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Abstract

This paper investigates the partial equilibrium effects of a floor area ratio (“FAR”) regulation in a

growing city with rising rents. We extend the standard urban land-use model with FAR regulation in the

existing literature to a dynamic setting to provide additional insight into development patterns in a city

with a regulation which restricts the maximum-allowed FAR. We show that a FAR regulation hastens

construction and lowers the density of buildings, and we also find the effects of a FAR regulation on land

value to be consistent with the existing literature. We then demonstrate the relationship between a FAR

regulation and land value and the relationship between the regulation and development patterns in New

York City. Our data shows that all else equal, a lower maximum-allowed FAR is correlated with lower land

values, earlier demolition of buildings, and lower density of newly constructed buildings.

1 Introduction

The purpose of this paper is to propose a model which describes the economic effects of introducing a regulation that

limits the maximum-allowed floor area ratio (“FAR”) on a parcel of land. Our model analyzes the effects of a marginal

change on the FAR regulation in a partial equilibrium setting when there is durable housing and redevelopment.

While there are many types of land use regulations, a FAR regulation is intended to deal with various forms of land

use externalities arising from high population density and tall buildings. For example, a FAR regulation combined

with other regulations, such as total parking space or open space requirements, can be used to i) increase sunlight in

the streets; ii) reduce traffic congestion; iii) reduce strain on public infrastructure; and iv) reduce wind-tunnel effects,

among other things.

First introduced in New York City in 1961, the regulation of FAR was an attempt to improve on the previous policy

of restricting the height and shape of buildings. While height restrictions were intended to regulate the rapid population

growth in New York City, FAR restrictions were a much more effective way of directly limiting population density
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while decentralizing city planning in that this granted developers more freedom to decide on the shape of their buildings.

The literature on the economic impacts of FAR regulation has focused on 1) optimization of FAR regulation policy

and 2) measuring the impacts of FAR regulation on land values. Relevant to our paper is a series of papers on measuring

the stringency of FAR regulation (Brueckner and Sridhar (2012); Brueckner et al (2017); Moon (2018)), defined as the

ratio of the theoretical profit-maximizing FAR under no restriction to the maximum-allowed FAR. These papers extend

Brueckner’s (1987) well-known land use model by including density restriction to examine the cost of FAR regulation

to the land developer.

This paper analyzes the effects of a FAR regulation on the profit-maximization problem of the land developer

(“developer”) who owns the parcel to be developed. The developer decides on the timing and density of a sequence of

structures to be built on the parcel under perfect foresight. We then provide an empirical test of the model presented here

using data on land value and time of construction of parcels that are in between conversions in New York City. In our

empirical exercise, we estimate the elasticity of land value with respect to the maximum-allowed FAR, regress building

age at the time of demolition on the maximum-allowed FAR, and regress FAR of newly converted buildings on the

maximum-allowed FAR. To do this, we measure the effects of deviation in FAR regulation from their spatially-adjusted

means on the deviations in land values, the timing at which a building is demolished, and the density of newly converted

buildings from their spatially-adjusted means through fixed effects models. We find that the results are consistent with

the predictions of the model in that 1) a regulation that may not be binding today nevertheless is correlated with lower

land values and 2) parcels with more stringent FAR regulation tend to be developed earlier and at lower densities.

We make several contributions to the literature on urban land use and density regulation. First, we extend the static,

partial equilibrium analysis of the existing literature to a dynamic setting with perfect foresight and multiple conversions

of durable housing. Thus, we generalize the analysis of a city in a stationary state to that of a growing city. Second, our

empirical results show the importance of understanding the long-term impact of land use regulations on land values and

development patterns and the short-term impact of land use regulations even if the policies may seem to be irrelevant

today. Finally, our model provides a supply-side module for a spatial general equilibrium model of a growing city with

durable housing.

As urban development is an innately dynamic problem with time-varying rents, required maintenance, and land

conversion decisions to be made, our model provides additional insight for the study of FAR regulations. In a static

model, it is assumed either that the FAR regulation is binding for all buildings or that there is no effect of the regulation

on buildings for which the regulation is not binding. In our dynamic model, however, a FAR regulation that may not be

binding today nevertheless affects the profit-maximizing program prior to becoming binding. In particular, a marginal

relaxation of FAR regulation - given that such a relaxation maintains the current number of building conversions

(“conversions”) - will result in a sequence of later and higher-density developments for all future buildings. Furthermore,

if the FAR regulation is binding for the first and only conversion of land, and if the elasticity of substitution between land
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and capital is equal to unity as in the existing literature, then there would be no effect of changing the maximum-allowed

FAR on the elasticity of land value with respect to the stringency of the regulation.

We organize the next sections as follows. In section 2, we discuss the development in the two most relevant

literatures - partial equilibrium models of urban development in a growing city with durable housing and multiple

conversions and partial equilibrium models of FAR restrictions in a static land use model. In section 3, introduce

the model by providing an illustrative example for a single conversion case to motivate the problem then present the

baseline model of urban development in a growing city with durable housing and multiple conversions. In this section,

we also introduce FAR restrictions to the model to analyze the effects of marginal changes in the maximuma–lowed

FAR on the optimal development program and on the value of land. In section 4, we discuss how we construct our data.

In section 5, we present our empirical strategy and results. In section 6, we provide the concluding remarks.

2 Literature Review

The literature on urban land use model is dense and consists of countless specifications. The first analyses of the housing

market were Marshallian, and the housing market was viewed as a market for housing services (Arnott (1987)). This

view of the housing market was formalized by Muth (1969), and the housing market literature exploded during the

seventies with several main lines of development.

Most relevant to our model is the class of partial equilibrium models of urban development in a growing city

with durable housing. One of the first models of this kind was introduced by Richard J. Arnott (Arnott and Lewis

(1979); Arnott (1980)). In these models the developer with perfect foresight decides on the timing and the density of a

permanently durable housing to be erected on a single plot of vacant land. By working with perfect foresight, Arnott

was able to derive important insights not found in models with static or myopic expectations as in the previous literature.

For example, in residential location theory the structural density of a building is determined by land rent, but in Arnott’s

models structural density is determined by land value. Furthermore, the effects of policies will be different based on

whether or not the policy was anticipated by developers.

The first paper to introduce multiple conversions with perfect foresight was by Brueckner (1981). Under the

assumptions that 1) rents remain constant over time, 2) the quality of the buildings deteriorate over time, and 3)

demolition is costless, Brueckner finds that the optimal development program is an infinite sequence of identical

buildings. Amin and Capozza (1993) extend the analysis to include growing rents and find that while the qualitative

results under multiple conversions is similar to that under a single conversion, the quantitative results differ dramatically.

Also relevant to our study are the stationary, partial equilibrium models by Jan Brueckner (Brueckner and Sridhar

(2012); Brueckner et al (2017)) which explore the effects of making incremental changes to the stringency of FAR

regulation. These models show that 1) the relaxation of FAR restriction on a property leads to a higher land value and
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that 2) this increase in land value has a diminishing effect with subsequent relaxation of the FAR restriction.

The series of papers by Brueckner and other related papers also introduced the idea of measuring the stringency

of land use regulation (Brueckner and Sridhar (2012); Brueckner et al (2017); Brueckner and Singh (2018); Moon

(2018)). Measuring the stringency of FAR regulation, as opposed to the cost and magnitude of regulation, allows us

to gauge the extent to which the land use regulation causes development patterns and land values to diverge from the

theoretical free-market levels in the absence of regulation even if the theoretically optimal levels are unknown, as long

as the parameters and the functional forms of the theoretical model are known (see Brueckner and Singh (2018)). In

Brueckner’s papers, this is accomplished by estimating the elasticity of land value with respect to the maximum-allowed

FAR. In particular, he finds that for parcels where the FAR regulation is binding, this elasticity is positive and less than

1 - a marginal increase in the stringency of FAR regulation decreases land value.

Some other papers relevant to the study of FAR regulations explore changes in maximum-allowed FAR over time,

optimal FAR regulations, and the effect of FAR regulations congestion. Joshi and Kono (2009) present a model of a

growing two-zone city to determine the optimal FAR regulation for mitigating population externalities. Pines and Kono

(2012) utilize a closed monocentric city model with unpriced transport congestion to explore the second-best allocation

of housing under a spatial-variable excise subsidies or taxes and suggest the possibility of replacing the subsidies or

taxes with FAR regulations. They find that while FAR optimal regulations makes urban growth boundary (UGB) useless,

they cannot always be used to attain second-best utility. Barr and Cohen (2014) focus on the FAR gradient of New York

City during the 20th century to analyze the change in FAR gradient in each borough over time. They show that New

York City has largely remained a monocentric city over time and that there is a nonlinear relationship between plot size

and the FAR.

