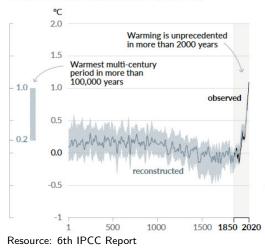
Economic Impacts of Climate Uncertainty (very preliminary)

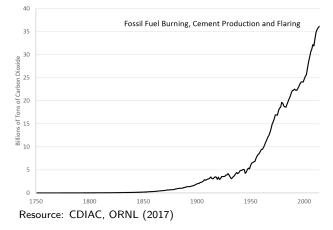
Kuk Mo Jung 1 Sungwon Lee 2

¹ School of Economics, Sogang University

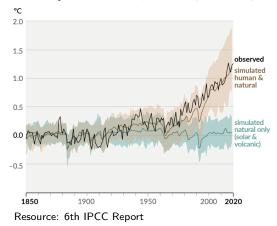

² School of Economics, Sogang University

Sungkyunkwan University Seminar Series

December 2, 2021


Global warming is real according to the scientific community

a) Change in global surface temperature (decadal average) as reconstructed (1-2000) and observed (1850-2020)

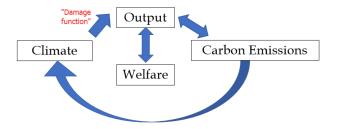

Why is it happening? Greenhouse gas (CO2) is most likely to be a reason!

Global CO2 Emissions: 1751-2014

Why is it happening? Greenhouse gas (CO2) is most likely to be a reason!

(b) Change in global surface temperature (annual average) as observed and simulated using human & natural and only natural factors (both 1850–2020)

So what? Why should we (economists) care about global temperature rise?


- $\checkmark~$ Reduction in TFP due to climate change as well as extreme weather effects
 - Heat waves, heavy precipitation, severe drought, crop failures and etc, e.g., Mendelsohn et al. (1994), Burke et al. (2015), Tol (2021)
- $\checkmark\,$ Utility and health loss due to environmental disruptions, e.g., Baylis (2015) and Albouy et al. (2016)
- ✓ Possibility of civilization ending catastrophe due to tipping point, e.g., Dietz et al. (2021)
- ✓ Possibility of social unrest due to migrations and (trade) wars triggered by climate change, e.g., Missiran and Schlenker (2017) and Cruz and Rossi-Hansberg (2020)
- ✓ Financial risks during transition towards a green economy, e.g., FSB report (2020)

The problem is all these costs are externalities!

- ✓ Not internalized by private market system (ultimate market failures)
- $\checkmark\,$ Market-based policy instruments implemented to correct for these externalities
 - Cap-and-trade system (quantity control): EU emissions trading system (since 2005), Korea emissions trading scheme (since 2015), and etc.
 - Carbon tax: Canada, California, Northern European countries, and etc.
- ✓ Optimal social externality costs of carbon(OSCC) emissions are essential
- ✓ How to correctly estimate them?⇒ Macro problem!
 - ▶ OSCC = Pigouvian tax = marginal damages evaluated at *optimal allocation*
 - Structured models are required

Integrated Assessment Models (IAMs)

- ✓ Nordhaus' (2018 Nobel Laureate) first dynamic integrated model of climate and the economy (DICE): Nordhaus (1992)
 - Can first perform internally consistent cost-benefit analysis!
 - Can first solve dynamically optimal social cost of carbon!
- ✓ Rejected from all top 5 econ journals but published in Science
- ✓ Addition of *damage function* was crucial!

