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1 Introduction

Over the past two decades, the economics literature has increasingly utilized network analysis

to understand decision-making.1 Surprisingly, however, the importance of spatial proximity

in the determination and intensity of network exchange remains under-examined. For Glaeser

(2000), the existence of cities critically hinges on how social interactions and networks can be

facilitated across the space of urban entities. However, traditional models in urban/spatial

economics (Fujita, 1989) do not consider the presence of social interactions and social capital

in cities. On the other hand, most papers from the network economics literature (Jackson,

2008) assume that the existence and intensity of dyadic contacts do not depend on agents’

location.

In this paper, we develop a new theory of social-tie formation where individuals care

about the geographical location of other individuals. In our model, a population of agents

entertains social interactions in a unidimensional geographical space (the city). In this city,

the fraction of individuals at each location is determined by a general distribution function.

Each agent decides the frequency of her visits (social interactions) to every other agent in

the city, and the value of each interaction depends on the social network of the visited

agents. We define the value of such interactions as the social capital of the agent (Putnam,

2000). Social capital is thus defined in a recursive fashion: it increases with interactions

with highly social individuals. When deciding how much to interact with others, agents face

the following trade-off. Each agent can increase her social capital by interacting with highly

social agents. However, social interactions requires costly travel to the other agents. We

characterize the equilibrium in terms of social interactions and social capital for a general

distribution of individuals in the geographical space. We show that a more spread spatial

distribution of agents decreases the incentives to socially interact. We also show that the

equilibrium frequencies of interactions are lower than the efficient ones. We demonstrate

that a policy that subsidizes transportation costs can restore the first best but the subsidy

should be higher for trips to individuals who have higher social capital and for trips from

individuals whose social capital increases more with additional interactions.

We then estimate this model using data on patterns of social interactions among high

school students in the US recorded in the National Longitudinal Survey of Adolescent Health

1For recent overviews, see Jackson (2008), Ioannides (2013), Jackson and Zenou (2015), Bramoullé,
Rogers, and Galeotti (2016) and Jackson, Rogers, and Zenou (2017).
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(Add Health). This survey contains information on friendship nominations, the strength of

the interactions between friends, and also allows us to calculate the Euclidean distance

between the homes of the respondents. Because residential decisions are taken by parents,

this spatial distance is pre-determined to the friendship decisions of the children. Our main

empirical challenges are due to the fact that the intensity of social interactions can be

chosen at the same time as friends, and that the interaction value offered by a friend (social

capital) is unobserved to the econometrician. We address these challenges by applying an

indirect inference estimation method to simulate unobserved social capital. The main idea

of this method is to simulate data from the model, which requires solving for the unobserved

equilibrium social capital conditional on structural parameters and unobservables, in order

to find the parameters for which the simulated data best match the observed data.2

The estimation results provide evidence supporting our theory. We find that trans-

portation costs (and hence geographic distance), social distance, and combined levels of

socio-demographic characteristics are all important factors in determining the intensity of

social interactions. With the estimated model, we compute the planner’s first best solution

for the frequency of social interactions and compare it with the observed equilibrium level.

Compared to the socially optimal level, our results show that students interact with each

other far less and accumulate less social capital. We find that these inefficiencies can be

explained by the size of the network. With the estimated model, we also simulate the level

of social interactions after different policy interventions. By subsidizing social interactions or

transportation costs, the policymaker can indeed improve the intensity of social interactions.

At the same given cost, we find that subsidizing social interactions is more effective than

subsidizing transportation costs because it leads to higher total welfare.

Our theoretical framework provides a bridge between two literatures: the traditional ur-

ban/spatial models and the recent social network models. There is an important literature

in urban economics looking at how interactions between agents create agglomeration and

city centers.3 It is usually assumed that the level of the externality that is available to a

particular agent depends on its location– the spillover is assumed to attenuate with distance

– and on the spatial arrangement of economic activity. This literature (whose keystones in-

clude Beckmann, 1976; Ogawa and Fujita, 1980; Lucas and Rossi-Hansberg, 2002; Behrens,

2Fu and Gregory (2019) develop an equilibrium model of post-disaster neighborhood rebuilding choices
with externalities and estimate the model using indirect inference to implement policy simulations.

3See Fujita and Thisse (2013) and Duranton and Puga (2015) for extensive literature reviews.
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Duranton, and Robert-Nicoud, 2014; Helsley and Strange, 2014) examines how such spatial

externalities influence the location of agents, urban density patterns, and productivity. For

example, Glaeser (1999) develops a model in which random contacts influence skill acquisi-

tion, while Helsley and Strange (2014) consider a model in which randomly matched agents

choose whether and how to exchange knowledge. Similarly, Berliant, Peng, and Wang (2002)

show the emergence of a unique center in the case of production externalities. These models

provide an interesting discussion of spatial issues in terms of use of residential space and for-

mation of neighborhoods and show under which condition different types of city structures

emerge. In this paper, we consider a different view. While the literature cited above aims

at explaining different urban configurations (monocentric versus polycentric cities) and to

derive conditions under which they emerge,4 we take the urban configuration as given and

explain how the location of each agent in the city affects her social interactions with other

agents in the city. In other words, we simplify the urban configuration of the city but we

open the black box of social interactions by examining how and why they form.

Regarding the vast literature on social networks, most of the papers looking at network

formation assume away agents’ geographical locations.5 A small strand of the literature

(Brueckner and Largey (2008), Helsley and Strange (2007), Zenou (2013), Mossay and Picard

(2011, 2019), Helsley and Zenou (2014), Sato and Zenou (2015), Picard and Zenou (2018))

studies the role of social networks in cities but take the networks as given. In the current

paper, link formation depends on the location of individuals in the geographical space. From

an empirical point of view, studies in the economics literature on the relevance of geographical

location for social interactions in networks are scarce (see Ioannides, 2013, for a survey).

In fact, it is extremely difficult to find detailed data on social contacts as a function of

geographical distance between agents together with information on relevant socio-economic

characteristics. Some evidence can be found in Marmaros and Sacerdote (2006). Using data

on email communication between Dartmouth college students, this paper shows that being

in the same freshman dorm increases the volume of interactions by a factor of three.6 Büchel

4For example, Ogawa and Fujita (1980), a prominent paper in this literature, consider a “locational
potential function” in which a weighted average of pairwise Euclidean distances between firms has a negative
effect on firms’ profit. This acts as an agglomeration force for firms because it implies a (strictly) penalty
cost for firm dispersion.

5Exceptions include Johnson and Gilles (2000) and Jackson and Rogers (2005). These studies, however,
consider a framework where network formation is modeled on a link-by-link basis. As a result, it is impossible
to fully characterize all the possible equilibria. See Jackson (2008) for a discussion of these issues.

6See also Fafchamps and Gubert (2007) who show that geographic proximity is a strong correlate of
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and von Ehrlich (2019) measure social connectedness between postcode areas in Switzerland

using mobile phone communication patterns between residents in different areas. They find

that distance as measured by travel time is detrimental to private mobile phone interactions

by exploiting an exogenous change in travel time.7 Bailey et al. (2018b) and Bailey et al.

(2020) reach a similar conclusion by using anonymized and aggregated data from Facebook

to explore the spatial structure of social networks in the New York metropolitan area.

The vast literature in the computer science literature and statistical mechanics looking

at the role of distance in social interaction uses primarily mobile phone data or online social

networks data and is mainly concerned about describing the shape of the statistical relation-

ship between link probability and distance (see, e.g., Liben-Nowell et al. (2005); Lambiotte

et al. (2008); Goldenberg and Levy (2009); Krings et al. (2009) and the excellent reviews of

Barthélemy (2011) and Kaltenbrunner et al. (2012)).

To the best of our knowledge, this paper is the first to propose a theory for the relationship

between geographical distance and social interactions and to test it using the precise geometry

of individual social contacts and the geographical distance between them. It is also the

first that empirical establishes the degree of inefficiency of social interactions and, by using

counterfactual exercises, determines whether it is more efficient to subsidize transportation

costs or social interactions.

The rest of the paper unfolds as follows. Section 2 develops the theoretical model and

determines the equilibrium while Section 3 studies its efficiency properties and the policy

implications of the model. Section 4 is devoted to the empirical strategy. In Section 5,

we describe our data, provide the empirical results and discuss them. In Section 6, we

test the different predictions of the model and determine the level of inefficiencies of social

interactions and social capital and how they are affected by the size of the network. We also

simulate two policies and determine which one leads to the highest social welfare. Finally,

Section 7 concludes the paper and discusses our policy results. All proofs in the theoretical

risk-sharing networks and Rosenthal and Strange (2008), Arzaghi and Henderson (2008), Bisztray, Koren,
and Szeidl (2018) and List, Momeni, and Zenou (2019) who find that knowledge and productivity spillovers
are important but decay sharply with distance.

7Another strand of related literature uses geographic proximity as a proxy for social interactions. Most
notably, Bayer, Ross, and Topa (2008) assume that agents living in the same census block exchange in-
formation about jobs. Their finding that residing in the same block raises the probability of sharing work
location by 33% is thus interpreted as a referral effect. Hellerstein, McInerney, and Neumark (2011); Heller-
stein, Kutzbach, and Neumark (2014) and Schmutte (2015) build on the same assumption using matched
employer-employee data with residential information. Using mobile phone data on one entire city in China,
Barwick et al. (2019) show that geographical distance is important in spreading information about jobs.
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model can be found in Appendix A. In Appendix B, we solve for the social capital fixed point

and show under which condition it is unique. In Appendix C, we perform some robustness

checks while we explain our calibration in the policy exercises in Appendix D.

2 The model

2.1 Notations and definitions

Consider a linear city on the line segment x ∈ [−b, b] where b is the city border, and let

λ(x) : [−b, b] → R+ measure the number of agents located at x. We focus on a city with

unit mass population:
∫ b
−b λ(y)dy = 1.

Each agent visits every other agent and benefits from social interactions. First, the utility

from social interactions is given by

S(x) =

∫ b

−b
v (n(x, y)) s(y)λ(y)dy (1)

where n(x, y) is the number or, more exactly, the frequency of interactions that agent at x

initiates with an agent at y who offers an interaction value s(y).8 For the sake of tractability,

we assume that

v (n (x, y)) = n (x, y)− 1

2
[n (x, y)]2 . (2)

This expression assumes decreasing returns to the frequency of interactions with a given

agent; it even assumes negative returns (saturation) above n = 1. Observe that, in (1),

we assume that there are decreasing returns in v (n (x, y)) but not in s(y). This is mainly

for analytical tractability because we need to calculate a fixed point on social interaction

and capital (see equations (9) and (10) below). Observe that Google’s PageRank algorithm

makes the same assumption when it computes the PageRank index.

Second, the interaction value offered by an agent residing at y is assumed to be equal to

s(y) = 1 + α

∫ b

−b
n(y, z)s(z)λ(z)dz (3)

The first constant term (normalized to 1) represents the idiosyncratic interaction value that

8Here, as in Cabrales, Calvó-Armengol, and Zenou (2011), individuals do not explicitly choose with whom
to link with but decide a level of social interactions at each location in the city.
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the agent located at y provide to her visitors. The second term, α
∫ b
−b n(y, z)s(z)λ(z)dz,

reflects the value of her social network for her visitors. It increases with n(y, z), the number

of interactions, and s(z), the value of her interactions. The parameter α > 0 measures the

importance of others’ social capital in an agent’s social capital formation. The higher is α,

the higher is the impact of the social network of “friends of friends”. We refer to s(y) as the

social capital of the agent located at y.