Our paper is a union of the partial equilibrium models of urban development with rising rents, durable housing, and

multiple conversions under perfect foresight and Brueckner’s model of anticipated FAR restriction. We validate our

model through an empirical exercise using data from New York City.

3 The Model

3.1 Illustrative Example

We begin with an illustrative example to motivate the problem and provide some insight into the features of our model.

While the general model assumes multiple conversions, assume for the purpose of illustration that there is only one

conversion of land. The plot of land to be developed is initially vacant, and the developer must decide on the optimal

timing and density for the transition of land from rural to urban use. Also assume that the urban housing market is

competitive with housing rent which grows at a constant rate, g. The developer’s profit-maximization problem can be
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stated as

max
t,S

V (t,S) =

∞̂

t

p(τ)h(S)e−ρτdτ− rSe−ρt (3.1)

where V (·) is the land value function, p is the rent per unit of housing, S is the units of capital invested per unit of land,

r is the price per unit of capital, h(·) is the output of housing per unit of land, t is the time of development, and ρ is the

discount rate. The first-order condition with respect to t is

p(t)h(S) = ρrS (3.2)

with t∗ satisfying the equality. Development will take place when the marginal cost of rent foregone is equal to the

marginal benefit of delaying construction any further. The first-order condition with respect to S is

re−ρt = h′ (S)

∞̂

t

p(τ)e−ρτdτ (3.3)

with S∗ satisfying the equality. The building will be constructed to the height where the marginal cost of an additional

unit of capital invested is equal to the marginal revenue from the extra housing produced from the additional unit of

capital.

Now suppose that there is an anticipated FAR regulation imposed prior to the developer entering the market so that

the amount of housing one can develop is limited to h≡ h
(
S
)

for some S < S∗. In this case, there is only one first-order

condition, and (3.2) becomes

p(t) =
ρrS

h
(
S
) (3.4)

with t̂ satisfying the optimality condition. The derivative of this expression with respect to the maximum-allowed FAR

is

d p(t̂)
dS

=
ρr
(
h
(
S
)
−h′

(
S
)

S
)(

h
(
S
))2 > 0

where h
(
S
)
−h′

(
S
)

S > 0 by the concavity of h(·). Thus, increasing the stringency of the FAR regulation by decreasing

S will lead to a lower housing rent at the time of development. A lower housing rent in our context corresponds to an

earlier point in time, which implies that development will take place at an earlier time.

Figure 1 illustrates the foregoing.
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Figure 1: Illustrative Example

Now, given the optimal choice for the timing of construction, the land value is

V
(
t̂
(
S
)

;S
)
=

∞̂

t̂

p(τ)h
(
S
)

e−ρτdτ− rSe−ρt̂ (3.5)

The derivative of land value with respect to the maximum-allowed FAR is

dV̂
dS

=VS +Vt̂
dt̂
dS

(3.6)

where V̂ ≡V
(
t̂
(
S
)

;S
)
. But since by the Envelope Theorem Vt̂ = 0, we have

dV̂
dS

=VS

= h′
(
S
) ∞̂

t̂

p(τ)e−ρτdτ− re−ρt̂ > 0 (3.7)

so that the FAR regulation decreases the land value. The elasticity of land value with respect to the maximum-allowed

FAR is

EV :S ≡
VSS
V

=
Sh′
(
S
)´

∞

t̂ p(τ)e−ρτdτ− rSe−ρt̂

h
(
S
)´

∞

t̂ p(τ)e−ρτdτ− rSe−ρt̂
(3.8)

which is less than one by the concavity of h(·).

We now turn to the general model to explore how the analysis extends when there are multiple conversions.
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3.2 Baseline Model

Notational Glossary

EV :S Elasticity of land value with respect to the maximum-allowed density

g Growth rate of rent on housing

h(S) Output of housing per unit of land (FAR)

h
(
≡ h

(
S
))

The maximum-allowed density of housing

J Index for the final building conversion

p(t) Rent on housing at time t per unit of housing

r Price of a unit of capital

S j Capital investment in housing per unit of land at the jth conversion

S∗j Optimal density in the absence of FAR regulation

S Maximal allowed capital investment in housing

Ŝ j Optimal density under FAR regulation

S̃J

(
≡ S

S∗J

)
The reciprocal of stringency of FAR regulation

t j Time at the jth conversion

t∗j Optimal timing of development in the absence of FAR regulation

t̂ j Optimal timing of development under FAR regulation

V Value per unit of land

V̂ Optimized land value under FAR regulation

β Output elasticity of land

ρ Discount rate

This section derives the baseline model describing the relationship between density regulation and land values. We

utilize a partial equilibrium model to isolate and analyze the effect of a density regulation on the optimal development

program on a single plot of land. A general equilibrium model may show that a density restriction effectively decreases

the total supply of land available for development in the form of airspace, thus leading to an overall increase in land

value. However, the goal of our model is to show that the immediate effect of a density restriction on a single plot of

land - holding the density of all neighboring plots constant - is to lower the value of that plot of land. This allows us to

focus on the cost of the FAR restriction to the developer.

Consider a competitive urban land development market with rising housing rent. The problem facing the developer

with perfect foresight is to choose the optimal timing and the density for the initial transition of land from rural to

urban use and the stream of subsequent building conversions. The rent on housing is determined competitively and is

dependent on locational characteristics.
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The following are the assumptions used throughout this paper:

Assumptions

Assumption 1. There is no depreciation of housing.

Assumption 2. Demolition for the purpose of reconstruction is costless.

Assumption 3. The housing redevelopment market is competitive.

Assumption 4. The developer has perfect foresight with respect to future rent on buildings and the FAR restriction.

Assumption 5. The rent function is unbounded, is non-decreasing in time, and has the property that p(t)≤ p(0)egt

for some g < ρ.

The housing developer’s profit-maximization problem can be stated as

max
{t j ,S j}

V (t1,S1, · · ·) =
∞

∑
j=1


t j+1ˆ

t j

p(τ)h(S j)e−ρτdτ− rS je−ρt j

 (3.9)

where V is the value per unit of land, p(·) is the rent per unit of housing, S j is the units of capital invested in the jth

future conversion, h(·) is the amount of housing per unit of land (FAR), and r is the price per unit of capital. Note

that this value is intermittently calculated between conversions, when the previous building is torn down and the next

building is erected. Thus, the jth building’s contribution to the total land value is calculated when the plot is vacant.

Furthermore, this specification of the model implicitly defines the developer’s problem as developing a plot of land

which is initially vacant at the beginning of time, denoted t01. As we shall see in the next section, it is prior to this time

t0 when the density restriction is imposed, thus making the restriction an anticipated regulation.

Figure 2 illustrates the sequence of building conversions for the optimized development program.

The first-order condition for the choice of timing of conversion is

(h(S j)−h(S j−1)) p(t j) = ρrS j (3.11)

where
{

t∗j
}∞

j=1
satisfies the set of optimality conditions and h(S0) = 0. Conversion will take place whenever the rent

foregone from waiting an extra period is equal to the benefit of putting off construction for one period. Under our

assumptions, there will be an infinite sequence of conversions in the absence of a density restriction.
1If we wish to model a scenario where there exists a structure at the beginning of time, the profit-maximization problem would become

max
{t j ,S j}

V (S0, t1,S1, · · ·) =
t1ˆ

t0

p(τ)h(S0)e−ρτdτ+
∞

∑
j=1


t j+1ˆ

t j

p(τ)h
(
S j
)

e−ρτdτ− rS je−ρt j

 (3.10)

where S0 > 0 is the density of the initial building. In this paper, we shall assume the former land value function so that the land to be developed is
initially vacant.
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S

S0 t
t∗1

S∗1

S∗2

S∗3

t∗2 t∗3

Figure 2: Sequential Development

Proposition 1. Under Assumptions A1-A5, in the absence of a density restriction there will be an infinite sequence of

building conversions.