DICE in a nutshell

 \checkmark Output: Climate impacts summarized by damage function $D(T_t)$

$$Y_t = (1 - D(T_t))A_t K_t^{\alpha} L_t^{1 - \alpha}$$

where $T_t \approx$ mean global atmospheric surface temperature change

 \checkmark Carbon emissions: σ_t is emissions intensity

$$E_t = (1 - \mu_t)\sigma_t Y_t$$

where $\mu_t \in [0,1]$ refers to the abatement rate

✓ Climate proxied by T_t

$$T_t = \bar{T} + \eta \log_2 \left(E_t / \bar{E} \right)$$

where $\bar{\mathcal{T}}$ and $\bar{\mathcal{E}}$ represents baseline temp change and carbon emission respectively

Standard estimation methods for $D(T_t)$

✓ Ricardian Cross-Sectional Approach: Mendelsohn, Nordhaus, and Shaw (1994) and etc.

$$y_i = \mathbf{Z}_i \boldsymbol{\beta} + \mathbf{X}_i \boldsymbol{\tau} + \boldsymbol{\varepsilon}_i$$

where Z_i is a vector of average climate variables in region and/or sector *i*

✓ Panel Approach: Dell et al. (2012) and Kalkhul and Wenz (2020)

$$y_{i,t} = \alpha_i + \mathbf{Z}_{i,t}\beta + \mathbf{X}_{i,t}\tau + \varepsilon_{i,t},$$

where α_i is a time-invariant individual effect

✓ Long-Difference Approach: Burke and Emerick (2016)

$$\Delta y_i = \Delta \mathbf{Z}_i \beta + \mathbf{X}_i \tau + \varepsilon_i,$$

where Δy_i and ΔZ_i denotes changes in y_i and climate variables respectively over a long period (several decades)

What's wrong with the existing methods? Auffhammer (2018)

- \checkmark Omitted variables bias from the cross-sectional approach:
 - somewhat mitigated by panel approach due to fixed effects
- ✓ Climate adaptation not fully taken into account:
 - year-to-year variations only capture short-run adaptation to weather fluctuations
- ✓ Long-difference approach still flawed:
 - past historical relationship may not be stable in the future (Lucas critique)
- ✓ Climate change also means changes in higher moments of weather distribution:
 - Climate uncertainty or extreme weather effects recently got a lot of attention
 - Alessandri and Mumtaz (2021)

What we do and contribute

Two folds:

- 1. Accounting for long-term climate adaptation \Rightarrow 'Climate' rather than 'Weather' effects
- 2. Accounting for 'Climate uncertainty' effects, i.e., effects of changes in second moments

<u>How</u>: \Rightarrow Stochastic Frontier Model e.g., Tol (2021)

- ✓ Benefit 1: Allows to incorporate (random) inefficiency into estimation of production functions
- \checkmark Benefit 2: Can separately identify the effects of climate and weather
- ✓ Benefit 3: Not required to have additional variables to identify the distribution of inefficiency

- ✓ Macro economics data: output, capital, population, labor
 - Penn World Table (PWT), PWT 10.0 (Feenstra et al., 2015)
- ✓ Global weather data: air temperature and precipitation only
 - Terrestrial air temperature and precipitation: 1900-2017 time series, (V 5.01) (Matsuura and Willmott, 2015)
 - Gridded data with a resolution 0.5×0.5 degrees
 - Aggregated into the country-year level, weighting them by population density in the year 2000
 - Population data from Version 4 of the Gridded Population of the World

Summary statistics

Variable	Mean	Std.	Min.	Max.	Obs.	Num. of ID
rGDP	10.606	2.112	4.327	16.658	8,554	162
Employment	1.134	1.733	-5.422	6.683	7,742	161
Capital	11.140	2.312	4.277	18.055	8,543	162
Mean:						
Temperature	17.643	8.305	-5.326	29.144	12,916	190
Precipitation	1.098	0.813	0	3.727	12,916	190
Standard Deviations:						
Temperature	0.447	0.210	0	1.374	12,915	190
Precipitation	0.125	0.134	0	0.922	12,915	190
Deviation:						
Temperature	0.942	0.713	0.000	5.427	12,376	182
Precipitation	0.829	0.688	0.000	13.040	12,376	182

Note: All variables are log-transformed. Macro. variables are in millions and 2011 USD. The units of temperature and precipitation are Celsius and meter, respectively. 'rGDP' indicates real GDP at constant 2011 national prices. The timespan starts from 1950 and unbalanced. Mean and standard deviation values are calculated as 30-year rolling window from period t-30 to period t-1 by using annual temperature and precipitation data. Deviation values are the normalized values of annual temperature and precipitation, respectively.