The social capital function s(y) defined in (3) can be interpreted in various ways according

to the context under discussion. In the context of information transmission (for example,

about job opportunities) and/or knowledge (about a product or technique), the first term

may represent the information endowed to or produced by the agent located at y while the

second term may reflect the information she received during her visits to other agents. The

parameter α then measures the imperfection of information transmission and its retention.

In the context of a service sector like advertising, law, etc. (Arzaghi and Henderson, 2008),

the first term represents the idiosyncratic productivity of a firm located at y while the second

term reflects the potential and the ability to quickly subcontract parts of a project to other

competent firms. In the context of friendship, community or political participation, the first

term gives a measure of the pleasure or interest in a specific interaction (e.g., with a college

friend, priest or politician) while the second term may reflect the sense of belonging to a

community (e.g., alumni, confession or political group).

Third, each agent located at x incurs a cost of visiting another agent residing at y, c(x−y),

which is symmetric and increases with distance |x− y|: c(z) = c(−z) and c′(z) > 0 ∀z > 0.

For simplicity, we consider the class of travel cost functions c(x) that are differentiable except

at x = 0. We define the slope at x = 0 as c′+(0) ≡ limx→0,x>0 c
′(0) ≥ 0, recognizing the

possible kink at x = 0. The total social interaction cost of an agent located at x is given by

C(x) =

∫ b

−b
n(x, y)c(x− y)λ(y)dy

which increases with the number of social interactions.

We now consider the question of how social capital is distributed across space when agents

are exogenously located.
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2.2 Social capital and space

We assume that λ, the population density at each location, is exogenously fixed. Each agent

located at x chooses the profile of interactions n(x, ·) that maximizes her utility

U(x) = S(x)− C(x) =

∫ b

−b
{v (n(x, y)) s(y)− n(x, y)c(x− y)}λ(y)dy

Note that her utility depends on the profile of other agent’s social capital levels (s(y), y 6= x).

It also depends on her own social capital (s(y), y = x) but only on a set of measure zero.9

As a result, the optimal number of interactions of an agent located at x depends only on the

social capital s(y) of the other agents located at y at a non-zero distance to her. The optimal

number of interactions n∗(x, y) of an agent located at x (that we call agent x) is therefore

found by differentiating pointwise U(x) with respect to n(x, y), taking s(y) as given. This

pointwise differentiation yields:

v′ (n∗(x, y)) s(y)− c(x− y) = 0.

Using (2), this is equivalent to:

[1− n(x, y)] s(y) = c(x− y).

So, the optimal number of interactions is equal to:

n∗(x, y) = 1− c(x− y)

s(y)
(4)

For individual x, the number of interactions n∗(x, y) between x and y increases with y’s

social capital and decreases with the distance between x and y. For simplicity, we assume

away corner solutions and assume global interactions so that agents interact with every other

agent in the city, i.e.,

n∗(x, y) > 0⇔ s(y) > c(x− y), ∀x, y
9Under the assumption that λ(x) < +∞, the agent has no incentive to raise her number of interactions

n(x, ·) to increase her own social capital s(x). In other words, since one agent’s social capital benefits
“almost” exclusively other agents, an agent has no incentives to be strategic with respect to increasing her
own social capital.

8



A sufficient condition for this inequality to hold is

min
y
s(y) > c(2b) (5)

Let us define the access cost measure as

g(y) ≡
∫ b

−b
c(y − z)λ(z)dz, (6)

which is lower than the maximum travel cost c(2b). By plugging (4) into (3) and using (6),

we obtain the equilibrium level of social capital s∗(y), which is given by:

s∗(y) = 1 + α

∫ b

−b
s(z)λ(z)dz − αg(y). (7)

Integral equations do not often accept simple analytical solutions, if any. Yet, under the

above utility specification, a solution can be obtained. Indeed, integrating s(z)λ(z) and

simplifying, we obtain:

∫ b

−b
s(z)λ(z)dz =

1

1− α

[
1− α

∫ b

−b
g(z)λ(z)dz

]
. (8)

Inserting this result into (7) yields a closed-form solution for the equilibrium social capital

given by:

s∗(y) = s0 − αg(y), (9)

where

s0 =
1− α2

∫ b
−b g(z)λ(z)dz

1− α
, (10)

and where g(y) is defined by (6). Under the condition that 0 < α < 1, the optimal social

capital s∗(y) has a finite solution. To guarantee global interactions, we must have s0−αg(y) >

c(x− y) for all x, y. Using (5), a sufficient condition is

s0 − α
[
max
y
g(y)

]
> c(2b) (11)

To summarize,

Proposition 1 Assume 0 < α < 1 and (11). Then, for all x, y, there exists a unique
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equilibrium (n∗(x, y), s∗(y)) such that

n∗(x, y) = 1− c(x− y)

s∗(y)
(12)

and

s∗(y) =
1− α2

∫ b
−b g(z)λ(z)dz

1− α
− α

∫ b

−b
c(y − z)λ(z)dz (13)

Let us discuss the properties of the equilibrium social capital s∗(y), defined in (13),10 in

a spatial environment.

First, lower travel costs increase social capital for all agents. This conclusion arises

simply because social capital increases when the access measure g(y) falls. An upward shift

in the travel cost function c(x) raises this access measure and therefore each agent’s social

capital s∗(y). As a result, travel cost can be seen as a barrier to social capital formation.

Improvements in urban transportation infrastructure should therefore enhance social capital.

Second, a rise in the importance of peers’ social links in the creation of own social capital

α, has ambiguous effects. Indeed, differentiating s(y) with respect to α yields

sα(y) =

∫ b

−b
n∗(y, z)s(z)λ(z)dz + α

∫ b

−b
n∗(y, z)sα(z)λ(z)dz + α

∫ b

−b
n∗α(y, z)s(z)λ(z)dz

where sα(y) and n∗α(y, z) denote the derivatives of s(y) and n∗(y, z) with respect to α. Thus,

an agent’s social capital increases with higher α because she places greater value on the

social capital of her interaction partners (first term) and because her partners themselves

have higher social capital (second term). However, as n∗α(y, z) = −c(y−z)s∗α(z)/ (s∗(z))2 ≤ 0,

she reduces her frequency of interactions with the partners with higher social capital, which

reflects a substitution effect between the frequency and the quality of social interactions

(third term). We can get a clearer result by using the optimal frequency of interaction and

its associated social capital (7). Differentiating the latter expression with respect to α leads

to:

sα(y) =

∫ b

−b
s(z)λ(z)dz − g(y) + α

∫ b

−b
sα(z)λ(z)dz. (14)

10Once we know the comparative statics results with respect to s∗(y), then it is straightforward to deduce
those of n∗(x, y).
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Multiplying this expression by λ(y), integrating and simplifying gives:

∫ b

−b
sα(z)λ(z)dz =

1

(1− α)2

[
1−

∫ b

−b
g(z)λ(z)dz

]

Plugging this expression and (8) into (14) yields

sα(y) =
1

(1− α)2

[
1−

∫ b

−b
g(z)λ(z)dz

]
− g(y)

As expected, this expression is ambiguous in sign. However, it is positive for small enough

access cost measure g(·) and therefore low enough travel costs c(·). We summarize these

findings in the following proposition:

Proposition 2 Lower travel costs increase social capital for all agents. An increase in α,

the importance of peers’ social links, increases each agent’s social capital for small enough

travel cost.

We now look at the impact on social capital of a wider geographical dispersion of agents.

Consider a mean preserving increase in the spread of the spatial distribution λ; that is, a

change in λ that second-order stochastically dominates the present distribution. Expanding

expression (9), the social capital s(y) = s0 − αg(y) can be found to be a linear function of

−
(

(1− α) g(y) + α

∫ b

−b
g(z)λ(z)dz

)
,

which can be rewritten as

−
∫ b

−b
[(1− α) c(y − z) + αg(z)]λ(z)dz.

We can then apply standard results from the analysis of uncertainty. Namely, a mean

preserving spread of λ will decrease this expression if the square-bracketed expression is a

convex function of z for any y. Conversely, it will increase this expression if the square

bracket term is a concave function of z for any y. A sufficient condition for a decrease (resp.

an increase) of this expression is that both c(·) and g(·) are convex functions (resp. concave
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functions). For our class of travel cost functions, we find that

g′′(x) =

∫ b

−b
c′′(x− y)λ(y)dy + 2c′+(0)λ(x)

where c′+(0) is the positive slope at the possible kink of the travel cost function. Therefore g(·)
is convex for any travel cost function that is piece-wise linear or convex. This includes linear

travel cost c(x) = c1 |x| and quadratic travel cost c(x) = c2x
2 where c1 and c2 are constants.

Intuitively, a spread of the spatial distribution of agents increases the trip distances and

costs, which decreases the incentives to interact. So, larger spatial dispersion of agents

reduces social capital in cities.11

Finally, agents located at the urban center have better access to others and have incentives

to increase their social interactions and social capital. One therefore expects that social

capital is less spatially dispersed than the agents. To make this argument formally, let us

measure the spatial dispersion of a distribution function φ by the ratio of “spatial variance”

over its mean value, i.e.,

Disp(φ) ≡
∫ b
−b z

2φ(z)dz∫ b
−b φ(z)dz

A mean preserving spread of the function φ around x = 0 increases this dispersion mea-

sure because it puts higher values to more distant locations. Under this definition, social

capital is less spatially dispersed than the agents if and only if Disp(sλ) < Disp(λ). Us-

ing (9), it is shown in the proof of Proposition 3 in Appendix A that this is equivalent to

Disp(gλ) > Disp(λ). That is, the function gλ should be more dispersed than the agent’s

spatial distribution function λ. We further show that this is true irrespective of the travel

cost function g when x2λ(x)/
∫
z2λ(z)dz is a mean preserving spread of the distribution of

λ(x) around its mean x = 0. This applies for any uniform spatial distribution λ and for

most symmetric spatial distribution functions of interest. We summarize these results in the

following proposition:

Proposition 3 Suppose linear or convex travel cost functions. Then,

(i) A mean preserving increase in the spread of a symmetric distribution λ decreases social

capital for all agents;

11Note that general results cannot be obtained for travel cost functions that are piece-wise concave (such
as c(x) = 1− exp (− |x|)) because these functions are neither convex nor concave.
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(ii) Social capital is less spatially dispersed than agents if x2λ(x)/
∫
z2λ(z)dz is a mean

preserving spread of the distribution of λ(x) around its mean x = 0.

The main point of Proposition 3 is to show that, provided that travel costs have appro-

priate regularity properties, a larger spatial dispersion of agents reduces the social capital

in the city and social capital is less spatially dispersed than the agents. This implies that

the level and the geographical dispersion of social capital are monotone functions of the

dispersion of individuals. Even though the deteriorating effect of spatial dispersion on social

interactions is not very surprising, we believe that this is the first theoretical proof (and

empirical confirmation; see below) of this effect.

2.3 Linear travel costs

Let us now apply the above analysis to linear travel costs, which are heavily used in urban

economics for their convenient and realistic properties (see, e.g., Fujita, 1989; Zenou, 2009).