Proof. (by contradiction) (from Amin & Capozza (1992)). Consider some nth redevelopment at conversion time tn

and density h(Sn), determined to be the final conversion. But for some S such that h(S)> h(Sn), the variable cost of

conversion from density h(Sn) to density h(S) is given by rS. Then, it will be profitable to build to the higher density S

if

(h(S)−h(Sn))

∞̂

t

p(τ)e−ρτdτ≥ rS (3.12)

Since by Assumption 5 p(t) is a non-decreasing, unbounded function of t, the above equation will eventually be

satisfied. Therefore, without any restriction, housing density will increase over time indefinitely.

The first-order condition for the choice of housing density is

re−ρt j = h′ (S j)

t j+1ˆ

t j

p(τ)e−ρτdτ (3.13)

with
{

S∗j
}∞

j=1
satisfying the set of optimality conditions. Each structure will be built up to the density where the price a

unit of capital is equal to the present value of the marginal revenue from the investment of capital2.

2The second partial derivatives satisfy the conditions for the solutions to be local maxima, as the land value function is a sum of concave functions
with derivatives at the critical points being equal to zero.
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3.3 The Effects of an Increase in the Stringency of a FAR Regulation

We now extend the baseline model to treat FAR regulation. Suppose that there is a FAR regulation imposed at some

time prior to time t0 which restricts the density of any future structure to h≡ h
(
S
)

for some S > 0. By Proposition 1,

housing density will continue to increase until the FAR restriction is binding for some Jth and final conversion, so that

h
(
S
)
< h(S∗J) (where S∗J is the unrestricted profit-maximizing density for the Jth conversion). The value function for

land now becomes

V
(
t1,S1, · · · , tJ ,S

)
=

J−1

∑
j=1


t j+1ˆ

t j

p(τ)h(S j)e−ρτdτ− rS je−ρt j

+

∞̂

tJ

p(τ)h
(
S
)

e−ρτdτ− rSe−ρtJ

so that the Jth building is the final structure erected. Thus, there is now a finite number of building conversions if a

density regulation is introduced. With this restricted land value function, the set of first-order conditions with respect to

the timing of conversion is


(h(S j)−h(S j−1)) p(t j) = ρrS j if j < J(
h
(
S
)
−h(SJ−1)

)
p(tJ) = ρrS if j = J

(3.14)

and the set of first-order conditions with respect to the density of conversion is


re−ρt j = h′ (S j)

´ t j+1
t j

p(τ)e−ρτdτ if j < J

re−ρtJ < h′
(
S
)´

∞

tJ
p(τ)e−ρτdτ if j = J

(3.15)

with
{

t̂ j
}J

j=1 and
{

Ŝ j
}J−1

j=1 satisfying the optimality conditions, respectively. Note that the second equation of (3.15) is

an inequality, because the final structure is built at a density which is less than optimal. Thus, the marginal revenue

from an extra unit investment of capital exceeds the marginal cost of an extra unit of investment of capital.

Given the first-order conditions above, we can write the set of comparative statics equations given the optimized

values of timing and density in matrix form as
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S

S0 t
t̂1

Ŝ1

Ŝ2

S̄

t̂2 t̂3

Figure 3: Sequential Development with FAR Restriction



Vt̂1 t̂1 Vt̂1Ŝ1
0 · · · 0

VŜ1 t̂1
VŜ1Ŝ1

VŜ1 t̂2

. . . 0

0 Vt̂2Ŝ1
Vt̂2 t̂2

. . .
...

...
. . . . . . . . . VŜJ−1 t̂J

0 0 · · · Vt̂J ŜJ−1
Vt̂J t̂J





dt̂1
dS
dŜ1
dS
dt̂2
dS
dŜ2
dS
...

dt̂J
dS


=



0

0
...

0

−Vt̂JS


(3.16)

We can now show that all else equal, reducing the density limit so that the FAR regulation is more stringent hastens

development and lowers the density of all sequence of buildings, given that the change in the regulation does not change

the number of conversions.

Proposition 2. Under Assumptions A1-A5, a marginal increase in the stringency of the FAR regulation hastens

development for all building conversions.

Proof. See Appendix 1

Proposition 3. Under Assumptions A1-A5, a marginal increase in the stringency of the FAR regulation lowers the

density of development for all building conversions.

Proof. See Appendix 2

Figure 3 illustrates the foregoing two Propositions, overlaid on Figure 2.

We now turn to the analysis of the FAR regulation’s impact on land value. The developer’s optimized program
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yields a land value of

V̂ =
J−1

∑
k=1


t̂k+1ˆ

t̂k

p(τ)h
(
Ŝk
)

e−ρτdτ− rŜke−ρt̂k

+

∞̂

t̂J

p(τ)h
(
S
)

e−ρτdτ− rSe−ρt̂J (3.17)

where V̂ ≡V
(
t̂1
(
S
)
, Ŝ1
(
S
)
, · · · , t̂J

(
S
)

;S
)

is the maximized land value under the constraint. The derivative of the above

with respect to the maximum-allowed FAR is

dV̂
dS

=VS +
J

∑
k=1

Vt̂k
dt̂k
dS

+
J−1

∑
l=1

VŜl

dŜl

dS
(3.18)

where the subscripts on V denote partial derivatives. Thus, an infinitesimal change in h affects the timing and density of

development for all building conversions prior to the one where the restriction binds. While it is possible for a change

in S to lead to a change in the number of conversions (from J cycles to J−1 or J+1 cycles), we shall only treat those

cases where the number of conversions remains the same after a change in the FAR restriction.

Since by the Envelope Theorem ∂V
∂t̂k

= 0 and ∂V
∂Ŝl

= 0 ∀ k ≤ J & l ≤ J−1, we have

dV̂
dS

=VS

= h′
(
S
) ∞̂

t̂J

p(τ)e−ρτdτ− re−ρt̂J > 0 (3.19)

That is, the changes in the timing and density of building conversions where the restriction do not bind does not have a

first-order effect on land value. Nevertheless, the FAR regulation lowers the land value overall. As the FAR regulation

is anticipated at the outset, all future development is impacted. Since land value is dependent not only on the current

best use of the land but also on its future development potential, a lowered

future development potential in the form of a FAR restriction which will be binding in the future will lower the current

value of land.

If there is a marginal change in the FAR regulation, those plots where the FAR regulation was initially more stringent

will experience a greater loss in land value. This can be shown by proving that d2V̂
dS2 < 0:

Proposition 4. Under Assumptions A1-A5, a continued increase in the stringency of the FAR regulation will have an

increasing effect on the decrease in land value.

Proof. See Appendix 3

In the following section, we estimate the effect of a percent change in the FAR restriction to the percent change in

land value. The following Proposition provides a theoretical basis for the expected estimated value of the empirical
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exercise:

Proposition 5. Under Assumptions A1-A5, the elasticity of land value with respect to the maximum-allowed FAR,

defined by EV :S ≡
VSS
V is less than one.

Proof. Consider the elasticity of land value with respect to the maximum-allowed capital investment:

EV̂ :S ≡
VSS
V̂

=
Sh′
(
S
)´

∞

t̂J
p(τ)e−ρτdτ− rSe−ρt̂J

∑
J−1
k=1

{´ t̂k+1
t̂k

p(τ)h
(
Ŝk
)

e−ρτdτ− rŜke−ρt̂k
}
+h
(
S
)´

∞

t̂J
p(τ)e−ρτdτ− rSe−ρt̂J

(3.20)

=
A

B+C

where

A≡ Sh′
(
S
) ∞̂

t̂J

p(τ)e−ρτdτ− rSe−ρt̂J (3.21)

B≡
J−1

∑
k=1


t̂k+1ˆ

t̂k

p(τ)h
(
Ŝk
)

e−ρτdτ− rŜke−ρt̂k

 (3.22)

C ≡ h
(
S
) ∞̂

t̂J

p(τ)e−ρτdτ− rSe−ρt̂J (3.23)

Since h is concave, we know that h′
(
S
)

S < h
(
S
)

and A <C. Furthermore, since B > 0 as it is the value of land for the

first J−1 conversions, the elasticity of land value with respect to the capital investment limit is less than one.