Model for estimation

Based on a CD production function

$$Y_{i,t} = A_{i,t} K_{i,t}^{\beta} L_{i,t}^{1-\beta} \Rightarrow \log(y_i, t) = A_{i,t} + \beta \log(k_{i,t})$$

<u>Assumption</u>: $A_{i,t} \equiv$ a function of $\overline{T}_{i,t}$, $\overline{R}_{i,t}$, $\sigma_{T,i,t}$, and $\sigma_{R,i,t}$

 $\overline{T}_{i,t} \equiv$ the average temperature in the 30 years preceding year t $\overline{R}_{i,t} \equiv$ the average precipitation in the 30 years preceding year t $\sigma_{T,i,t} \equiv$ the STDV of temperatures in the 30 years preceding year t $\sigma_{R,i,t} \equiv$ the STDV of precipitation in the 30 years preceding year t

Model for estimation

Hence, the frontier equation is given by

$$\log(y_{i,t}) = \beta_1 \log(k_{i,t}) + f(\bar{T}_{i,t}, \bar{R}_{i,t}, \sigma_{T,i,t}, \sigma_{R,i,t}) + \mu_i + t + v_{i,t} - u_{i,t},$$
(1)

where f is known up to a finite-dimensional parameter, and $v_{i,t} \sim N(0, \sigma_v^2)$ The inefficiency equation

$$u_{i,t} = \exp(z'_{i,t}\delta) \cdot u^*_i, \qquad (2)$$

where $u_i^* \sim N^+(0, \sigma_u^2)$, and z_{it} contains $\frac{T_{i,t} - \bar{T}_{i,t}}{\tau_{i,t}}$ and $\frac{R_{i,t} - \bar{R}_{i,t}}{\rho_{i,t}}$

Estimation procedure for eq.(1) and eq.(2)

We adopt the estimation approach proposed by Wang and Ho (2010)

- ✓ Maximum likelihood estimation after applying the within or first-differencing transformation
- \checkmark Can allow for the individual fixed effects without the incidental parameter problem
- \checkmark Either large *N* or large *T*

	Linear Model			
	rGDP	rGDPo	rGDPe	
FRONTIER				
Employment	0.408***	0.210***	0.210***	
	(0.0126)	(0.0125)	(0.0126)	
Capital	0.518***	0.655***	0.656** [*]	
	(0.0053)	(0.0052)	(0.0053)	
Mean:				
Temperature	-0.187***	-0.096***	-0.113***	
	(0.0170)	(0.0167)	(0.0169)	
Precipitation	0.799***	0.441***	0.444***	
	(0.1390)	(0.1370)	(0.1380)	
Std.:				
Temperature	-0.085*	0.003	-0.004	
	(0.0504)	(0.0500)	(0.0505)	
Precipitation	-0.044	`0.090´	`0.084 <i>´</i>	
	(0.1840)	(0.1840)	(0.1860)	
H1EQ	. ,	. ,	. ,	
Deviation:				
Temperature	-1.924	0.002	0.230	
	(1.9020)	(0.0169)	(0.3420)	
Precipitation	-0.725	0.000	-0.011	
	(0.7480)	(0.0023)	(0.0633)	
CONSTANT	. ,	. ,	. ,	
vsigmas	-2.822***	-2.853***	-2.831***	
0	(0.0164)	(0.0165)	(0.0164)	
usigmas	(0.0164) 6.634***	5.441	-5.314	
	(1.1670)	(19.830)	(4.211)	
Obs.	7,623	7,623	7,623	

Baseline results 1

.