In the present paper, they permit closed-form solutions. Suppose, indeed, that c(x) = c1 |x|
where c1 > 0. Then,

g(y) ≡ c1

∫ y

−b
(y − z)λ(z)dz + c1

∫ b

y

(z − y)λ(z)dz

g′(y) = c1

∫ y

−b
λ(z)dz − c1

∫ b

y

λ(z)dz

g′′(y) = 2c1λ(y) > 0

So, the access cost measure g is a convex function of the distance to the center. Social capital

is a concave function that is distributed so that s′′(y) = −2αc1λ(y) < 0. Assume further

that the spatial distribution of agents λ is symmetric (λ(x) = λ(−x)). Then, g(x) is also

symmetric and therefore equal to

g(x) = g0 + 2c1

∫ x

0

∫ y

0

λ(z)dzdy, x ≥ 0

13



where g0 = 2c1

∫ b
0
zλ(z)dz. So, for x ≥ 0, and assuming 0 < α < 1 and (11), then the unique

equilibrium (n∗(x, y), s∗(y)) is given by

n∗(x, y) = 1− c1 |x− y|
s∗(y)

and

s∗(x) = s0 − 2c1

∫ x

0

∫ y

0

λ(z)dzdy

where

s0 =
1− 2c1α

2
[∫ b

0
zλ(z)dz − 2

∫ b
0

(∫ x
0

∫ y
0
λ(z)dzdy

)
λ(x)dx

]
1− α

It is clear that lower travel costs c1 increase social capital for all agents. For small enough

travel costs c1, higher α increases s0 and therefore each agent’s social capital.

3 Efficient social interactions

We now study the planner’s allocation of interaction frequency for a given location pattern

λ. The planner chooses the profiles of social interactions n(·, ·) and social capital s(·) that

maximize the aggregate utility

W =

∫ b

−b
U(x)λ(x)dx =

∫ b

−b
[S(x)− C(x)]λ(x)dx

subject to the social capital constraint

s(x) ≤ 1 + α

∫ b

−b
n(x, z)s(z)λ(z)dz (15)

where we put an inequality to express that the agent can always reduce her social capital at

no cost (e.g., she erases a part of her address book).

The government chooses the profiles n(·, ·) and s(·) that maximize the Lagrangian func-
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tion

L =

∫ b

−b

∫ b

−b
{v [n(x, y)] s(y)− n(x, y)c(x− y)}λ(y)λ(x)dxdy

−
∫ b

−b
χ(x)

[
s(x)− 1− α

∫ b

−b
n(x, y)s(y)λ(y)dy

]
λ(x)dx

where χ(x) ≥ 0, or more precisely χ(x)λ(x) is the Kuhn-Tucker multiplier of the social

capital constraint. So, χ(x) measures the welfare value of a marginal increase of the social

capital of an agent located at x.

Lemma 4 The efficient interaction frequency and social capital satisfy the following neces-

sary conditions:

v′ [n(x, y)] s(y)− c(x− y) + αχ(x)s(y) = 0 (16)∫ b

−b
{v [n(x, y)] + αχ(x)n(x, y)}λ(x)dx− χ(y) = 0 (17)

Equations (16) and (17) together with the constraint (15), solve for the functions n(x, y),

s(y) and χ(x).

Condition (16) captures the main externality at work in the process of social interaction.

When the planner chooses the interaction frequency n(x, y), he considers both the benefit

and cost to agent x and the fact that an increase in x’s social capital increases y’s social

capital. This latter effect is not considered by agent x at the equilibrium. The weight that

the planner puts on raising another agent’s social capital increases with the importance of

interactions, α, and with the social benefit of relaxing the social capital constraint, χ(x).

The second condition (17) is interpreted as follows: when the planner increases the social

capital of an agent located at y, he directly raises the utility of all agents who interact with

this agent (first term in curly brackets) and indirectly increases the social capital for all those

other agents (second term in the curly brackets). In the efficient allocation, this combined

effect should be equal to χ(y), the welfare value of a marginal increase of the social capital

of an agent located at y.

Proposition 5 The equilibrium frequency of interactions and level of social capital are lower

than the efficient ones.
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Intuitively, the planner internalizes the effect that each agent has on others’ social capital

when she entertains more intense social interactions. As a result, the planner imposes agents

to increase their frequency of social interactions above the equilibrium level. This welfare

conclusion confirms Brueckner and Largey’s (2008) and extends their analysis to the case

where agents are distributed across space.

Can the efficient allocation of social interactions be decentralized with subsidies σ (x, y)

and τ (x, y) for social interactions and travel costs? If we include these subsidies, the utility

becomes

U(x) = S(x)− C(x)

=

∫ b

−b
{v (n(x, y)) [s(y) + σ (x, y)]− n(x, y) [c(x− y)− τ (x, y)]}λ(y)dy

This implies that the equilibrium number of social interactions becomes

n∗(x, y) = 1− c(x− y)− τ (x, y)

s(y) + σ (x, y)

We can obtain the first-best solutions and efficient social interactions can therefore be de-

centralized by setting σ (x, y) = 0 and τ (x, y) = αχo(x)so(y). Indeed, in this case, we find:

n∗(x, y) = 1− c(x− y)/so(y) + αχo(x) = no(x, y).

Proposition 6 The first best solutions no(x, y) and so(x) can be restored by setting σ (x, y) =

0, i.e., social interactions should not be subsidized, and τ (x, y) = αχo(x)so(y), i.e., trips

should be subsidized as a function of the locations of the destination and origin partners.

The subsidy τ (x, y) should be higher for trips to partners who have higher social capital and

for trips from partners whose social capital increases more with additional interactions.

The optimal subsidy to travel costs is therefore not a uniform one. This suggests that

decentralization would be difficult to implement because subsidies depend on both the origins

and destinations of social interactions (it is very unlikely that τ (x, y) reduces to a simple

function of x, or y or x − y). This result contrasts with Helsley and Zenou (2014), who

advocate that the planner should subsidize the most central agents. Their model with a two

location points, however, imperfectly captures the full picture of spatial interactions. In the

present model, we observe that the planner does not subsidize those agents with high social

capital but only subsidizes the trips to those agents.
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4 Empirical strategy

To bring the model to the data, we need to introduce agents’ heterogeneity in equation (2).

We assume that the benefits of the intensity of interactions between individuals x and y

also depends on their social distance, that is on their distance in terms of socio-demographic

characteristics:

v (n(x, y)) = (n0 + θ(x, y))n (x, y)− 1

2
[n (x, y)]2 ,

where θ(x, y) denotes the social distance between x and y and n0 is a positive constant.

Pointwise differentiating the utility

U(x) = S(x)− C(x) =

∫ b

−b
{v (n(x, y)) s(y)− n(x, y)c(x− y)}λ(y)dy (18)

with respect to n(x, y), we easily obtain the optimal number of interactions, which is equal

to:

n∗ (x, y) = n0 −
c |x− y|
s∗(y)

+ θ(x, y),

while the social capital of each individual is still given by (3), which is equal to:

s(y) = 1 + α

∫ b

−b
n(y, z)s(z)λ(z)dz (19)

Let us assume that we observe data from R networks (r = 1, ..., R), each having Nr

agents. To avoid cumbersome notation, we assume that individual i resides in location x,

individual j in location y, and individual k in location z. The geographic distance between

individuals i and j is denoted by dij,r. As a result, the above two equations can be written

as follows:12

n∗ij,r = n0 −
cdij,r
s∗j,r

+ θij,r, (20)

and

s∗j,r = 1 + α
Nr∑
k=1

n∗jk,rs
∗
k,r, (21)

Observe that, quite naturally, we do not allow social interactions with oneself, i.e., we assume

n∗ii,r = 0.

12Observe that, for the purpose of the empirical analysis, (21) is a discrete version of (3).
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We allow the social distance to depend on observed (pair-level) individual characteristics

xij,r and on unobserved factors εij,r. For simplicity, we assume that εij,r is independent and

identically distributed across pairs and networks, but the i.i.d. assumption within a network

can be relaxed.

If the network is undirectional, that is if nji,r = nij,r for all i, j, one can use the specifi-

cation:

θij,r =
M∑
m=1

βm|xi,m,r − xj,m,r|+
M∑
m=1

βM+m(xi,m,r + xj,m,r) + εij,r, (22)

where negative values in the vector (β1, . . . , βM) capture homophily effects (associated with

smaller socio-economic distance |xi,m,r − xj,m,r|), and (βM+1, . . . , β2M) measures the effect of

the combined level of xi and xj, where M is the number of individual-level covariates. Indeed,

under homophily behavior (i.e., the tendency of individuals to associate and bond with

others who share common traits; see McPherson, Smith-Lovin, and Cook, 2001; Currarini,

Jackson, and Pin, 2009; Graham, 2017), individuals with similar characteristics (same race,

same gender, etc.) will tend to interact more than less similar individuals (thus βm should

be negative under homophily in xm).

If the network is directional, that is when nij,r does not need to be equal nji,r, one can

use the specification:

θij,r =
M∑
m=1

βm(xi,m,r − xj,m,r) +
M∑
m=1

βM+m(xi,m,r + xj,m,r) + εij,r (23)

Similar specifications have been used in the literature; see, for example, Fafchamps and

Gubert (2007).

By plugging the value of n∗ij,r from (20) into (21), in Appendix B, we solve for the social

capital fixed point and show under which condition it is unique. The social capital fixed

point is given by:

s∗r = [INr − α (N0 + Θr)]
−1 (INr − αcDr) 1Nr , (24)

where sr is the (Nr × 1) vector with elements si,r, INr is the (Nr ×Nr) identity matrix, 1Nr is

the (Nr × 1) vector of 1, and N0,r is an (Nr×Nr) matrix in which the off-diagonal elements

are n0, and the diagonal elements are zero, while Dr= (dij,r) and Θr = (θij,r) = (xT
ij,rβ+εij,r)

are (Nr ×Nr) matrices (see (B.6) in Appendix B.).
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Estimation strategy For each network r, our dataset provides us with xij,r, the agents’

characteristics, n∗ij,r, the intensity of social interactions between agents i and j, dij,r, the ge-

ographical distance between agents i and j, and Nr, the number of agents in the network.

Using this information, we will recover the structural parameters α, β, c, n0, and the equilib-

rium social capital, s∗j,r. For that, we employ the indirect inference (I-I) estimation method,

proposed by Gourieroux, Monfort, and Renault (1993), that recovers the true parameters

from the data by attempting to closely match simulated and observed levels of social in-

teractions. The estimator is indirect in the sense that, rather than directly estimating the

structural model, it estimates an auxiliary model that can be estimated with (computation-

ally) easier methods such as the ordinary least squares (OLS). We run the auxiliary model

with the observed data and the simulated ones. The estimates for the structural parame-

ters are ones that best match the two sets of auxiliary parameters, based on an injectivity

assumption (i.e., one-to-one mapping between the structural parameters and the auxiliary

parameters).