4 Data

4.1 Background

New York City is notorious for its complex housing regulations. The first set of zoning regulations were introduced

in 1916 and were designed to restrict the height of and set standards for the shape of skyscrapers. Over the years, the

1916 Zoning Resolution was continuously amended in order to adjust for the changing economy, increasing population,

and the growth of automobile use. By the 1950s, the 1916 Zoning Resolution came to “[resemble] a torn ’patchwork,’

reflecting forty-four tumultuous years of technological, social, and physical change” (Marcus, 1992). As a result, when

James Felt was appointed as Chairman of the New York City’s Planning Commission in 1956, he put rezoning New York

City as his top priority in order to rally public support for the City Planning Commission. That year, Felt commissioned

the architectural firm of Voorhees, Walker, Smith, and Smith to conduct a zoning study and propose a new resolution. In

1961, this new Zoning Resolution was approved by the New York City’s Board of Estimate to replace the 1916 Zoning
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Resolution to come into effect. Rather than regulating the height and shape of skyscrapers as its predecessor did, the

1961 Zoning Resolution simply restricted the FAR of a building, which gave developers more freedom in the shape of

buildings while giving planners more direct control over population density. Unfortunately, some of the problems of the

1916 Zoning Resolution are manifest also in the 1961 Zoning Resolution: in its current form, the text of New York

City’s 1961 Zoning Resolution, colloquially referred to as the “zoning text,” is 4,338 mind-numbing pages establishing

zoning districts, regulations governing land use and development, and all the exceptions to the rules.

The typical rationale of a land use regulation such as the 1916 and 1961 Zoning Resolutions of New York City is

to deal with various forms of land use externalities. For example, some justification used to advance building height

and density restrictions include i) to increase sunlight in the streets; ii) to reduce wind-tunnel effects; iii) to reduce

traffic congestion; and iv) to reduce the cost of providing certain public services. Optimal regulation requires that

these externalities are internalized, such that the marginal social benefit of strengthening the regulation equals the

corresponding marginal social cost. But because many of the benefits of regulation are difficult to quantify, most of the

empirical literature on land use regulations in economics has focused on its costs. In particular, the majority of research

focuses on measuring the effects of regulation on the overall levels of housing prices and quantities (see Gyourko and

Molloy (2015) for a survey on this topic).

4.2 Constructing the Data

We construct two sets of data in order to address two aspects of our model: 1) FAR regulation depresses land value for

parcels where the regulation is not binding and 2) FAR regulation hastens development.

Testing the first aspect of our model requires us to estimate vacant landvalues, which pose numerous challenges.

One of the approaches used in the literature in estimating land values is to utilize teardown data. Dye and McMillen

(2007) estimate vacant land values in Chicago based on building sales and demolition permits issued. This is done

under the assumption that the sales price of a demolished building is very close to land value. McMillen and O’Sullivan

(2013) utilize the active teardown market data in Chicago to test their model which predicts that “hedonic price function

coefficients depend on expected time between sale and demolition.” Their study shows that the sales price of both

teardown and non-teardown properties are affected by structural variables, with the effect being much larger when the

estimated teardown probability is low. Gedal and Ellen (2018) analyze 3,800 teardown sales and 4,900 vacant land sales

between 2003 and 2009 to estimate vacant land values in New York City. They show that the value of vacant parcels

tends to be lower than the value of teardown parcels because of differences in the quality of parcels. They conclude

that teardown parcels seem to be more representative of the city as a whole and that vacant land values estimated from

teardown sales may be better suited for exercises involving the study of vacant land values. We construct our data on

vacant land values based on teardown sales using the methods introduced in Moon (2018), which improves on the
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methods used in the literature. All of our data comes from New York City’s Open Data, which is a joint project between

the Mayor’s Office of Data Analytics (MODA) and the Department of Information Technology and Telecommunications

(DoITT) to provide the public with free access to city related data. The core of our data comes from Primary Land

Use Tax Lot Output (“PLUTO”), which contains information on every plot of land in the five boroughs of New York.

Some of the relevant information that this dataset provides includes lot area, maximum-allowable FAR, built FAR, the

borough in which the property is located, the year in which a property was built, and BBL (borough, tax block, & lot)

code. Our extract of the data comes from September 2016 with an initial sample size of 834,182 parcels.

To construct the first set of data, we extract rolling sales records from 2003-2016, provided by the Department of

Finance. To clean the data, we remove irregular sales records, some of which may correspond to transactions that

were not at arm’s length and others to errors, as some properties were transferred at prices as low as $0 or $1. We then

match the rolling sales data and the PLUTO data with information on demolition and new building permits from the

Department of Buildings. GNamely, we reconcile all the extracts by BBL code for each property, then we isolate all

properties that were issued both a demolition permit and a new building permit within a two-year time frame after a sale

takes place 3. This gives us a very accurate measure of vacant land values; a building that is demolished to be converted

immediately has a value close to $0, and the value of the parcel that was sold right before demolition largelyconsists

of vacant land value 4. Once we construct this data, we are left with a sample size of 2,720. The significant loss in

sample size from the original extract is due to the requirement that the building on the site must be demolished and a

redevelopment permit be issued within two years of the demolition in order to be included in the restricted sample of

parcels. Many buildings in the original data were issued a demolition permit without a corresponding new building

permit, indicating that some properties may have been purchased to be used as a parking lot or held as a vacant lot for

development in the future.

The second set of data is constructed by calculating the age of each building at the time of demolition. In particular,

we subtract the year in which a building was erected from the year when a demolition permit was issued at the end

of the building’s life. This information is used to test the prediction that all else equal, a building with a lower FAR

limit will be demolished at an earlier age for a conversion. The idea behind this approach is that if two buildings were

constructed at a similar date, comparing the age of the buildings at demolition would allow us to determine the effect of

3Note that our methodology also excludes those buildings that received bonus allowable FAR and public buildings. Buildings with bonus FAR are
rarely demolished, and public buildings do not have any transaction data.

4Such parcels actually may sometimes have negative value because of demolition costs, but we do not take into consideration demolition costs in
our paper. Collecting demolition cost data poses a challenge, because it is often unavailable in public data. While Gedal and Ellen (2018) estimate
demolition costs based on consultation with contractors in New York City, their estimates are not precise. Even if we were able to estimate demolition
costs, Liu et al (2012) show that demolished buildings also have scrap values that may sometimes even exceed the demolition cost - but scrap value is
also difficult to estimate for each building. Gedal and Ellen (2013), which is closely related to our research, confirm through an interview with a New
York City official that demolition costs consist of the fixed cost of demolishing the floor and ceiling and the variable cost which increases with built
FAR. We thus mitigate differences in demolition costs and scrap value by controlling for built FAR in our estimation.

Another reason why we do not consider demolition costs is because demolition costs are relatively low in property development. Rosenthal and
Helsley (1994) show that sales prices for teardown properties provide reliable estimates of vacant land value under the assumption that demolition
prices are low. Moreover, Gedal and Ellen (2018) show that demolition costs only account for 1.8% of the sales price of teardown properties.
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Figure 4: Location of Teardowns

FAR regulation. After constructing this data, we are left with a sample size of 7,398.

Figure 4 shows the locations demolished buildings in our data. As map shows, the data points are well-distributed

all over New York; demolitions are not concentrated in certain boroughs, but rather are distributed across all five

boroughs5.

Table 1 shows the summary statistics for the two sets of constructed data. One notable aspect about our data is that

the mean Built FAR is lower than the mean maximum-allowed FAR, which indicates that the restriction does not bind

for some of the buildings.

5 Empirical Strategy & Results

We address three aspects of the model in our study: 1) the effect of FAR regulation differentials on land value for those

properties for which the FAR limit is not binding, 2) the effect of FAR regulation differentials on the timing at which a

conversion takes place, and 3) the effect of FAR regulation differentials on the density of newly converted buildings.

To do this, we control for spatial heterogeneity across parcels through a fixed effects model and estimate the effect of

deviations in the maximum-allowed FAR from the spatially-adjusted means on deviations on land values from their

spatially-adjusted means.

5To test the randomness of the distribution, we utilize the average nearest neighbor method which compares the average distance between plots in
the actual data and the average distance between plots that are randomly distributed across the same area as the actual data. The average nearest
neighbor ratio is then calculated by dividing the observed average distance by the expected average distance, where the expected average distance is
based on the randomly generated sample. If this ratio is larger than 1, our sample is said to be distributed randomly across space, and if the ratio is
less than 1, then our sample is said to be clustered in certain areas. Because properties are already clustered in New York City, our sample is spatially
spread out across New York City if the ratio calculated using our sample is larger than the average nearest neighbor ratio of all buildings in New York
City. Our results show that the average nearest neighbor ratio for all buildings in New York City is 0.111, and the average nearest neighbor ratio for
the teardowns is 0.365, which shows that the teardowns in our data are distributed more randomly across space than all buildings in New York City.