Note: The numbers in parentheses indicate the standard errors. For robustness check, we include 'rGDPo' and 'rGDPe' which are real GDP at chained PPPs in 2011 USD for output- and expenditure-side, respectively. *, **, and *** denote significance at 10%, 5%, and 1%, respectively.

Baseline results 2 & 3 (next)

	Linear Model with Dummies				
	$\ln(y_{i,t})$	$D_{Hot} = 1$	$\ln(y_{i,t})$	$D_{Rich} = 1$	
FRONTIER					
Employment	0.447***		0.411***		
	(0.0130)		(0.0126)		
Capital	0.511** [*]		0.516***		
	(0.0053)		(0.0053)		
Mean:					
Temperature	-0.040	-0.284***	-0.227***	0.133***	
	(0.0243)	(0.0319)	(0.0208)	(0.0313)	
Precipitation	1.149***	-0.535*	0.871***	-0.421	
	(0.2266)	(0.2872)	(0.1623)	(0.3139)	
Std.:					
Temperature	0.016	-0.369***	-0.046	-0.190*	
	(0.0762)	(0.1040)	(0.0707)	(0.1020)	
Precipitation	-0.119	0.171	-1.328***	2.695***	
	(0.0003)	(0.3744)	(0.2588)	(0.3888)	
H1EQ					
Deviation:					
Temperature	0.121	-1.444	-1.348	1.380	
D	(0.3040)	(1.6440)	(1.5720)	(1.5750)	
Precipitation	-0.385	0.186	-0.493	0.491	
CONCTANT	(0.8030)	(0.9730)	(0.5360)	(0.5540)	
CONSTANT	0.041***		0 000***		
vsigmas	-2.841^{***}		-2.833***		
usigmas	(0.0164) 6.343***		(0.0164) -5.822***		
usigmas	(1.6490)		(1.1290)		
	(1.0490)		(1.1290)		
Obs.	7,623		7,623		

Note: $y_{i,t}$ indicates real GDP at constant 2011 national prices. The numbers in parentheses indicate the standard errors. *, **, and *** denote significance at 10%, 5%, and 1%, respectively.