Structural model For the sake of exposition, we denote the vector of structural param-

eters by µ ≡ (n0, α, c, β), we group the unobserved information into the vector Er ≡ (εij,r)

and the observed information into the vector Yr ≡ (Xr,Dr, Nr) where Xr and Dr capture

the individuals characteristics xi,r and the distances dij,r, respectively. The structural model

(20) and (24) can now be written as the following system of equations:

n∗ij,r(Yr, Er;µ) = n0 −
cdij,r

s∗j(Yr, Er;µ)
+ xT

ijβ + εij,r, (25)

s∗(Yr, Er;µ) ≡ [Ir − α (N0 + Θr)]
−1 (Ir − αcDr) 1r, (26)

Auxiliary model We use simple linear regression equations as an auxiliary model. We

propose a first auxiliary model equation that expresses the relationship between social in-

teraction intensities, individual characteristics and distance between interaction partners as

follows:

nij,r = γ10 + xT
ij,rγ11 + γ12dij,r + ε1,ij,r. (27)

We propose a second auxiliary model equation expressing a similar relationship with respect

to indirect interactions. Let us denote by Nr the matrix of social interaction intensities for
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network r, where its ith row and jth column element is nij,r. We further define the matrix

of second degree interaction as the square matrix N2
r ≡ Nr Nr. We denote by [N2

r]ij the

ith row and jth column element of this matrix. The second auxiliary equation can then be

written as:

[N2
r]ij = γ20 + xT

ij,rγ21 + γ22dij,r + ε2,ij,r. (28)

We denote by γ the vector of the above auxiliary model coefficients.

Algorithm We draw T sets of simulation errors, E t ≡ (εtij,r), t = 1, . . . , T , for all pairs i and

j and all networks r. These sets of errors are fixed for the entire estimation process.13 First,

we compute social capital str and predict the intensity of social interactions n̂tij,r for each set

of errors using equations (25) and (26). To match the data, we constrain n̂tij,r to lie between

zero and five (included). This process yields the first degree interaction matrix N̂r(E tr,Yr;µ)

and the second degree interaction matrix as the square of the latter. Let Y, E t, N and

N̂(E t,Y;µ) collect the observed data, the non-observed data, the observed interactions and

the predicted interactions in all networks. We then run OLS regressions on the auxiliary

model (27) and (28) separately with the observed and simulated interaction values. As a

result, we obtain a set of the OLS estimates γ̂(N,Y) with the observed interactions and a set

of estimates γ̂[N̂(E t,Y;µ),Y], t = 1, . . . , T with the simulated interactions. Finally, since

OLS estimates using the simulated data are functions of the structural parameter vector

µ, we choose µ that leads the closest difference between γ̂(N,Y) and γ̂[N̂(E t,Y;µ),Y].

Formally, the I-I estimator µ̂II is constructed such that

µ̂II = arg min
µ

∣∣∣∣∣
∣∣∣∣∣γ̂(N,Y)− 1

T

T∑
t=1

γ̂[N̂(E t,Y;µ),Y]

∣∣∣∣∣
∣∣∣∣∣, (29)

where the norm || · || is defined by a (positive-definite) weight matrix, A, with dimension

equal to the number of the auxiliary model parameters. Gourieroux, Monfort, and Renault

(1993) show that the efficient weight matrix is given by the inverse of the variance of the

moment conditions in (29), evaluated at the true parameter value µ0. Hence, we use

A =
[(

1 +
1

T

)
var(γ̂(N,Y))

]−1

(30)

13Gourieroux, Monfort, and Renault (1993) show that the I-I estimator is consistent for a fixed number of
simulation draws.
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as our weight matrix. We estimate A using a bootstrap (e.g., Ackerberg and Gowrisankaran,

2006). Given the complex dependence structure of dyadic observations within each network,

we also use a bootstrap to calculate the standard errors of our estimated structural parame-

ters, where we resample networks instead of individuals to address clustering at the network

level.

Identification Our model consists of four main parameters: the baseline social interaction

intensity n0, the social capital accumulation parameter α, the transportation cost c, and the

effect of social distance β. Understanding the separate identification of each of these param-

eters is challenging because our model is nonlinear and our error terms are not additively

separable, which is more complicated than a typical model of network externalities, such as

the linear-in-means network model (Manski, 1993). Although matching the OLS estimates

of the auxiliary model between the observed and simulated data yields reasonable estimates

of the structural parameters, it is important to discuss the identification of the model.

To illustrate the separate identification of these four parameters more formally, we focus

on the sources of identification. First, consider β. In the first equation (27) of the auxiliary

model, it is straightforward to assume that there is a one-to-one relationship between γ11 and

β, as equation (27) closely mimics equation (25) in xij term. The intercept, or the baseline

intensity level, n0, is similarly identified from its one-to-one relationship with γ10. Next,

the cost parameter c is identified given that both equations (27) and (28) contain the term

dij,r/Nr. Given that the cost parameter is a coefficient on dij,r/s
∗
j in equation (25), having

γ22 in addition to γ12 helps the identification of c.

The most challenging (structural) parameter to identify is α in (26). To obtain α, consider

the social capital equation (21).

s∗j,r = 1 + α
Nr∑
k=1

n∗jk,rs
∗
k,r, (21)

Social capital is recursively defined, and hence, it is a function of not only the first degree

network connections (or social interactions) but also further-degree indirect connections.

Therefore, we use the additional equation (28), which uses [N2
r]ij, the number of second-

degree interactions between i and j as a dependent variable, to identify the importance of

others’ social capital in an agent’s social capital formation. The overall fit of two auxiliary
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equations, measured by R2 will help the identification of the social capital parameter α.

Since the identification of α may depend on more than second-degree social interactions, we

do a robustness check by including additional equation for the third-degree interactions in

Appendix C.

5 Empirical analysis

5.1 Data

Our empirical investigation is made possible by the use of a database on friendship networks

from the National Longitudinal Survey of Adolescent Health (Add Health).14

The Add Health database has been designed to study the impact of the social environment

(i.e., friends, family, neighborhood and school) on adolescents’ behavior in the United States.

It is a school-based survey which contains extensive information on a representative sample

of students who were in in grades 7–12 in 1995. More than 100 schools were sampled.

Three features of the Add Health data set are unique and central to our analysis: (i) the

nomination-based friendship information, which allows us to reconstruct the precise geometry

of social contacts, (ii) the detailed information about the intensity of social interactions

between each of two friends in the network; and (iii) the geo-coded information on residential

locations, which allows us to measure the geographical distance between individuals.

The friendship information is based upon actual friend nominations at school. All stu-

dents who were present at school in the interview day received the questionnaire. Pupils

were asked to identify their best school friends from a school roster (up to five males and

five females).15 For each individual i, the friendship nomination file also contains detailed

information on the frequency and nature of interaction with each nominated friend j. The

precise questions are: “Did you go to {NAME}’s house during the past seven days?”; “Did

14This research uses data from Add Health, a program project directed by Kathleen Mullan Harris and
designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University of North
Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy Shriver National
Institute of Child Health and Human Development, with cooperative funding from 23 other federal agencies
and foundations. Special acknowledgment is due Ronald R. Rindfuss and Barbara Entwisle for assistance in
the original design. Information on how to obtain the Add Health data files is available on the Add Health
website (http://www.cpc.unc.edu/addhealth). No direct support was received from grant P01-HD31921 for
this analysis.

15The limit in the number of nominations is not binding (even by gender). Less than 1% of the students
in our sample show a list of ten best friends.
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you meet {NAME} after school to hang out or go somewhere during the past seven days?”;

“Did you spend time with {NAME} during the past weekend?”; “Did you talk to {NAME}
about a problem during the past seven days?”; “Did you talk to {NAME} on the telephone

during the past seven days?”. “Yes” or “No” are the possible answers. These answers are

coded by one and zero, respectively. We measure the intensity of social interactions between

students i and j, that is n(x, y) or nij in the model, by summing all these items so that the

maximum value of nij is 5 and the minimum is 0. When we use the symmetric model, we

choose the largest number between nij and nji. The average intensity of social interactions is

1.05, with noticeable dispersion around this mean value (standard deviation equal to 1.64).

A random sample of students in each school (about 20,000 students) is then interviewed also

at home where a longer list of questions are asked both to the child and his/her parents. Most

notably for this study, the geographical locations of those houses is also recorded. Latitude

and longitude coordinates are calculated for each home address and then translated into

X− and Y−coordinates in an artificial space. We use this information to derive the spatial

distance between students by computing the Euclidean distance between their homes. The

maximum geographical distance between two students in a network is about 47 kilometers.

The average distance is 6.75 kilometers, and its standard deviation is 6.71 kilometers.

When data on individuals with geo-coded information are merged with the friendship

nomination data, valid information on nominated friends, types of interactions and geo-

graphical location is available for 4,439 students.16 Then, we focus on network sizes between

4 and 10 members for the following two reasons. Firstly, the upper and lower tails of the

distribution of networks by network size are commonly trimmed since the strength of peer ef-

fects may be too different in too small or too large networks (see Calvó-Armengol, Patacchini,

and Zenou, 2009). Secondly, and most importantly, to reduce the discrepancy between the

theoretical model, which assumes that all individuals interact with each other (i.e., nij > 0),

and the data, for which many students are not friends with each other (i.e., nij = 0), we

keep the sample size of the networks relatively small, so that students are more likely to be

friends with each other.17 Observe that, if, as in Section 2.1, we interpret λ as a friendship

probability, then, there is no inconsistency between the theory and the data since, in this

16A large reduction in sample size when mapping friendships in the Add Health is common and mainly
due to the network construction procedure – roughly 20 percent of the students do not nominate any friends
and another 20 percent cannot be correctly linked. In addition, there is a further 50 percent of the sample
for which information on strength of interactions is missing.

17In Appendix C, we check the robustness of our estimation results to the sample-size reduction.
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interpretation, each student is not friend with every other student, as it is the case in the

data, where students are shown to have few contacts.

Our final sample consists of 753 individuals distributed over 141 networks. Table 1

describes our data and details our sample selection procedure. We report the characteristics

of four different samples, which correspond to the three steps of our selection procedure. In

column (1), we consider the original sample of students who have valid geo-coded information.

In columns (2)–(3), we further restrict the sample to those with friendship information and

intensity of interactions. Finally, in column (4), we report our sample where we only keep

students in networks of 4–10 agents.

Table 1 also shows that differences in means between these samples are almost never

statistically significant, which strongly suggests no specific bias in the selection of the sample.

Among the adolescents selected in our sample of students, 53% are female and 18% are blacks.

Slightly more than 70% live in a household with two married parents. The average parental

education is high school graduate. The performance at school, as measured by the grade

point average or GPA, exhibits a mean of 2.86, meaning slightly less than a grade of “B.”

The average family income is 48,410 in 1994 dollars, although 10% of parents chose not to

report such information. The average number of social interactions is 1.05.

[Insert Table 1 here]

5.2 Empirical results

Table 2 displays the estimation results. In column (1), we report the estimations of equation

(23), i.e. when the dyadic relationship is directional implying (xi − xj). In column (2),

we display the estimation results of (22), i.e., when the dyadic relationship is undirectional

implying |xi − xj|. We include socio-demographic characteristics possibly related to the

intensity of social interactions and social capital, such as household size. The estimates

are remarkably similar across columns (1) and (2). Moreover, the estimates for the main

structural parameters, n0, α, c, do not differ substantially across the two specifications.