16



Table 1: Summary Statistics

Vacant Land Value Data
Mean S.D

Lot Area (sqft) 35,387 328,609
Max FAR 2.38 2.13
Built FAR 1.73 2.60
Sale Price ($) 1,405,280 5,260,532
Price Per Square Foot ($) 310 1,053
N 2,720

Building Age at Demolition Data
Mean S.D.

Year Built 1,931 24.7
Age (years) 76.4 25.6
Max FAR 2.6 2.0
Built FAR 1.2 1.4
N 7,318

5.1 Estimating the Effect of FAR Regulation Differentials on Land Value

Our model predicts that a marginal increase in the stringency of FAR regulation lowers land value. That is, all else

equal a parcel with a higher maximum-allowed FAR will have a higher land value. This is shown in the model by the

fact that the elasticity of land value with respect to the maximum-allowed FAR is positive. To identify the effect of FAR

regulation differentials on land value, we regress the log of land value on the log of the maximum-allowed FAR. This

gives us the estimate for the elasticity of land value with respect to the maximum-allowed FAR. We include a sales year

fixed effect and a zip code fixed effect to control for variation in sales prices across different years and for neighborhood

characteristics. The equation for this regression is given by

log(Vict) = αt +βc +θ log(FARict)+ εict (5.1)

where V is the land value, FAR is the maximum-allowed FAR, t is the vector of dummies for the year in which building

i was sold, and c is the vector of dummies for zip code. Note that this equation does not control for characteristics of

the buildings that were sold. This is because in our data, buildings that were sold were going to demolished anyway and

their characteristics do not affect land value.

Table 2 gives the estimation results of the correlation between FAR regulation on land value. Column (1) shows the

estimation results for the aggregate data, while column (2) shows the estimation results for samples for which the FAR

limit is not binding. The results are consistent even for parcels where the FAR is not binding - we find the elasticity

of land value with respect to maximum-allowed FAR to be positive, significant, and less than 1 for parcels that have

non-binding FAR limits. For these parcels, we find that a 1% increase in the maximum-allowed FAR is associated

with a 0.42% increase in land value. We further perform a robustness check by utilizing the clustering method from
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Table 2: Effect of FAR Regulation on Land Value

(1) (2) (3) (4)
VARIABLES LN(Land Price/lot area) LN(Land Price/lot area) LN(Land Price/lot area) LN(Land Price/lot area)

MaxFAR>BuiltFAR MaxFAR>BuiltFAR

Ln(FAR) 0.432*** 0.421*** 0.385*** 0.323***
(0.0713) (0.0881) (0.122) (0.104)

Constant 6.528*** 7.077*** 4.635*** 8.570***
(0.216) (0.257) (0.0724) (0.330)

Zip Code FE Yes Yes
Sales Year FE Yes Yes
Cluster FE Yes Yes
Number of zip codes or clusters 167 167 2,321 2,321
Observations 2,720 2,244 2,720 2,244
R-squared 0.585 0.484 0.392 0.325

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Brueckner et al. (2017). We cluster the sample based on the borough, block, usage (commercial/residential), and the

sale year. This allows us to control for unobserved parcel and building characteristics. The results are shown in columns

(3) and (4). Thus, we show that our results remain robust even when we use spatial fixed effects that are finer than zip

codes (167 zip codes vs. 2,321 clusters).

5.2 Estimating the Effect of FAR Regulation Differential on Timing of Conversion

To estimate the effect of FAR regulation differentials on the timing of conversion, we regress the age at which a building

is demolished on maximum-allowed FAR. Theory predicts that if two buildings are similar in characteristics, the

building with a lower maximum-allowed FAR will be converted at an earlier time. If two buildings were constructed at

a similar time, have similar neighborhood characteristics, and differ only in the maximum-allowed FAR, the timing of

conversion can be estimated by comparing the age at which each of the buildings is demolished.

We include a built year fixed effect based on the decade6 that a building was erected for two reasons. First, as

discussed above, comparing the age of demolition of buildings that were constructed at similar times, allows us to

determine the differences in the timing of conversion due to differences in FAR regulation. Second, we assume that the

timing at which a building is demolished will heavily depend on the year at which the building was built. Buildings that

were constructed at a similar time will have similar characteristics and be constructed with similar materials and with

similar technology.

We also include a built FAR fixed effect, with the built FAR of each building rounded to the nearest multiple of

0.5. This allows us to further control for property characteristics, under the assumption that two buildings that were

constructed at a similar time to a similar density must also have similar characteristics. Thus, our exercise involves

comparing the timing of demolition of two buildings that were built at the same time and at the same density, but differ

6Using bins of 3 years and 5 years also yields a similar result.
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Table 3: Effect of FAR Regulation on the Timing of Conversion

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Age Age Age Age Age Age Age Age

FAR 0.708*** 0.255*** 0.702*** 0.247*** 0.533*** 0.219*** 0.559*** 0.215***
(0.0492) (0.0648) (0.0493) (0.0649) (0.0503) (0.0571) (0.0502) (0.0572)

Built FAR -0.355*** -0.235*** -0.339*** -0.237***
(0.0886) (0.0761) (0.0865) (0.0764)

Distance (Distance from ESB) -0.00893 -0.0179*** 0.0306*** -0.0102
(0.00570) 0.00637) (0.00953) (0.00664)

Constant 186.7*** 180.2*** 186.7*** 180.3*** 1,839*** 1,898*** 1,849*** 1,896***
(0.219) (0.505) (0.221) (0.506) (73.05) (69.64) (73.01) (69.67)

Built Decade FE Yes Yes Yes Yes No No No No
Built FAR FE Yes No Yes No No No No No
By-Borough Built FAR FE No Yes No Yes No No No No
Cluster FE Yes Yes Yes Yes
Number of clusters 3,381 3,381 3,381 3,381
Observations 7,318 7,318 7,318 7,318 7,318 7,318 7,318 7,318
R-squared 0.915 0.914 0.915 0.914 0.917 0.925 0.917 0.925
Notes: In columns 2 and 4, by-borough built FAR fixed effects were included.

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

only in their maximum-allowed FAR.

In the simplest case, this estimation equation is given by

AGEisl = αl +λs +θFARisl + εisl (5.2)

where l is the vector of dummies for built year and s is the vector of dummies built FAR.

To further account for differences across parcels, we include by-borough fixed effects for the built FAR of

buildings prior to conversion7. In particular, we interact borough dummies with the built FAR of buildings, rounded to

the nearest multiple of 0.5. The resulting estimation equation is

AGEibsl =αl +λbs + γ∗Xibsl +θFARibsl + εibsl (5.3)

where b is the vector of dummies for borough and Xibsl includes the distance of building i from the Empire State

Building (“ESB”).

Table 3 gives the estimation results for the correlation between maximum-allowed FAR and a building’s age at

demolition. As the theory predicts, the coefficient on FAR is positive, indicating that buildings with relatively more

stringent regulation are demolished at an earlier time. In particular, if we do not include by-borough built FAR fixed

effects, we find that a increasing the maximum-allowed FAR by 1 corresponds to a building being demolished 0.71 of a

year later. If we include by-borough built FAR fixed effects, we find that a 1 unit increase in the maximum-allowed

7Using by-zip code built FAR fixed effects yields similar results.
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FAR corresponds to a building being demolished 0.25 of a year later.

To see the intuition behind this result, consider the single conversion case of Section 3. Recall Equation (3.2):

p(t)h(S) = ρrS

Equation (3.2) shows that conversion will take place when the rent foregone from waiting for an extra period is equal to

the benefit of putting off construction for one period. If the developer decides to build at an earlier time, the building

will cost more than it could generate in rents at the margin. Now suppose that we decrease the maximum-allowed FAR.

Because of the concavity of h(·), the LHS of (3.2) will decrease by less than the RHS of (3.2). Thus, the time at which

the marginal rent will equal the marginal construction cost will come at an earlier time.