$ \begin{array}{r} \ln(y_{i,t}) \\ 0.447^{***} \\ (0.0131) \\ 0.513^{***} \\ (0.0053) \\ 0.146^{***} \\ \end{array} $	D _{Hot} = 1	$ ln(y_{i,t}) 0.455^{***} (0.0130) 0.505^{***} (0.0053) $	D _{Rich} = 1
(0.0131) 0.513*** (0.0053) 0.146***	0.966***	(0.0130) 0.505***	
(0.0131) 0.513*** (0.0053) 0.146***	0.966***	(0.0130) 0.505***	
0.513*** (0.0053) 0.146***	0.966***	(0.0130) 0.505***	
(0.0053) 0.146***	0 966***	0.505***	
0.146***	0 966***	(0.0053)	
0.146***	0 966***	()	
	0 066***		
	-0.000	0.157***	0.077
(0.0526)	(0.2190)	(0.0592)	(0.0808)
-0.0112***	0.0180***	-0.008***	-0.013***
(0.0019)	(0.0046)	(0.0013)	(0.0020)
3.490***	–2.991***	2.442***	–`5.098**́*
(0.4840)	(0.9250)	(0.4060)	(0.8130)
-1.260***	1.083***	-0.124	-1.007***
(0.1590)	(0.1850)	(0.0827)	(0.1940)
Ò.101***	<u>-0.056</u>	–0.0456* [*] *	Ò.407***
(0.0292)	(0.0388)	(0.0179)	(0.0354)
-0.036		-0.0964	-0.246**
			(0.1010)
			3.365***
(0.2580)	(0.3770)	(0.2580)	(0.3990)
			1.253
			(1.6480)
			0.437
(62.710)	(62.840)	(0.5660)	(0.6250)
0 057***		0 070***	
(1.103)		(1.1050)	
		7 623	
	$\begin{array}{c} (0.0526) \\ -0.0112^{***} \\ (0.0019) \\ 3.490^{***} \\ (0.4840) \\ -1.260^{***} \\ (0.1590) \\ 0.101^{***} \\ (0.0292) \end{array}$	$\begin{array}{cccc} (0.0526) & (0.2190) \\ -0.0112^{***} & 0.0180^{***} \\ (0.0019) & (0.0046) \\ 3.490^{***} & -2.991^{***} \\ (0.4840) & (0.9250) \\ -1.260^{***} & 1.083^{***} \\ (0.1590) & (0.1850) \\ 0.101^{***} & -0.056 \\ (0.0292) & (0.0388) \\ \hline & -0.036 & -0.321^{***} \\ (0.0736) & (0.1050) \\ -0.405 & 0.441 \\ (0.2580) & (0.3770) \\ \hline & 0.652^{**} & -1.714 \\ (0.330) & (4.5280) \\ -5.9.77 & 59.55 \\ (62.710) & (62.840) \\ -2.857^{***} \\ (0.0164) \\ -5.686^{***} \\ \hline \end{array}$	$\begin{array}{ccccccc} (0.0526) & (0.2190) & (0.0592) \\ -0.0112^{***} & 0.0180^{***} & -0.008^{***} \\ (0.0019) & (0.0046) & (0.0013) \\ 3.490^{***} & -2.991^{***} & 2.442^{***} \\ (0.4840) & (0.9250) & (0.4060) \\ -1.260^{***} & 1.083^{***} & -0.124 \\ (0.1590) & (0.1850) & (0.0827) \\ 0.101^{***} & -0.056 & -0.0456^{**} \\ (0.0292) & (0.0388) & (0.0179) \\ \hline & -0.036 & -0.321^{***} & -0.0964 \\ (0.0736) & (0.1050) & (0.0708) \\ -0.405 & 0.441 & -1.234^{***} \\ (0.2580) & (0.3770) & (0.2580) \\ \hline & 0.652^{**} & -1.714 & -1.295 \\ (0.330) & (4.5280) & (1.6280) \\ -5.867^{***} & -2.872^{***} \\ (0.0164) & (0.0164) \\ -5.686^{***} & -5.921^{***} \end{array}$

Quadratic Models

Note: $y_{i,t}$ indicates real GDP at constant 2011 national prices. The numbers in parentheses indicate the standard errors. *, **, and *** denote significance at 10%, 5%, and 1%, respectively.

Concluding Remarks

- ✓ A stochastic frontier model
 - climate in the frontier
 - weather shocks as a source of inefficiency
- \checkmark Only the climate effect is statistically significant while the weather effect is not
- ✓ Climate change effect:
 - Temperature affects production possibilities negatively in hot or poor countries
 - Rainfalls negatively affects production possibilities in hot countries
- ✓ Climate uncertainty effect:
 - Temperature uncertainty *negatively* affects production possibilities in both hot and rich countries.

Next steps

- ✓ Different uncertainty measures
 - conditional (ex-ante) volatility instead of realized volatility
 - Panel VAR, e.g., Alessandri and Mumtaz (2021)
- ✓ Climate uncertainty adjusted optimal social cost of carbon:
 - IAM with endogenous abatement rates: Golosov, Hassler, Krusell, and Tsyvinski (2014)
 - Abatement efforts determined by future climate uncertainty
 - Epstein-Zin preferences: Bansal, Kiku, and Ochoa (2016)
- ✓ Green monetary policy augmented with climate uncertainty? Papoutsi, Piazzesi, and Schneider (2021)
 - Climate uncertainty affects valuation of green bonds? If so, how?
 - Welfare effects of green quantitative easing with climate uncertainty?