[Insert Table 2 here]

Table 2 gives information about the effects of individual characteristics on interactions.
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When we consider the symmetric social distances, i.e., column (2), students’ preferences ex-

hibit homophily in their own characteristics if the coefficient βm is negative and significantly

different from zero. This occurs for most individual characteristics: female, ethnicity, grade,

GPA, physical development, religion practice, and whether they refuse to answer family

income. The estimates are all negative and significant, which also supports homophily be-

haviors. The magnitudes of the estimates are in general larger than those from the directed

social distances in column (1). When it comes to family background, we find strong ho-

mophily behaviors in family income, having two parents, and family size, but no homophily

in parental education. The degree of homophily is the largest in gender.

Next, the estimated coefficients on the (xi+xj) variables exhibit mixed signs. The results

in columns (1) and (2) are mostly similar to each other. In both specifications, the intensity

of social interactions is increasing if a pair of students are older (i.e., a higher grade), male,

and black students, they are more religiously practicing, or they have more family income,

in terms of total endowment of both students in a pair. By contrast, the intensity of social

interactions is decreasing if students have a higher GPA, or they are from families with two

parents, more family members, or more income.

Turning our attention to the structural parameters, we see that they are all statistically

significant and have reasonable values. Indeed, the estimated baseline level of social inter-

actions n0 is roughly between 1.01 and 1.40, which implies a pair of students want to have

a social interaction if they have the same characteristics (and the zero level of combined

characteristics). The estimated cost of transportation c is 0.19–0.22 across specifications.

After we multiply the cost with the average pairwise distance (6.71 kilometers), the aver-

age estimated transportation cost is 1.25–1.48. Given the estimated cost of transportation

per kilometer, the magnitudes of homophily parameters (i.e., the coefficient estimates on

|xi − xj|) ranging between 0.02 and 0.44 are not small. Finally, α, which measures the

importance of others’ social capital in an agent’s social capital formation, has an estimated

value of 0.08, which implies possible positive externalities. This implies that there may be

inefficiency in the levels of equilibrium social interactions if students do not consider such

externalities. We will investigate this further in our policy simulations.
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6 Policy analysis

6.1 Welfare

We now use the estimated parameters of the model provided in Table 2, i.e., α, c and n0, to

calculate the welfare loss and to perform some simulations. We know from the theoretical

model (Section 3) that, if the planner optimally chooses n(x, y) and s(y), we obtain:

v′ [no(x, y)] so(y)− c(x− y) + αχ(x)so(y) = 0

∫ b

−b
{v [no(x, y)] + αχ(x)no(x, y)}λ(x)dx− χ(y) = 0

so(y) = 1 + α

∫ b

−b
no(y, z)so(z)λ(z)dz

where the Kuhn-Tucker multiplier χ(x) ≥ 0 measures the welfare value of a marginal increase

of the social capital of an agent located at x. In this welfare analysis, we assume linear travel

cost and discretize the above conditions as

noij,r = n0 −
cdij,r
soj,r

+ αχi,r s
o
j,r + θij,r, (31)

χj,r =
Nr∑
i=1

{
(n0 + θij,r)n

o
ij,r −

1

2

(
noij,r

)2
+ αχi,r n

o
ij,r

}
, (32)

soj,r = 1 + α
N∑
k=1

nojk,rs
o
k,r. (33)

Here is how we proceed. From the previous estimations of the equilibrium model, we have

the estimated values of n0, α, c and θij,r (Table 2). From the data, we know dij,r. By

plugging these values into (31), (32) and (33), we can solve numerically these equations and

determine noij,r, for each pair i, j, soj,r for all j, and χi,r for all i. For each network r, we have

2Nr + Lr unknowns, where Lr is the number of links in network r, and we have 2Nr + Lr

equations since there are Lr equations for (31), Nr equations for (32) and Nr equations

for (33). We then compare the observed equilibrium values of n∗ij,r and s∗j,r with the social

optimum values noij,r and soj,r (using equations (26) and (33) evaluated at our parameter

estimates). According to Proposition 5, we should find that students socially interact too
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little compared to the social optimal outcome, i.e., noij,r > n∗ij,r, ∀i, j, and soi,r > s∗i,r, ∀i.
We numerically solve the optimal level of social interactions and social capital with the I-I

parameter estimates displayed in column (2) in Table 2 by running a total of 100 simulations.

Table 3 displays the results. Note that, in this table, we first take the average of social

interactions in each network and, then, take the average again over all networks. We find

that each pair interacts on average 1.89 fewer times than is socially optimal. The difference

between the socially optimal and the observed levels of social interactions varies from 0.53 to

3.76 across networks. Although there are a few networks where the observed level is larger

than the optimal level, many networks’ interactions fall short of the optimum. Students also

have less social capital than optimal (by 0.83, or approximately 34%, on average).

[Insert Table 3 here]

Network size and social interactions We would now like to find which variables are

closely associated with the discrepancy between the optimal level and the observed level. For

that, we regress the differences nor − n∗r and sor − s∗r on the network size, network measures,

and average characteristics (e.g., average family income) of students in each network r:

nor − n∗r = γ0 + γ1Nr + γ2 (Nr)
2 + γ3dr + γzzr + γxxr + εr, (34)

sor − s∗r = δ0 + δ1Nr + δ2 (Nr)
2 + δ3dr + δzzr + δxxr + ζr. (35)

Tables 4–5 display the results. Consider, first, social interactions (Table 4) and let us

examine if the difference between the optimal and the observed level of social interactions,

(nor − n∗r), is increasing or decreasing with network size Nr. Using column (5), we have:

∂(nor − n∗r)
∂Nr

= γ1 + 2γ2Nr = 1.502− 2(0.089)Nr = 0 (36)

Solving this equation leads to: Nr = 1.502
2(0.089)

= 8.44. This means that the difference between

the optimal and the observed level of social interactions is increasing until the network size

reaches (approximately) 8 students and then decreases. As a result, there is a non-monotonic

relationship between nor − n∗r and Nr where an increase in the network size increases nor − n∗r
up to Nr = 8 and, above this size, an increase in the network size decreases nor − n∗r. Thus,
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Nr = 8 is the size of the network that maximizes these inefficiencies. Given that the median

size of the networks is Nmed
r = 5, in terms of magnitude, an increase by one person in the

network from Nmed
r = 5, raises these inefficiencies by 1.502− 2(0.089)Nmed

r = 0.61.

[Insert Tables 4 and 5 here]

The average geographic distance is not significantly associated with the inefficiency. A

one-kilometer increase in the average pairwise distance lead to a 0.0025 decrease in the

inefficiency, but the magnitude is small and insignificant. Only a few average characteristics

of the students are associated with the optimal-observed difference in social interactions. In

particular, networks that consist of students with a higher average grade (and hence age) or

a low GPA are more likely to have low inefficiencies in terms of social interactions.

Let us now turn to the inefficiencies in terms of social capital (Table 5). We find that the

network population and the average geographic distance are not strongly associated with

the inefficiency in social capital.

Although these regressions do not have a formal identification strategy, the results, partly

based on the structural estimation of the model (that determine nor−n∗r and sor−s∗r), provide

some interesting explanations on what drives the size of inefficiency of the intensity of social

interactions and social capital accumulation.

Network size and average welfare Another interesting exercise, for which we do

not have a theory, is to determine the optimal network, i.e., the one that maximizes total

welfare.18 For that, without any policy, we compare the average welfare (to avoid size effects,

the welfare is not defined as the sum of utilities but as the average utility) in each of the 141

networks. Remember that the welfare in network r is given by:

W ∗
r =

Nr∑
i=1

Nr∑
j=1

[(
(n0 + θij,r)n

∗
ij,r −

1

2

(
n∗ij,r

)2
)
s∗j,r − n∗ij,rcdij,r

]
(37)

18Determining the optimal network is a very difficult exercise; see König, Tessone, and Zenou (2014) and
Belhaj, Bervoets, and Deröıan (2016) for such attempts when the network is given. Jackson and Wolinsky
(1996) provide a similar exercise for endogenous network formation. Because this exercise is complicated,
only extreme structures emerge such as the complete network, the star network or nested split graphs. This
is why we do it here by numerical simulations based on the estimated parameters.
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As a result, the average welfare per network is:

AW ∗
r =

W ∗
r

Nr

We would like know which network size Nr yields the largest AW ∗
r .

For that, we run the following regression:

AW ∗
r = δ0 + δ1Nr + δ2 (Nr)

2 + δzzr + δxxr + εr

to investigate the relationship between average welfare and network size. In addition, as

controls, we include the average geographical distance and network measures, such as mean

and standard deviation of the degree distribution, average eigenvector centrality, clustering

coefficient, and diameter.19 We include the network measures (such as average degree and

average eigenvector centrality of a network) to see how the shape of a network is associated

with the welfare.

Table 6 reports the results. We can first calculate the network size that maximizes the

average welfare per network AW ∗
r . Using column (5), we have:

∂AW ∗
r

∂Nr

= δ1 + 2δ2Nr = 20.87− 2(0.939)Nr = 0 (38)

Solving this equation leads to: Nr = 20.87
2(0.939)

≈ 11. This means the network that comprises

(approximately) 11 students is the one that maximizes the average welfare per network. This

is a network of a relatively large size. Since our sample include networks of max 10 students,

we can only state that the size of all our networks is too small compared to the one that

maximizes average welfare.

[Insert Table 6 here]

In Table 6, we also find that the average pairwise geographic distance is an important

factor for designing an optimal network. The higher is the distance between two individuals

in a network, the lower is the average welfare. In addition, from the changes in R2 across

columns (1) and (2), from 0.11 to 0.55, we find that average geographic distance explains a

significant portion of the average welfare in a network.

19We compute the clustering coefficient as the ratio of the number of triangle loops to the number of
connected triples.
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6.2 Policies

We have seen in Proposition 6 that the social optimal allocation can be restored if social

interactions are not subsidized while commuting trips are subsidized as a function of the

locations of the destination and origin partners. Because the latter policy requires detailed

information about every interaction pair, it is unlikely to be implemented. In this section,

we consider the more realistic case of uniform subsidies on social interactions and/or travel

costs that only target each individual irrespective of their personal characteristics but not

a pair of individuals. We evaluate their impact on the frequency of interactions, n(x, y)

by running a total of 100 policy simulations. Which policy is more effective at moving the

observed interactions/social capital closer to the optimal levels?

Assume that each individual receives a fixed subsidy σ for each interaction made with

a friend and a (percentage) subsidy τ on her transport cost c. The total amount of each

subsidy received by an individual located at x is therefore given by
∫ b
−b σn(x, y)λ(y)dy for

social interactions and
∫ b
−b n(x, y)τc |x− y|λ(y)dy for transportation costs. Note that the

government (or the planner) is here introduced as an agent that can set subsidies on social-

interaction efforts before the individuals decide upon their efforts. The assumption that the

government can pre-commit itself to such subsidies and thus can act in this leadership role

is fairly natural. As a result, this subsidy will affect the levels of social interaction efforts of

all individuals.20

For each individual located at x and interacting with someone at y, when subsidies are

included, the first-order conditions lead to the following level of social interactions

n∗(x, y) =

[
n0 −

c |x− y|
s∗(y)

+ θ(x, y)

]
+

σ

s∗(y)
+
τc |x− y|
s∗(y)

,

while the social capital is still given by

s∗(y) = 1 + α

∫ b

−b
n∗(y, z)s∗(z)λ(z)dz.