Once again, we perform a robustness check by creating clusters based on borough, block, usage, and built year

and by excluding the built FAR fixed effect, instead inserting the built FAR directly in the regression as a control. The

results are shown in columns (5)-(8). Though the magnitude of the estimation is lowered slightly, the direction and the

significance remains the same. \

A limitation of our study is that the data may be censored on the right. That is, if the theory is correct, some

properties with relatively loose FAR regulation may be demolished at a later date, which we would not be able to

observe in the data. Censoring of data is most likely to lead to a downward bias of our estimates. If we include buildings

that are built in the relevant time frame but are demolished at a later date, it is most likely to drive up the estimates we

have in Table 3. To address this issue, we conduct a survival analysis, taking into account the censored data. We utilize

the Cox proportional hazards model with 2018 as the year when the demolition data is censored. Table 4 shows the

results of the survival analysis. The estimation shows that when the maximum-allowed FAR increases by 1, the age

of the building at the time of demolition increases by 1.5% to 1.6%. Thus, even when taking into consideration the

right-censoring of our data, the qualitative result remains the same.

5.3 Estimating the Effect of FAR Regulation Differential on Density of Conversion

To estimate the effect of FAR regulation differentials on the density of newly converted buildings, we regress the

built FAR of new buildings on the maximum-allowed FAR. Our model predicts that if two buildings are similar in

characteristics, the building with the lower maximum-allowed FAR will be converted to a lower density building.

As in the previous section, we control for the built year and the old built FAR for similar reasons. That is, buildings

that were built in similar years to a similar density must also have similar characteristics. Furthermore, the old built

FAR is especially relevant here because as seen in equation (5.1), the old built FAR influences when the developer

should convert his building, which in turn affects the density of the new building. Because the model is deterministic,

initial parameters are important in accurately determining the optimal choices of timing and density.
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Table 4: Effect of FAR Regulation on the Timing of Conversion-Survival

(1) (2) (3) (4)
VARIABLES Age Age Age Age

FAR 0.0154** 0.0158** 0.0152* 0.0157**
(0.00782) (0.00791) (0.00783) (0.00791)

BuiltFAR -0.0918** -0.0753*
(0.0401) (0.0417)

Distance (Distance from ESB) -0.00348** -0.00326*
(0.00173) (0.00169)

Constant 186.7*** 180.2*** 186.7*** 180.3***
(0.219) (0.505) (0.221) (0.506)

Cluste FE Yes Yes Yes Yes
Observations 7,318 7,318 7,318 7,318
R-squared 0.915 0.914 0.915 0.914
Notes: In columns 2 and 4, by-borough built FAR fixed effects were included.

Robust standard errors in parentheses+–+
*** p<0.01, ** p<0.05, * p<0.1

Once again, the simplest form of of the estimation equation is given by

NBFisl = αl +λs +θFARisl + εisl (5.4)

where NBF is the new built FAR, and the controls are identical to the previous section.

We also include by-borough fixed effects for the old built FAR by interacting borough dummies with the old built

FAR variable, which yields the estimation equation

NBFibsl =αl +λbs + γ∗Xibsl +θFARibsl + εibsl (5.5)

Table 5 gives the estimation results for the correlation between maximum-allowed FAR and the density of converted

buildings. Consistent with the theory, the coefficient on FAR is positive, indicating that properties with more stringent

FAR regulation have buildings converted to lower densities. In particular, without by-borough built FAR fixed effects,

we find that an increase in the maximum-allowed FAR by 1 corresponds to a building being converted to a FAR of

approximately 0.37 higher than otherwise. With by-borough built FAR fixed effects, this increase drops down to

approximately 0.079.8

8The estimate of 0.079 higher FAR is lower than we had anticipated. For a 10,000 sqft lot, this is only a difference of 790 sqft extra of development
realized for every 10,000 sqft more of development allowed.
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Table 5: Effect of FAR Regulation on the Density of Conversion

(1) (2) (3) (4)
VARIABLES New Built FAR New Built FAR New Built FAR New Built FAR

FAR 0.371*** 0.0788** 0.369*** 0.0789**
(0.0374) (0.0329) (0.0375) (0.0332)

Distance (Distance from ESB) -0.00267*** 2.92e-05
(0.000928) (0.000635)

Constant -35.19** -7.004 -35.82** -6.996
(17.54) (11.73) (17.52) (11.75)

Built Decade FE Yes Yes Yes Yes
Old Built FAR FE Yes No Yes No
By-Borough Built FAR FE No Yes No Yes
Observations 7,299 7,299 7,299 7,299
R-squared 0.222 0.486 0.222 0.486

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

6 Conclusion

We have presented a model which sheds new light on the effects of FAR regulation in the development of a growing

city with rising rents. The model predicts that when the stringency of FAR regulation increases without changing the

total number of conversions, buildings will be erected at an earlier time at lower densities. The FAR regulation will

also lower land values at an increasing rate as the regulation becomes more stringent. In the case that there is only one

conversion of land from rural to urban use where the FAR regulation is binding, the percent amount by which land value

is decreased due to an increase in the stringency of regulation depends on the elasticity of substitution between land and

capital for the production of housing. If we assume a Cobb-Douglas production function as in the previous literature, the

elasticity of land value with respect to the maximum-allowed FAR will be constant at all levels of regulation stringency.

We have also presented an empirical model which tests the results we find in our theoretical model. In particular, we

find that all else equal, a more stringent FAR regulation is correlated with lower land values even for buildings where

the regulation is not binding, earlier conversion of buildings, and lower densities of conversions.
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Appendix 1

Proof of Proposition 2

We would like to prove that the introduction of a density regulation hastens development for all building cycles. To do

this, we Cramer’s rule on the matrix of the set of comparative statics equations to show that dt̂1
dS

> 0, dt̂k
dS

> 0 for any

k ∈ (0,J), and dt̂J
dS

> 0.

The set of comparative statics equations, in a matrix form, is given by



Vt̂1 t̂1 Vt̂1Ŝ1
0 · · · 0

VŜ1 t̂1
VŜ1Ŝ1

VŜ1 t̂2

. . . 0

0 Vt̂2Ŝ1
Vt̂2 t̂2

. . .
...
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. . . . . . . . . VŜJ−1 t̂J

0 0 · · · Vt̂J ŜJ−1
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
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dt̂1
dS
dŜ1
dS
dt̂2
dS
dŜ2
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...

dt̂J
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
=



0

0
...

0

−Vt̂JS


(A2.1)

We show in order that dt̂1
dS

> 0, dt̂k
dS

> 0 for any k ∈ [1,J], and dt̂J
dS

> 0.

Lemma 1. dt̂1
dS

> 0.

Proof. Using Cramer’s Rule on (A2.1) to find dt̂1
dS

yields

dt̂1
dS

=
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VŜ1Ŝ1
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. . .
...

...
. . . . . . . . . VŜJ−1 t̂J

0 0 · · · Vt̂J ŜJ−1
Vt̂J t̂J

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A2.2)
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Applying the Chio pivotal condensation9 yields

dt∗1
dS

=

1(
−Vt̂J S

)2J−1−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Vt̂JSVt̂1Ŝ1
0 · · · 0

Vt̂JSVŜ1Ŝ1
Vt̂JSVŜ1 t̂2

. . . 0

Vt̂JSVt̂2Ŝ1
Vt̂JSVt̂2 t̂2

. . .
...

. . . . . . . . . 0

0 · · · Vt̂JSVŜJ−1ŜJ−1
Vt̂JSVŜJ−1 t̂J

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det(M)

(A2.3)

=

V 2J−2
t̂J S(

−Vt̂J S

)2J−1−2

(
Vt̂1Ŝ1

·VŜ1 t̂2
· · ·VŜJ−1 t̂J

)
det(M)

(A2.4)

where the second equality comes from the property of the determinant of a triangular matrix10 and

M ≡



Vt̂1 t̂1 Vt̂1Ŝ1
0 · · · 0

VŜ1 t̂1
VŜ1Ŝ1

VŜ1 t̂2

. . . 0

0 Vt̂2Ŝ1
Vt̂2 t̂2

. . .
...

...
. . . . . . . . . VŜJ−1 t̂J

0 0 · · · Vt̂J ŜJ−1
Vt̂J t̂J


(A2.5)

We now show that (A2.4) is positive. We know that det(M)< 0 since it is a negative-definite Hessian matrix of rank

2J−1 derived from the developer’s profit-maximization problem. The numerator of (A2.4) is negative since the only

negative term in the numerator is
(
−Vt̂JS

)2J−1−2
. Since all other terms are cross partial derivatives of the Hessian

matrix, they are positive. Therefore, when the maximum-allowed FAR which will be binding in the future increases

while maintaining the original number of building conversions, the construction of the first building is delayed.

