient associated with labor disutility
ω	4.71	Inverse elasticity of labor supply
σ	3	Degree of risk aversion
θ	0.75	Probability that price cannot be adjusted
η	1.5	Elasticity of substitution between Home and Foreign goods
γ	0.5	Weight of imported goods in consumption basket

Introduction 0000000000000	The model	Linear-quadratic framework 0000000	Model analysis	Conclusion 00000
Impulse responses				
Impulse res	ponses			

- Responses of several variables in the DP model under cooperation and noncooperation to a positive one standard deviation productivity shock
 - Under noncooperation, nominal exchange rate E depreciates by less than under cooperation, and thus real exchange rate e also depreciates by less

Introduction	The model	Linear-quadratic framework	Model analysis	Conclusion
000000000000	000000	0000000	०००●००००००००	00000
Impulse responses				

Impulse responses

 Hence, P^{*}_H falls by less and P_H falls by more → a smaller decline in π^{*}_H and a larger fall in π_H

Introduction 0000000000000	The model	Linear-quadratic framework 0000000	Model analysis ○○○○●○○○○○○○	Conclusion 00000
Impulse responses				
Impulse res	ponses			

• Accordingly, s^* decreases by less and m^* rise by less

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Introduction	The model	Linear-quadratic framework	Model analysis	Conclusion
0000000000000	000000	0000000		00000
Impulse responses				

Impulse responses

- $\bullet\,$ From NKPCs, a smaller decrease in π_F^* and a slightly greater rise in π_F
- As a result, π increases by less and π^* drops by less

Introduction	The model	Linear-quadratic framework	Model analysis	Conclusion
0000000000000	000000	0000000	○○○○○●○○○○○○	00000
Impulse responses				

Impulse responses

- Smaller increase in $p_F^* \rightarrow$ smaller fall in Y^*
- Smaller decrease in $p_H^* o Y$ increases by less

Introduction 0000000000000	The model	Linear-quadratic framework 0000000	Model analysis	Conclusion 00000
Impulse responses				
Impulse res	ponses			

- Optimal monetary policy under noncooperation produces more stable Home CPI inflation π but more volatile Home PPI inflation π_H and import price inflation π_F
- On the other hand, in Foreign, more stable CPI inflation π^* , PPI inflation π^*_F and import price inflation π^*_H are generated by optimal monetary policy under noncooperation
- And, Home output Y increases by less and Foreign output Y* falls by less compared to those under cooperation.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

Introduction
000000000000000000000000000000000000000

The model

Linear-quadratic framework

Model analysis

Conclusion 00000

Impulse responses

Difference between impulse responses

- In the DP model, there are inefficiencies arising from both internal relative price and currency misalignments
- ⇒ Responses of internal relative price and currency misalignments under cooperation and noncooperation are different
 - In the LCP model, there is no inefficiency stemming from internal relative price
- ⇒ Responses of currency misalignments under cooperation and noncooperation are different
 - In the PCP model, there is no inefficiency stemming from currency misalignments
- ⇒ Responses of internal relative price under cooperation and noncooperation are different

Introduction	The model	Linear-quadratic framework	Model analysis	Conclusion
0000000000000	000000	0000000	○○○○○○○○●○○○	00000
mpulse responses				

Difference between impulse responses

SOC

I ntroduction 0000000000000	The model	Linear-quadratic framework 0000000	Model analysis ○○○○○○○○○●○○	Conclusion 00000
Welfare costs				
Welfare cost	ts			

- Consumption units by Lucas (1992) are used in computing the welfare costs.
- Welfare costs are aggregate consumption that a representative household has to give up to be as well off under cooperation as under noncooperation
- Let λ^{C} be the welfare cost from noncooperation of the Home representative household

$$W_{H}^{N} = \mathbb{E}_{t_{0}} \sum_{t=t_{0}}^{\infty} \beta^{t-t_{0}} \left[\frac{\left\{ \left(1-\lambda^{C}\right) C_{t}^{C} \right\}^{1-\sigma}}{1-\sigma} - \chi \frac{h_{t}^{C^{1+\omega}}}{1+\omega} \right]$$

Introduction 0000000000000	The model	Linear-quadratic framework 0000000	Model analysis ○○○○○○○○○○●○	Conclusion 00000
Welfare costs				
NA 1 1 C				

▲ロト ▲御 ト ▲ ヨト ▲ ヨト 「ヨ」 今日

~) Q (*

Introduction 0000000000000	The model	Linear-quadratic framework 0000000	Model analysis ○○○○○○○○○○○	Conclusion 00000
Welfare costs				
Welfare cos	sts			

₹ 9 9 **0 0**

Introduction	The model	Linear-quadratic framework	Model analysis	Conclusion
0000000000000	000000	0000000		•0000
Conclusion				

Conclusion

Introduction 0000000000000	The model	Linear-quadratic framework 0000000	Model analysis 0000000000000	Conclusion 00000
Conclusion				
Conclus	sion			

- This paper considers optimal monetary policy in a two-country model under DP
- In the DP model, there is one more inefficiency than in the LCP and PCP models
 - Internal relative price distortion compared to the LCP model, and distortion arising from deviations from the law of one price compared to the PCP model
- Accordingly, welfare gains from monetary policy cooperation in the DP model are substantially greater than in the LCP and PCP models

Introduction 0000000000000	The model 000000	Linear-quadratic framework 0000000	Model analysis 0000000000000	Conclusion 0000	
Conclusion					
Conclusion					

- Moreover, noncooperative Foreign policymaker in the DP model can manipulate not only internal relative price but also deviations from LOOP in favor of its own welfare through nominal exchange rate adjustment
- While noncooperative Home policymaker can control neither of the two
- Thus, gains from cooperation in Home are larger compared to Foreign

Introduction 0000000000000	The model	Linear-quadratic framework 0000000	Model analysis 0000000000000	Conclusion ○○○●○
Conclusion				
Conclusion				

- This result also rationalizes the fact that the U.S. designates currency manipulators to protect its welfare
- Furthermore, I find that there are substantial gains from cooperation in the DP model even under the conditions that make gains from cooperation in the LCP and PCP models disappear

Introduction 0000000000000	The model	Linear-quadratic framework	Model analysis	Conclusion ○○○○●
Thank you				

Thank you

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●