Holding social capital constant, quite naturally, the subsidies increase the number of social

interactions. Subsidies can entice interactions with new partners as the number of interac-

tions to a partner may rise from zero to a positive value in the presence of the subsidy. The

20This is is similar to the standard policy of firms’ subsidies on R&D efforts; see e.g., Spencer and Brander
(1983) and König, Liu, and Zenou (2019).
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total welfare is now defined as:21

W =

∫ b

−b

∫ b

−b

[(
(n0 + θ(x, y))n∗ (x, y)− 1

2
[n∗ (x, y)]2

)
s∗(y)− n∗(x, y)c |x− y|

]
λ(x)λ(y)dxdy

+

∫ b

−b

∫ b

−b
n∗(x, y)(σ + τc |x− y|)]λ(x)λ(y)dxdy.

6.2.1 Subsidizing social interactions

We consider a uniform subsidy σr for each network. We use the following discrete version of

the equilibrium identities:

nσij,r = n0 +
σr − cdij,r

sσj,r
+ θij,r (39)

and

sσj,r = 1 + α
Nr∑
k=1

nσjk,r s
σ
k,r (40)

where the superscript σ denotes the subsidy policy outcome. For the estimation, the total

welfare per network is equal to

W σ
r =

Nr∑
i=1

Nr∑
j=1

[(
(n0 + θij,r)n

σ
ij,r −

1

2

(
nσij,r

)2
)
sσj,r − (cdij,r − σr)nσij,r

]
(41)

In this exercise, we determine the subsidy σ∗r that gives network r the same aggregate welfare

W σ
r as its first best level W o

r . From the estimated value of the equilibrium model, we have

α, c and n0; from the data we have dij,r and Nr. We then numerically solve equations (39)

and (40) and find the subsidy such that W σ
r = W 0

r . See Appendix D for technical details.

The first three columns in Table 7 display the results. On average, a subsidy level of

0.826 for each social interaction is required for a network to achieve the first-best aggregate

level of social interactions and social capital.

[Insert Table 7 here]

21Observe that the optimal subsidy algorithm that we used is designed to find a maximum, so the optimal
subsidy found corresponds to the (local) maximum.
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6.2.2 Subsidizing transportation costs

In the case of subsidies on transport cost, we consider the following discrete versions of the

equilibrium conditions:

nτij,r = n0 −
(1− τr)cdij,r

sτj,r
+ θij,r (42)

sτj,r = 1 + α
Nr∑
k=1

nτjk,r s
τ
k,r (43)

The total welfare per network is defined as (see above)

W τ
r =

Nr∑
i=1

Nr∑
j=1

[(
(n0 + θij,r)n

τ
ij,r −

1

2

(
nτij,r

)2
)
sτj,r − nτij,r(1− τr)cdij,r

]
(44)

As for the social interaction subsidy, we find the subsidy τ ∗r that gives the same aggregate

utility W τ
r in network r as the first best W 0

r . From the estimated value of the equilibrium

model, we have α, c and n0,r, and from the data dij,r and br. We can then numerically solve

equations (42) and (43) and find the subsidy such that W τ
r = W 0

r .

The last three columns in Table 7 display the results. On average, a subsidy level of

τ = 0.832 (83.2%) is required for a network to achieve the first best aggregate level of social

interactions and social capital.

6.2.3 Comparing the two policies

Finally, it is interesting to compare these two policies at the same given cost. The question is

then as follows: Given that the planner has an amount B to spend, which policy should she

choose? In order to distribute a total amount of subsidy B to each network, we consider three

different schemes. First, we distribute the same amount Br = B/R for each network (uniform

subsidy), where R is the total number of networks (R = 141 in our dataset). The second

scheme gives an amount proportional to network population Nr. Hence, Br = Nr∑
r′ Nr′

B. The

last subsidy scheme provides an amount proportional to the number of pairs Nr(Nr − 1),

i.e., Br = Nr(Nr−1)∑
r′ N

′
r(Nr′−1)

B.

We consider two ways of assigning the total amount of subsidy budget. First, we choose

the amount of budget that corresponds to the average social interaction subsidy level that
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achieves the first best level of social interactions:

B := Bσ = σ̄on̄o
R∑
r=1

Nr(Nr − 1), (45)

where σ̄o is the average optimal social interaction subsidy level, as obtained in Table 7 (i.e.,

σ̄ = 0.826) and n̄o is the average optimal social interaction level, as obtained in Table 3 (i.e.,

n̄o = 3.154).

Second, we use the amount of budget that corresponds to the average transportation

subsidy level to achieve the first best level of social interactions:

B := Bτ = τ̄ oc n̄o
R∑
r=1

Nr(Nr − 1), (46)

where τ̄ o is the average transportation subsidy rate, i.e., τ̄ o = 0.832 (Table 7).

We proceed as follows. First, we consider the social-interaction subsidy policy. We observe

dij,r and Nr in the data and have estimated α, c and n0. Then, we solve simultaneously

equations (39), (40) and (45). We get the different endogenous variables, in particular, the

different subsidies σr. Then, for each value of σr, we calculate the total welfare W σ
r given by

(41).

Second, we consider the transportation subsidy policy. We observe dij,r and Nr in the

data and have estimated α, c and n0. Then, we solve simultaneously equations (42), (43)

and (46). We get the endogenous variables, in particular, the different subsidies τr. Then,

for each value of τr, we calculate the total welfare W τ
r given by (44).

Our key question is then whether the budget Bσ and Bτ yield higher welfare with the

subsidy on travel costs or social interactions. That is, we examine whether W τ
r T W σ

r . Table

8 shows the results of this analysis by counting the number of networks for which the total

welfare is higher under one policy versus the other. In this table, we find that, under the

social-interaction subsidy policy, the total welfare is higher for most networks, regardless of

the amount of budget we assign (panels A and B) and the type of subsidy scheme (uniform,

proportional to Nr and proportional to Nr(Nr− 1); rows (1), (2) and (3)).22 As a result, if a

planner has a given amount of money to spend, she should subsidize social interactions and

22We also try different values of the total amount to be spent to check whether there are non-linear effects,
but the results remain the same regardless of the value of the budget.
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not transportation costs because it yields greater improvements of total welfare.23

[Insert Table 8 here]

7 Concluding remarks

In this paper, we present a behavioral microfoundation for the relationship between ge-

ographical distance and social interactions. We characterize the equilibrium in terms of

optimal level of social interactions and social capital for a general distribution of individuals

in the geographical space. An important prediction of the model is that the level of social

interactions is inversely related to the geographical distance. Travel costs and spatial dis-

persion of agents are barriers to the development of social capital formation. Social capital

tends to be more concentrated than agents themselves. This result seems to be confirmed

by what we observe in real-world cities. Indeed, despite rapid innovation in communica-

tion technologies, we still observe an important growth in urbanization (Henderson (2010)),

which may highlight the importance of geographical proximity for social exchange (Bailey

et al. (2020)). We also show that greater spatial dispersion of agents in the city (which

increases trip distances and costs) decreases the incentives to socially interact. As a result,

greater spatial dispersion reduces social capital. Because of the externalities that agents

exert on each other, we demonstrate that the equilibrium levels of social interactions and

social capital are lower than the efficient ones.

When we estimate the model using data on adolescents in the United States we find that,

indeed, geographical distance is an hinder to social interactions. Moreover, we determine the

exact inefficiencies of the market equilibrium. Interestingly, and surprisingly, we find that

there is a non-monotonic relationship between the inefficiencies in terms of social interactions

and the network size. In our empirical context, these inefficiencies are the largest when the

network is composed of 8 students. On the contrary, we find that the network that maximizes

the average welfare in a network should have 11 students. We then perform two different

subsidy policies. Our results suggest that the individuals interact at optimal levels when

23Observe that this result is not in contradiction with Proposition 6, which shows that, in order to restore
the first-best solutions, social interactions should not be subsidized while transportation costs should be. In
Table 8, we are not calculating the subsidy levels that restore the first best. Instead, we are determining
which policy leads to a higher total welfare for a given cost. The first best may clearly not be reached. On
the contrary, in Table 7, we are calculating the subsidy level that restores the first best for each policy.
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either social interactions or transportation costs are subsidized. However, subsidies on social

interactions are more effective than subsidies on transportation costs.

Our analysis thus suggests that encouraging social interactions in cities are likely to en-

hance social welfare, which is a new implication compared to what urban economics usually

predicts.24 In the real-world, there are different ways governments can subsidize social in-

teractions. One natural way is social mixing such as the Moving to Opportunity (MTO)

programs in the United States where the local government subsidizes housing to allow fam-

ilies to move from poor to richer neighborhoods (see e.g., Katz, Kling, and Liebman (2001),

Kling, Liebman, and Katz (2007) and Chetty, Hendren, and Katz (2016)). These programs

allow people from different neighborhoods to interact with each other. Other policies that

enhance social interactions are those that improve physical environment such as zoning laws

and public housing rules (Glaeser and Sacerdote (2000)). For example, Glaeser and Sacer-

dote (2000) find that individuals in large apartment buildings are more likely to socialize

with their neighbors than those living in smaller apartment buildings. Using Facebook data

from the United States, Bailey et al. (2018a) document that, at the county level, friendship

networks are a mechanism that can propagate house price shocks through the economy via

housing price expectations. These types of policies may be particularly important under the

view that social interactions promote economic growth because of the nonmarket intellectual

spillovers that they generate (Glaeser, 2000; Ioannides, 2013)25 but also because of the direct

effects social interactions have on innovation (Bailey et al. (2018b)) and on the labor market

(see e.g., Ioannides and Datcher Loury (2004) or Beaman (2016)).

We believe that more research in this area should be done, especially empirically, in order

to be able to better evaluate the exact role of social interactions on the growth and welfare

of cities.

24In the standard monocentric models (Fujita et al., 1999) and in their multicentric extensions (Fujita and
Thisse, 2013), unit travel cost is usually the fundamental parameter that determines the location choices
of households within cities, their consumption of housing, land use, and the population size of cities. As
a result, transportation policies that reduce commuting costs in the city have been put forward because of
their direct impact of these outcomes.

25Indeed, as argued by Romer (1986) and Lucas (1988), endogenous economic growth requires increasing
returns and without nonmarket intellectual spillovers or some form of externality, increasing returns cannot
coexist. The robust relationship between human capital and economic growth has been taken as support for
the importance of these intellectual spillovers (Combes and Gobillon (2015)).
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Appendix

A Proofs

Proof of Proposition 3: We need to show that (i) Disp(sλ) < Disp(λ) is equivalent

to Disp(gλ) > Disp(λ) and (ii) this is true when x2λ(x)/
∫
z2λ(z)dz is a mean preserving

spread of a symmetric distribution of λ(x).

First, note that s0 is a constant and s and λ are functions of z. One successively gets the

following equivalences:

Disp(sλ) < Disp(λ)

⇔
∫
z2sλdz∫
sλdz

<

∫
z2λdz∫
λdz

⇔
∫
z2 (s0 − αg)λdz∫

z2λdz
<

∫
(s0 − αg)λdz∫

λdz

⇔ s0 − α
∫
z2gλdz∫
z2λdz

< s0 − α
∫
gλdz∫
λdz

⇔
∫
z2gλdz∫
z2λdz

>

∫
gλdz∫
λdz

⇔
∫
z2gλdz∫
gλdz

>

∫
z2λdz∫
λdz

⇔ Disp(gλ) > Disp(λ)

where, for notation convenience, we have dropped the integrals the boundaries −b and b.