Lemma 2. dt̂k
dS

> 0 for any k ∈ [2,J−1].
9Consider a n×n matrix A. Define a (n−1)×(n−1) matrix of determinants B =

[
bi j
]

such that bi j = a1,1ai+1, j+1−a1, j+1ai+1,1 for aii 6= 0.Then,
the Chio pivotal condensation allows us to find det(A) in terms of det(B):

det(A) =
det(B)
an−2

11

Explicitly,

det(A) =
1

an−2
11

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣ a11 a13
a21 a23

∣∣∣∣ · · ·
∣∣∣∣ a11 a1n

a21 a2n

∣∣∣∣∣∣∣∣ a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ · · ·
∣∣∣∣ a11 a1n

a31 a3n

∣∣∣∣
...

...
. . .

...∣∣∣∣ a11 a12
an1 an2

∣∣∣∣ ∣∣∣∣ a11 a13
an1 an3

∣∣∣∣ · · ·
∣∣∣∣ a11 a1n

an1 ann

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
10Let Tn be a triangular matrix of order n. Then, det(Tn) is equal to the product of all the diagonal elements of Tn.
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Proof. Using Cramer’s Rule on (A2.1) to find dt̂k
dS

for any j ∈ [2,J−1] yields

dt̂k
dS

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Vt̂1 t̂1 Vt̂1Ŝ1
· · ·

(2k−1)th column︷︸︸︷
0 · · · · · · 0

VŜ1 t̂1
VŜ1Ŝ1

. . . 0
. . . . . . 0

0 Vt̂2Ŝ1

. . .
...

. . . . . .
...

...
. . . . . . 0

. . . . . . VŜJ−1 t̂J

0 0 · · · −Vt̂JS · · · Vt̂J ŜJ−1
Vt̂J t̂J

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det(M)

(A2.6)

Once again, applying the Chio pivotal condensation yields

dt̂k
dS

=

1(
−Vt̂J S

)2J−1−2

∣∣∣∣∣∣∣
W X

Y Z

∣∣∣∣∣∣∣
det(M)

(A2.7)

where W is a 2k×2k matrix defined by

W ≡



−Vt̂JSVt̂1 t̂1 −Vt̂JSVt̂1Ŝ1
· · · 0

−Vt̂JSVŜ1 t̂1
−Vt̂JSVŜ1Ŝ1

. . . 0

0 −Vt̂JSVt̂2Ŝ1

. . .
...

...
. . . . . . −Vt̂JSVt̂k Ŝk

0 · · · −Vt̂JSVŜk t̂k
−Vt̂JSVŜk Ŝk


X is a 2k× (2J−2−2k) matrix of zeroes, Y is a (2J−2−2k)×2k matrix defined by

Y ≡



0 0 · · · −Vt̂JSVt̂k+1Ŝk

0 0
. . . 0

0 0
. . .

...
...

. . . . . . 0

0 0 · · · 0


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and Z is a 2J−2−2k×2J−2−2k matrix defined by

Z ≡



Vt̂JSVt̂k+1Ŝk+1
0 · · · · · · 0

Vt̂JSVŜk+1Ŝk+1
Vt̂JSVŜk+1 t̂k+2

. . . . . . 0

0 Vt̂JSVt̂k+2 t̂k+2

. . . . . .
...

...
. . . . . . . . . 0

0 0 · · · Vt̂JSVŜJ−1ŜJ−1
Vt̂JSVŜJ−1 t̂J


Evaluating the determinant of the block triangular matrix11 and simplifying yields

dt̂k
dS

=

1(
−Vt̂J S

)2J−1−2 det(W ) ·det(Z)

det(M)
(A2.8)

=

1(
−Vt̂J S

)2J−1−2

(
−Vt̂JS

)2k
det
(
Ŵ
)
·
(

Vt̂JS

)2J−2−2k(
Vt̂k+1Ŝk+1

·VŜk+1 t̂k+2
· · ·VŜJ−1 t̂J

)
det(M)

(A2.9)

where

Ŵ ≡



Vt̂1 t̂1 Vt̂1Ŝ1
· · · 0

VŜ1 t̂1
VŜ1Ŝ1

. . . 0

0 Vt̂2Ŝ1

. . .
...

...
. . . . . . Vt̂k Ŝk

0 · · · VŜk t̂k
VŜk Ŝk



11The determinant of a block triangular matrix M ≡
(

X 0
Y Z

)
is the product of the determinants of its diagonal blocks.
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We know that (A2.9) is positive, since det(M)< 0,
(
−Vt̂JS

)2J−1−2
< 0, and det

(
Ŵ
)
> 0 since Ŵ is a negative definite

matrix of rank 2k. As in Lemma 1, this shows that increasing the stringency of a FAR restriction which binds in the

future but will not change the number of conversions will hasten the development of all buildings prior to the last

building cycle.
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Lemma 3. dt̂J
dS

> 0.

Proof. Using Cramer’s Rule on (A2.1) to find dt̂J
dS

yields

dt̂J
dS

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Vt̂1 t̂1 Vt̂1Ŝ1
0 · · · 0

VŜ1 t̂1
VŜ1Ŝ1

VŜ1 t̂2

. . . 0

0 Vt̂2Ŝ1
Vt̂2 t̂2

. . . 0
...

. . . . . . . . .
...

0 0 · · · Vt̂J ŜJ−1
−Vt̂JS

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det(M)

(A2.10)

Using the recurrence relation for the determinant for a tridiagonal matrix12 yields

dt̂J
dS

=
−Vt̂JSJ

det(L)

det(M)
(A2.11)

where

L≡



Vt̂1 t̂1 Vt̂1Ŝ1
0 · · · 0

VŜ1 t̂1
VŜ1Ŝ1

VŜ1 t̂2

. . . 0

0 Vt̂2Ŝ1
Vt̂2 t̂2

. . .
...

...
. . . . . . . . . Vt̂J−1ŜJ−1

0 0 · · · VŜJ−1 t̂J−1
VŜJ−1ŜJ−1


(A2.12)

But since matrices L and M are both tridiagonal matrices where sgndet(L) =−sgndet(M), the above must be postive.

That is, when the maximum-allowed FAR increases holding the number of conversions constant, the construction of the

final building is delayed.

12Consider a tridiagonal matrix

fn =



a1 b1 0 · · · 0

c1 a2 b2
. . . 0

0 c2 a3
. . .

...
...

. . .
. . .

. . . bn−1
0 0 · · · cn−1 an


Then, the determinant of matrix fn can be computed from a recurrence relation given by

fn = an fn−1− cn−1bn−1 fn−2
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Appendix 2

Proof of Proposition 3

We would like to prove that the introduction of a FAR regulation reduces the density of buildings for all conversions.

Proof. Consider the set of comparative statics equations as in Appendix 1:



Vt̂1 t̂1 Vt̂1Ŝ1
0 · · · 0

VŜ1 t̂1
VŜ1Ŝ1

VŜ1 t̂2

. . . 0

0 Vt̂2Ŝ1
Vt̂2 t̂2

. . .
...

...
. . . . . . . . . VŜJ−1 t̂J

0 0 · · · Vt̂J ŜJ−1
Vt̂J t̂J





dt̂1
dS
dŜ1
dS
dt̂2
dS
dŜ2
dS
...

dt̂J
dS


=



0

0
...

0

−Vt̂JS


(A3.1)

By Cramer’s Rule, we have for any k ∈ [1,J−1],

dŜk

dS
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Vt̂1 t̂1 Vt̂1Ŝ1
· · ·

(2k)th column︷︸︸︷
0 · · · · · · 0

VŜ1 t̂1
VŜ1Ŝ1

. . . 0
. . . . . . 0

0 Vt̂2Ŝ1

. . .
...

. . . . . .
...