Second, by denoting by

µ(z) ≡ z2λ(z)∫ b
−bw

2λ(w)dw
,

we can write the last condition Disp(gλ) > Disp(λ) as
∫ b
−b gµdz−

∫ b
−b gλdz =

∫ b
−b g (µ− λ) dz >

0. Integrating by part, we obtain the following condition:

−
∫ b

−b

{∫ z

−b
[µ(x)− λ(x)] dx

}
g′(z)dz > 0 (A.1)

Finally, consider the symmetric spatial distribution λ(x) around x = 0. Because λ(x) is

symmetric around x = 0, then g(x) =
∫ b
−b c(x − z)λ(z)dz is symmetric around x = 0.
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Furthermore we know that g(x) is also convex, which implies that g′(z) > 0 if and only if

z > 0. A sufficient condition for inequality (A.1) to be true is that
∫ z
−b [µ(x)− λ(x)] dx is

negative for z > 0 and positive for z < 0. That is, if∫ z

−b
µ(x)dx ≤

∫ z

−b
λ(x)dx, for z > 0

and the opposite condition for z < 0. This condition is satisfied if µ(x) is a mean preserving

spread of the distribution of λ(x) around its mean x = 0. For example, for a uniform

distribution λ(x) = 1/(2b), we get

∫ z

−b
µ(x)dx−

∫ z

−b
λ(x)dx =

∫ z

−b

(
x2∫ b

−bw
2 1

2b
dw
− 1

)
1

2b
dx

= −1

2
z
(
b2 − z2

)
/b3 < 0

so that µ(x) is spread of the distribution of λ(x).

Proof of Lemma 4: Substituting z for y we can write the Lagrangian function as

L =

∫ b

−b

∫ b

−b
{v [n(x, y)] s(y)− n(x, y)c(x− y) + αχ(x)n(x, y)s(y)}λ(y)λ(x)dxdy

−
∫ b

−b
χ(x) [s(x)− 1]λ(x)dx

Finally, we note that
∫ b
−b χ(x) [s(x)− 1]λ(x)dx =

∫ b
−b χ(y) [s(y)− 1]λ(y)dy. Substituting

the latter expression in the last term in the above expression and multiplying it by
∫ b
−b λ(x)dx

(= 1) we get the following Lagrangian function:

L =

∫ b

−b

∫ b

−b

 v [n(x, y)] s(y)− n(x, y)c(x− y)

+αχ(x)n(x, y)s(y)− χ(y) [s(y)− 1]

λ(y)λ(x)dxdy (A.2)

We now use variation calculus on the Lagrangian function L =
∫ b
−b

∫ b
−b F [n(x, y), s(y), x, y]λ(y)λ(x)dxdy

where F (n, s, x, y) denotes the integrand in the above curly bracket. It is a differentiable

function with partial derivatives F ′n and F ′s. Defining the infinitely small perturbations

ñ(x, y) and s̃(y) on the optimal profiles no(x, y) and so(y) respectively, we get the variation
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of the objective function L

∆L=

∫ b

−b

∫ b

−b
F ′n[no(x, y), so(y), x, y]ñ(x, y)λ(y)λ(x)dxdy

+

∫ b

−b

∫ b

−b
F ′s[n

o(x, y), so(y), x, y]s̃(y)λ(y)λ(x)dxdy

This must be zero for any small perturbations ñ(x, y) and s̃(y). So, we get F ′n[no(x, y), so(y), x, y] =

0 and
∫ b
−b {F

′
s[n

o(x, y), so(y), x, y]}λ(x)dx = 0. This gives (16) and (17).

Proof of Proposition 5: Condition (16) yields

v′ [n(x, y)] =
c(x− y)

s(y)
− αχ(x) (A.3)

which gives

no(x, y) = 1− c(x− y)

so(y)
+ αχo(x)

under our specification of v. With social capital at y held fixed at the equilibrium level

(s∗(y) = so(y)), this expression is larger than the equilibrium number of visits n∗(x, y)

because χo(x) ≥ 0. The question thus becomes how social capital changes in this efficient

allocation.

Inserting (10) in the binding condition (15), we get

so(x) = 1 + α

∫ b

−b
so(z)λ(z)dz − αg(x) + α2χo(x)

∫ b

−b
so(z)λ(z)dz

We use the same algebraic manipulation leading to expression (8), multiplying both mem-

bers of the last expression by λ(x), integrating them and simplifying to get the value of∫ b
−b s

o(x)λ(x)dx. We then insert this expression in the previous equality and simplify, get-

ting the following closed-form solution for the efficient level of social capital:

so(x) = 1 + α
[1 + αχo(x)]

[
1− α

∫ b
−b g(z)λ(z)dz

]
1− α− α2

∫ b
−b χ

o(z)λ(z)dz
− αg(x)

If χo(x) = 0, this yields the equilibrium s∗(x). However, since χo(x) ≥ 0, the numerator

is larger and the denominator is smaller than in the equilibrium. It thus must be that

so(x) > s∗(x). In turn, this implies that no(x, y) ≥ n∗(x, y).
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B Social capital fixed point

The fixed point in social capital can be computed by rewriting equation (20) as nij,rsj,r =

(n0 + θij,r) sj,r − cdij,r so that (21) becomes

sj,r = 1 + α

Nr∑
k=1

[(n0 + θjk,r) sk,r]− αc
Nr∑
k=1

djk,r, (B.4)

where the last term is the discrete equivalent of the access cost measure g(x) in the model.

The system of linear equations (B.4) can be written in vector-matrix form as

sr = 1Nr + α (N0 + Θr) sr − αcDr1Nr , (B.5)

where sr is the (Nr × 1) vector with elements si,r, 1Nr is the (Nr × 1) vector of 1 and N0,r is

an (Nr×Nr) matrix in which the off-diagonal elements are n0, and the diagonal elements are

zero, while Dr= (dij,r) and Θr = (θij,r) = (xT
ij,rβ + εij,r) are (Nr ×Nr) matrices. Namely,

Dr =



d11,r ... d1i,r ... d1Nr,r

...
. . .

...
. . .

...

di1,r ... dii,r ... diNr,r

...
. . .

...
. . .

...

dNr1,r ... dNri,r ... dNrNr,r


and Θr =



θ11,r ... θ1i,r ... θ1Nr,r

...
. . .

...
. . .

...

θi1,r ... θii,r ... θiNr,r

...
. . .

...
. . .

...

θNr1,r ... θNri,r ... θNrNr,r


.

(B.6)

Solving the system of linear equations leads to

s∗r = [INr − α (N0 + Θr)]
−1 (INr − αcDr) 1Nr ,

where INr is the (Nr ×Nr) identity matrix. The matrix INr − α (N0 + Θr) is invertible if

α < 1
ρ(N0+Θr)

, where ρ (N0 + Θr) is the largest eigenvalue of the matrix N0 + Θr.
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C Robustness checks

To check the robustness of our estimation results, in particular, the estimates of α in the

social capital equation, we use an additional auxiliary model. That is, we regress the ith

row and jth column element of N3
r, i.e., [N3

r]ij, on the regressors in equations (27) and (28)

as follows:

[N3
r]ij = γ30 + xT

ij,rγ31 + γ32dij,r + ε3,ij,r. (C.7)

We check whether our estimates using two auxiliary equations and three auxiliary equations

are close to each other. We use the symmetric specification, used in column (2) of Table 2.

The results are shown in column (1) of Table B1. All the parameter estimates, including the

social capital parameter α are similar to those shown in column (2) of Table 2.

In addition, we check the robustness of our results to the choice of network size. The

structural estimates may be heterogeneous across networks with different sizes. To check

this, we restrict the size of networks in the following ways: First, we use networks of size

5–10, and second, we use networks of size 4–9. Columns (2) and (3) of Table B1 show the

results. Our results are close to the original estimation results, shown in column (4) of Table

2. In particular, the structural parameters n0, α and c exhibit virtually the same estimates.

Hence, we find that our main estimation results are not sensitive to the choice of network

sizes.
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Table B1: Robustness checks

(1) (2) (3)
Adding N3

equation
Network size
4–9

Network size
5–10

Social interaction equation
β: social distances |xi − xj | |xi − xj | |xi − xj |
Female -0.4448*** -0.4824*** -0.2432***

(0.0775) (0.1186) (0.0835)
Black -0.2875** -0.2326** -0.1974**

(0.1240) (0.1089) (0.0887)
Grade -0.1558*** -0.1473*** -0.1467***

(0.0367) (0.0401) (0.0279)
Family income -0.0006*** -0.0010*** -0.0008***

(0.0002) (0.0002) (0.0001)
GPA -0.1293** -0.0665 -0.0360

(0.0560) (0.0601) (0.0343)
Parental education -0.0824*** -0.0455*** -0.0659***

(0.0132) (0.0146) (0.0168)
Two parents 0.0272 -0.0557*** -0.0473**

(0.0184) (0.0137) (0.0233)
Physical development -0.0277*** -0.0188*** -0.0131*

(0.0057) (0.0057) (0.0071)
Religion practice -0.0843*** -0.1129*** -0.1640***

(0.0190) (0.0268) (0.0186)
Family size -0.0158*** -0.0159*** -0.0221***

(0.0019) (0.0047) (0.0033)
Family income refused -0.5195*** -0.7016*** -0.1988*

(0.0771) (0.1001) (0.1194)

β: combined levels (xi + xj) (xi + xj) (xi + xj)
Female -0.0033*** -0.0040*** -0.0019***

(0.0003) (0.0007) (0.0006)
Black 0.0439*** 0.0344*** 0.0757***

(0.0045) (0.0106) (0.0212)
Grade 0.0530*** 0.0639*** 0.0668***

(0.0117) (0.0106) (0.0054)
Family income 0.0001 -0.0006*** 0.00002

(0.0001) (0.0002) (0.0002)
GPA -0.0332*** -0.0149* -0.0349***

(0.0086) (0.0083) (0.0054)
Parental education -0.0284*** -0.0173*** -0.0193***

(0.0072) (0.0066) (0.0057)
Two parents -0.0251** -0.0388*** -0.0335***

(0.0110) (0.0092) (0.0102)
Physical development 0.0259*** 0.0290*** 0.0276***

(0.0093) (0.0094) (0.0077)
Religion practice -0.0011 0.0115*** 0.0123***

(0.0020) (0.0024) (0.0047)
Family size -0.0087*** -0.0068*** -0.0114***

(0.0016) (0.0029) (0.0019)
Family income refused 0.0834*** 0.1097*** 0.0554*

(0.0277) (0.0256) (0.0308)
n0 1.9332*** 1.5423*** 1.3139***

(0.3257) (0.2244) (0.0900)
c (transportation cost) 0.1849*** 0.1781*** 0.1814***

(0.0094) (0.0245) (0.0069)
Social capital equation
α 0.0860*** 0.0896*** 0.0880***

(0.0149) (0.0107) (0.0107)
Number of networks 141 136 79
Number of pupils 753 703 505
Number of directed pairs 1,821 1,596 1,449

Note: We estimate parameters (n0, c, βT)T in the social interaction equation (20) and subsequent specifica-
tions (23)–(22), and parameter α in the social capital equation (21).
Bootstrap standard errors (clustered by networks) in parentheses, *** p<0.01, ** p<0.05, * p<0.1
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D Calibration in the policy exercises

Consider equations (39)–(43) in Section 6 and denote them as follows:

nij,r = n0 + θij,r −
σr − (1− τr) cdij,r

sj,r
(D.1)

and

sj,r = 1 + α
Nr∑
k=1

njk,rsk,r

where we implement together the two policies. The first equation can be written as

nij,rsj,r = (n0 + θij,r) sj,r + σr − (1− τr) cdij,r

so that the second equation becomes

sj,r = 1 + α
Nr∑
k=1

[(n0 + θjk,r) sk,r]− α
Nr∑
k=1

[σr − (1− τr) cdjk,r] (D.2)

where the last term is the discrete equivalent of g(x) in the model. Let us denote the

(Nr × 1) vector sr as follows: sr= (s1,r, ..., sn,r)
T. Let us also denote the (Nr ×Nr) matrices

as: Dr= (dij,r) and Θr = (θij,r) as in (B.6). Thus, in vector-matrix form, (D.2) can be

written as:

sr = 1Nr + α (N0 + Θr) sr + ασrNr1Nr − α (1− τr) cDr1Nr

where 1Nr is the (Nr × 1) vector of 1 and N0,r is an N by N matrix in which the off-diagonal

elements are n0, and the diagonal elements are zero. Solving this equation leads to:

sr = [INr − α (N0 + Θr)]
−1 [(1 + ασrNr) 1Nr − α (1− τr) cDr1Nr ]

or equivalently

sr = [INr − α (N0 + Θr)]
−1 [(1 + ασrNr) INr − α (1− τr) cDr] 1Nr (D.3)

where INr is the (Nr ×Nr) identity matrix. The matrix INr − α (N0 + Θr) is invertible if

α < 1
ρ(N0+Θr)

, where ρ (N0 + Θr) is the largest eigenvalue of the matrix N0+Θr. As a result,
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we could solve the model using (D.1) and (D.3). Observe that nij,r > 0 if (1 + θij,r) sj,r >

(1− τr) cdij,r, ∀i, j. A sufficient condition is

sj,r > max
i

(1− τr) cdij,r − σr
(1 + θij,r)

.
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Table 2: Structural estimation results

(1) Directed (2) Undirected
Social interaction equation
β: social distances (xi − xj) |xi − xj |
Female -0.0091 -0.4424*

(0.1436) (0.2360)
Black -0.0912 -0.3492**

(0.1133) (0.1708)
Grade -0.0120 -0.1147*

(0.0429) (0.0653)
Family income 0.0001 -0.0006*

(0.0002) (0.0003)
GPA 0.0144 -0.1413**

(0.0443) (0.0690)
Parental education 0.0040 -0.0502

(0.0211) (0.0375)
Two parents -0.0494 -0.0672*

(0.0360) (0.0361)
Physical development -0.0175** -0.0184*

(0.0071) (0.0100)
Religion practice -0.0157 -0.0721*

(0.0231) (0.0394)
Family size -0.0103** -0.0151*

(0.0057) (0.0080)
Family income refused 0.0136 -0.4096*

(0.1155) (0.2150)

β: combined levels (xi + xj) (xi + xj)
Female -0.0027*** -0.0026*

(0.0010) (0.0014)
Black 0.0320*** 0.0325*

(0.0136) (0.0183)
Grade 0.0592** 0.0722**

(0.0242) (0.0331)
Family income 0.0003 0.0003*

(0.0004) (0.00018)
GPA -0.0322*** -0.0292**

(0.0119) (0.0147)
Parental education -0.0227** -0.0292*

(0.0099) (0.0118)
Two parents -0.0338*** -0.0322*

(0.0140) (0.0185)
Physical development 0.0211** 0.0230

(0.0106) (0.0166)
Religion practice 0.0084** 0.0081*

(0.0035) (0.0043)
Family size -0.0081*** -0.0088*

(0.0027) (0.0046)
Family income refused 0.0848** 0.0876*

(0.0359) (0.0512)
n0 1.0115*** 1.3981*

(0.3906) (0.6774)
c (transportation cost) 0.2185*** 0.1866**

(0.0279) (0.0904)
Social capital equation
α 0.0810*** 0.0851**

(0.0218) (0.0400)
Number of networks 141 141
Number of pupils 753 753
Number of directed pairs 1,821 1,821

Note: We estimate parameters (n0, c, βT)T in the social interaction equation (20) and subsequent
specifications (23)–(22), and parameter α in the social capital equation (21).
Bootstrap standard errors (clustered by networks) in parentheses, *** p<0.01, ** p<0.05, * p<0.1
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Table 3: Social interactions and social capital: Optimal level vs. observed level

Social interactions Social capital
Optimal Observed Average Minimum Maximum Optimal Observed Average Minimum Maximum

level level difference difference difference level level difference difference difference
3.154 1.262 1.892 0.532 3.757 2.448 1.614 0.834 -2.354 11.668

Note: The statistics are computed using the network-level average social interactions and social capital from 141 networks. For
example, the largest difference between the average levels of optimal and observed social interactions is 3.757. Note that these
statistics differ from pair-level averages.
The observed level of social capital is augmented using equation (24).
We report the average results over 100 simulations.
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Table 4: Difference between optimal level and observed level of social interactions

Optimal−Observed (social interactions)
(1) (2) (3) (4) (5)

Network population 1.268*** 1.278*** 1.370*** 1.121 1.502**
(0.166) (0.168) (0.173) (0.788) (0.682)

Network population2 -0.084*** -0.085*** -0.089*** -0.075** -0.089***
(0.013) (0.013) (0.013) (0.038) (0.033)

Avg. geographic distance 0.0039 0.0009 0.0012 -0.0025
(0.0075) (0.0074) (0.0074) (0.0069)

Avg. degree centrality -0.591*** -0.653* -0.815**
(0.179) (0.392) (0.356)

Std.dev. of degree centrality 0.168 -0.130 -0.111
(0.160) (0.515) (0.462)

Avg. eigenvector centrality -4.128 0.938
(7.993) (7.000)

Clustering coefficient 0.088 0.501
(0.975) (0.916)

Diameter -0.106 -0.062
(0.178) (0.159)

Female fraction 0.103
(0.154)

Black fraction -0.161
(0.111)

Avg. student grade -0.062***
(0.022)

Avg. GPA 0.221***
(0.079)

Avg. level of physical development -0.049
(0.061)

Avg. level of religion practice -0.107**
(0.045)

Avg. family size 0.085
(0.0515)

Fraction of students with two parents -0.040
(0.163)

Avg. level of parent education 0.074
(0.072)

Avg. family income -0.0030**
(0.0013)

Fraction family income refused -1.012***
(0.232)

Constant -2.271*** -2.324*** -1.808*** 1.555 -2.017
(0.492) (0.504) (0.514) (6.286) (5.517)

Observations 141 141 141 141 141
R-squared 0.462 0.463 0.503 0.506 0.673

Note: The outcome variable is the average difference between optimal level and observed level of social interactions
(Nopt −Nobs) over 100 simulations for each network.
Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1
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Table 5: Difference between optimal level and observed level of social capital

Optimal−Observed (social capital)
(1) (2) (3) (4) (5)

Network population -4.545*** -4.523*** -4.410*** 1.239 1.163
(0.641) (0.647) (0.691) (3.119) (3.099)

Network population2 0.290*** 0.288*** 0.280*** 0.017 0.009
(0.050) (0.051) (0.053) (0.149) (0.148)

Avg. geographic distance 0.009 0.010 0.010 0.023
(0.029) (0.029) (0.029) (0.032)

Avg. degree centrality 0.352 -1.010 -1.262
(0.717) (1.553) (1.615)

Std.dev. of degree centrality -0.618 -0.153 -0.588
(0.641) (2.040) (2.100)

Avg. eigenvector centrality 58.36* 52.08
(31.63) (31.80)

Clustering coefficient 4.000 5.312
(3.860) (4.160)

Diameter 0.039 -0.109
(0.704) (0.723)

Female fraction 0.222
(0.700)

Black fraction 0.266
(0.503)

Avg. student grade -0.176*
(0.098)

Avg. GPA -0.253
(0.359)

Avg. level of physical development 0.180
(0.277)

Avg. level of religion practice 0.317
(0.206)

Avg. family size 0.016
(0.234)

Fraction of students with two parents 0.129
(0.739)

Avg. level of parent education -0.317
(0.328)

Avg. family income 0.001
(0.006)

Fraction family income refused 2.565**
(1.054)

Constant 16.07*** 15.95*** 15.50*** -29.62 -23.76
(1.899) (1.946) (2.055) (24.88) (25.06)

Observations 141 141 141 141 141
R-squared 0.474 0.475 0.478 0.493 0.558

Note: The outcome variable is the difference between optimal level and observed level of social capital (Sopt−Sobs)
over 100 simulations for each network.
The observed level of social capital is augmented using equation (24).
Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1
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Table 6: Optimal network design: average welfare and number of students

(1) (2) (3) (4) (5)
Welfare Welfare Welfare Welfare Welfare

Network population -1.773 -3.310 -0.446 18.61 20.87**
(2.793) (2.567) (2.539) (11.32) (10.45)

Network population2 0.010 0.136 -0.0150 -0.817 -0.939*
(0.218) (0.200) (0.193) (0.542) (0.498)

Avg. geographic distance -0.615*** -0.679*** -0.670*** -0.667***
(0.115) (0.108) (0.107) (0.106)

Avg. degree centrality -12.49*** -19.61*** -21.72***
(2.637) (5.634) (5.445)

Std.dev. of degree centrality 0.751 -10.03 -12.91*
(2.356) (7.400) (7.082)

Avg. eigenvector centrality 134.3 138.5
(114.8) (107.2)

Clustering coefficient 17.57 24.10*
(14.01) (14.03)

Diameter -4.428* -4.931**
(2.555) (2.436)

Controls No No No No Yes
Observations 141 141 141 141 141
R-squared 0.112 0.264 0.373 0.406 0.553

Note: The outcome variable is the simulated average welfare (AWr), averaged over 100 simulations for each
network.
Control variables include the averages of the social distances and the combined levels used in structural esti-

mation. See Tables 4–5.
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 7: Policy levels for optimal outcomes

(1) Subsidizing social interactions: σ (2) Subsidizing transportation costs: τ
Average Minimum Maximum Average Minimum Maximum

0.826 0.000 22.003 0.832 0.318 1.000

Note: The subsidy level for each network is computed for students in each network to obtain the optimal level of
social interactions and social capital in (31)–(33).
We report the average results over 100 simulations.
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Table 8: Comparison of two policies

Panel A: Budget corresponding to the average (optimal) social interaction subsidy level

Number of networks that lead to higher welfare for each policy
Subsidy schemes Policy: σ Policy: τ
(1) Uniform subsidy amount for each network 119 22
(2) Subsidy proportional to Nr 136 5
(3) Subsidy proportional to Nr(Nr − 1) 119 22

Panel B: Budget corresponding to the average (optimal) transportation subsidy level

Number of networks that lead to higher welfare for each policy
Subsidy schemes Policy: σ Policy: τ
(1) Uniform subsidy amount for each network 119 22
(2) Subsidy proportional to Nr 136 5
(3) Subsidy proportional to Nr(Nr − 1) 120 21

Note: 141 networks.
The median number of networks over 100 simulations, which lead to higher welfare for each policy is reported.
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