...
. . . . . . 0

. . . . . . VŜJ−1 t̂J

0 0 · · · −Vt̂JS · · · Vt̂J ŜJ−1
Vt̂J t̂J

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det(M)

(A3.2)

Applying the Chio pivotal condensation yields

dŜk

dS
=

1(
−Vt̂J S

)2J−1−2

∣∣∣∣∣∣∣
W X

Y Z

∣∣∣∣∣∣∣
det(M)

(A3.3)
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where W is a (2k−1)× (2k−1) matrix defined by

W =



−Vt̂JSVt̂1 t̂1 −Vt̂JSVt̂1Ŝ1
· · · 0

−Vt̂JSVŜ1 t̂1
−Vt̂JSVŜ1Ŝ1

. . . 0

0 −Vt̂JSVt̂2Ŝ1

. . .
...

...
. . . . . . −Vt̂JSVŜk−1 t̂k

0 · · · −Vt̂JSVt̂k Ŝk−1
−Vt̂JSVt̂k t̂k


(A3.4)

X is a (2k−1)× (2J−2−2k−1) matrix of zeroes, Y is a (2J−2−2k−1)× (2k−1) matrix defined by

Y =



0 0 · · · −Vt̂JSVŜk t̂k

0 0
. . . 0

0 0
. . .

...
...

. . . . . . 0

0 0 · · · 0


(A3.5)

and Z is a (2J−2−2k−1)× (2J−2−2k−1) matrix define by

Z =



Vt̂JSVŜk t̂k+1
0 · · · · · · 0

Vt̂JSVt̂k+1 t̂k+1
Vt̂JSVt̂k+1Ŝk+1

. . . . . . 0

0 Vt̂JSVŜk+1Ŝk+1

. . . . . .
...

...
. . . . . . . . . 0

0 0 · · · Vt̂JSVŜJ−1ŜJ−1
Vt̂JSVŜJ−1 t̂J


(A3.6)

Evaluating the determinant of the block triangular matrix and simplifying yields

dŜk

dS
=

1(
−Vt̂J S

)2J−1−2 det(W ) ·det(Z)

det(M)
(A3.7)

=

1(
−Vt̂J S

)2J−1−2

(
−Vt̂JS

)2k−1
det
(
Ŵ
)
·
(

Vt̂JS

)2J−2−2k−1(
VŜk t̂k+1

·Vt̂k+1Ŝk+1
· · ·VŜJ−1 t̂J

)
det(M)

(A3.8)
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where

Ŵ ≡



Vt̂1 t̂1 Vt̂1Ŝ1
· · · 0

VŜ1 t̂1
VŜ1Ŝ1

. . . 0

0 Vt̂2Ŝ1

. . .
...

...
. . . . . . VŜk−1 t̂k

0 · · · Vt̂k Ŝk−1
Vt̂k t̂k


(A3.9)

We know that (A3.8) is positive, since det(M)< 0,
(
−Vt̂JS

)2J−1−2
< 0,

(
−Vt̂JS

)2k−1
< 0, and det

(
Ŵ
)
< 0 since Ŵ is

a negative definite matrix of rank 2k−1. This shows that a FAR restriction which binds in the future but does not change

the number of conversions will reduce the density of development for all buildings prior to the final conversion.
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Appendix 3

Proof of Proposition 4

Proposition 4 states that the second derivative of the optimized land value function with FAR regulation is negative. To

show this, we simplify d2V̂
dS2 into a ratio of matrices and show that the sign of the matrix are opposites of each other.

Lemma 4. d2V̂
dS2 = det(N)

det(M) where matrix N is defined to be

N ≡



Vt̂1 t̂1 Vt̂1Ŝ1
0 0 · · · 0

VŜ1 t̂1
VŜ1Ŝ1

VŜ1 t̂2
0

. . . 0

0 Vt̂2Ŝ1
Vt̂2 t̂2 Vt̂2Ŝ2

. . . 0

0 0 VŜ2 t̂2
VŜ2Ŝ2

. . .
...

...
. . .

. . .
. . .

. . . Vt̂JS

0 0 0 · · · VSt̂J VSS


and matrix M is defined as in (A2.5).

Proof. Consider the value function optimized under a FAR restriction:

V̂ =V
(
t̂1
(
S
)
, Ŝ1
(
S
)
, · · · ;S

)
(A4.1)

Given (3.18), the second derivative of the above can be written as

d2V̂

dS2 =

[
J

∑
k=1

Vt̂k t̂1
dt̂k
dS

+
J−1

∑
l=1

VŜl t̂1

dŜl

dS
+VSt̂1

]
dt̂1
dS

(A4.2)

+

[
J

∑
k=1

Vt̂k Ŝ1

dt̂k
dS

+
J−1

∑
l=1

VŜl Ŝ1

dŜl

dS
+VSŜ1

]
dŜ1

dS

+ · · ·+

[
J

∑
k=1

Vt̂k ŜJ−1

dt̂k
dS

+
J−1

∑
l=1

VŜl ŜJ−1

dŜl

dS
+VSŜJ−1

]
dŜJ−1

dS

+

[
J

∑
k=1

Vt̂k t̂J
dt̂k
dS

+
J−1

∑
l=1

VŜl t̂J

dŜl

dS
+VSt̂J

]
dt̂J
dS

+

[
J

∑
k=1

Vt̂kS
dt̂k
dS

+
J−1

∑
l=1

VŜlS
dŜl

dS
+VSS

]

Noting that Vt̂i t̂ j =Vt̂ j t̂i = 0 ∀i 6= j and that Vt̂iŜ j
=VŜ j t̂i = 0 ∀ j > i∪ i− j ≥ 2 yields

d2V̂

dS2 =

[
Vt̂1 t̂1

dt̂1
dS

+VŜ1 t̂1

dŜ1

dS
+0+ · · ·+0

]
dt̂1
dS

(A4.3)
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+

[
Vt̂1Ŝ1

dt̂1
dS

+VŜ1Ŝ1

dŜ1

dS
+Vt̂2Ŝ1

dt̂2
dS

+0+ · · ·+0
]

dŜ1

dS

+ · · ·+
[

0+ · · ·+0+Vt̂J−1ŜJ−1

dt̂J−1

dS
+VŜJ−1ŜJ−1

dŜJ−1

dS
+Vt̂J ŜJ−1

dt̂J
dS

+0
]

dŜJ−1

dS

+

[
0+ · · ·+0+VŜJ−1 t̂J

dŜJ−1

dS
+Vt̂J t̂J

dt̂J
dS

+VSt̂J

]
dt̂J
dS

+

[
0+ · · ·+0+Vt̂JS

dt̂J
dS

+VSS

]

In the matrix form, the above can be written as

d2V̂

dS2 =

[
dt̂1
dS

dŜ1
dS

dt̂2
dS

dŜ2
dS

· · · 1

]

·



Vt̂1 t̂1 Vt̂1Ŝ1
0 0 · · · 0

VŜ1 t̂1
VŜ1Ŝ1

VŜ1 t̂2
0

. . . 0

0 Vt̂2Ŝ1
Vt̂2 t̂2 Vt̂2Ŝ2

. . . 0

0 0 VŜ2 t̂2
VŜ2Ŝ2

. . .
...

...
. . . . . . . . . . . . Vt̂JS

0 0 0 · · · VSt̂J VSS





dt̂1
dS
dŜ1
dS
dt̂2
dS
dŜ2
dS
...

1



=

[
dVt̂1
dS

dVŜ1
dS

dVt̂2
dS

dVŜ2
dS

· · · VSS +Vt̂JS
dt̂J
dS

]



dt̂1
dS
dŜ1
dS
dt̂2
dS
dŜ2
dS
...

1



=

[
0 0 0 0 · · · VSS +Vt̂JS

dt̂J
dS

]



dt̂1
dS
dŜ1
dS
dt̂2
dS
dŜ2
dS
...

1


=

(
VSS +Vt̂JS

dt̂J
dS

)
(A4.4)

where the third equality holds, since it is a derivative of a parameter along a maximized value function. We can now
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write (A4.4) as

d2V̂

dS2 =VSS +Vt̂JS
dt̂J
dS

=

(
VSS

)
det(M)

det(M)
−

(
Vt̂JS

)2
det(L)

det(M)

=
det(N)

det(M)
(A4.7)

where the second equality comes from using the recurrence relation for computing the determinant for a tridiagonal

matrix and Cramer’s Rule on dt̂J
dS

13, and the last equality comes from applying the recurrence relation for the determinant

of a tridiagonal matrix again.

Since matrices N and M are both negative definite matrices where rank(N) = 2J and rank(M) = 2J−1, we know

that sgndet(N) =−sgndet(M). Thus, (A4.7) is negative.

13Appendix 1
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