
Kidney Exchange with Immunosuppressants

Eun Jeong Heo, Sunghoon Hong, and Youngsub Chun∗

February 2019

Abstract

Recent developments in immunosuppressive protocols have enabled patients to receive kidney trans-

plants from biologically incompatible donors. We propose to use immunosuppressants as a part of kidney

exchange program. We introduce the “pairwise cycles and chains (PCC)” solution and show that it is

Pareto efficient, responsive, and maximizes the number of compatible transplants among all responsive

solutions.
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1. Introduction

When a patient suffers from end-stage renal disease and has to receive a kidney transplant, several options

are available depending on the immunological compatibility of the patient with her own donor. If the pa-

tient is compatible with her donor, a direct transplant within the patient-donor pair can be performed.

Otherwise, the patient either registers on a waiting list to receive a transplant from a deceased donor or

participates in a kidney exchange program where patients swap their donors to form compatible pairs (Roth

et al. 2004). Unfortunately, these possibilities are limited given the growing number of patients waiting

for transplants. However, recent developments in immunosuppressive protocols have introduced a new op-

tion: transplants from incompatible donors. This option, “desensitization”, consists of the administration of

several immunosuppressive medications (which we call “suppressants”, for short) accompanied by a plasma-

pheresis treatment.1 A patient going through desensitization becomes compatible with any donor, including

her own.

Incompatible kidney transplants have been quite successful and shown to be a reliable alternative to

other types of transplants or to dialysis.2 Accordingly, the number of patients receiving incompatible

transplants has been increasing in many countries. In South Korea, for example, the proportion of blood-type

incompatible kidney transplants has increased from 4.7 percent to 23.1 percent of the total transplants from

living donors during 2009-2016.3 This option has largely replaced transplants through kidney exchanges,

enabling patients to receive transplants directly from their own donors. Many other countries – such as

Japan, France, and Sweden – are also using suppressants for transplants within pairs.

In the United States, in contrast, desensitization has not been used as much. So far, kidney exchange

programs have allowed substantial welfare improvements, but there are still many patients who are waiting

in the exchange pool to be matched or who cannot be matched with any donor due to particular biological

traits. Obviously, these patients will benefit as the use of desensitization becomes more common, which will

lower the medical cost of end-stage renal disease in the long run.

In this paper, we propose to incorporate desensitization into kidney exchange programs, as suppressants

can be utilized more effectively when they are used to facilitate exchanges between pairs, rather than being

only used for direct transplants within pairs. For this, pairs should be matched in coordination with the

assignment of suppressants. To show how, we construct a new transplant system, which we call “pairwise

cycles and chains (PCC)” solution. For each compatibility profile of participants, this solution selects

an allocation of suppressants as well as a matching between patients and donors. We first explore the

1A quote from the New York Times article “New Procedure Allows Kidney Transplants From Any Donor” explains how this
procedure works: “Desensitization involves first filtering the antibodies out of a patient’s blood. The patient is then given an
infusion of other antibodies to provide some protection while the immune system regenerates its own antibodies....[T]he person’s
regenerated antibodies are less likely to attack the new organ.... But if the person’s regenerated natural antibodies are still a
concern, the patient is treated with drugs that destroy any white blood cells that might make antibodies that would attack the
new kidney. ...”. This article was published on March 9, 2016 and is available at https://www.nytimes.com/2016/03/10/health/
kidney-transplant-desensitization-immune-system.html.

2Immunosuppressants are currently being developed to eliminate all biological constraints including blood/tissue type in-
compatibility (Alexander et al. 1987; Gloor et al. 2003; Montgomery et al. (2011); Orandi et al. 2016). For the performance
of these incompatible kidney transplants, see Takahashi et al. (2004), Tyden et al. (2007), Montgomery et al. (2012), Kong et
al. (2013), Laging et al. (2014), Thielke et al. (2009), and Jin et al. (2012).

3The annual KONOS(Korean Network for Organ Sharing) reports are available at https://www.konos.go.kr/konosis/common
/bizlogic.jsp.
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implications of several welfare criteria that we formulate for this problem and then show that the PCC

solution meets these criteria: it is responsive, Pareto efficient, and maximizes the number of compatible

transplants – as well as the total number of transplants – among all responsive solutions.4

The literature on kidney exchange, stemming from the seminal work by Roth et al. (2004), provides

rich analyses of centralized transplant systems under various institutional arrangements (Roth et al. 2005,

2007; Saidman et al. 2006; Sönmez and Ünver 2014). Most papers have taken compatibility profiles as

a primitive, but these profiles can now be modified by utilizing newly developed transplant technologies.

There are recent papers exploring these possibilities (Andersson and Kratz 2017; Sönmez et al. 2018) and

our paper contributes to this line of research.5

The rest of this paper is organized as follows. Section 2 introduces the standard kidney exchange model

without suppressants and defines the “priority-based” maximal matchings. Section 3 extends the model by

introducing suppressants and establishes our main results. Section 4 contains a few concluding remarks.

2. Kidney Exchange without Immunosuppressants

We begin with the standard kidney exchange model without suppressants. There is a finite set N of patient-

donor pairs. Let n be the number of pairs in N . Each pair i ∈ N consists of patient i and donor i. A patient

is either compatible or incompatible with a donor depending on immunological characteristics. We assume

that each patient prefers a compatible transplant to an incompatible transplant, which she again prefers to

no transplant.6 Therefore, patient i’s induced preference Ri over N is defined as follows: she prefers a pair

whose donor is compatible with her to another pair whose donor is not; all pairs with compatible donors are

equally desirable to her and so are all pairs with incompatible donors. Two pairs are mutually compatible

if the patient of each pair is compatible with the donor of the other pair; similarly, two pairs are mutually

incompatible if none of the patients is compatible with the donor of the other pair. For each S ⊆ N , let

RS ≡ (Ri)i∈S be the preference profile of pairs in S.

Keeping N fixed, a kidney exchange problem, or simply a problem, is defined as a preference profile R =

(Ri)i∈N .7 We can also represent R as a graph as follows: (1) the nodes are pairs in N ; (2) for each i, j ∈ N ,

if pairs i and j are mutually compatible, nodes i and j are connected by an undirected edge (i− j); (3) for

each i, j ∈ N , if patient i is compatible with donor j, but patient j is incompatible with donor i, nodes i

and j are connected by a directed edge from j to i (j → i). Each pair is given a certain priority according

to a linear ordering over N , which is determined by waiting time, age, and other health conditions (Roth

et al. 2005). We denote this linear ordering by � and write i � j if patient i has a higher priority than

patient j. Without loss of generality, let 1 � 2 � · · · � n.

4Responsiveness requires that all patients should become weakly better off as suppressants become available. For the formal
definition, see Section 3.

5An independent work by Andersson and Kratz (2017) considers suppressants used in Sweden, which relax blood-type incom-
patibility, but not tissue-type incompatibility. Sönmez et al. (2018), on the other hand, consider a blood subtyping technology
that enables transplants between certain incompatible blood-types.

6Note that in this section, no patient receives an incompatible transplant at any feasible matching. However, in Section 3,
patients can receive incompatible transplants by using suppressants.

7Such dichotomous preferences have also been studied in a general matching context: Bogomolnaia and Moulin (2004)
examine randomized solutions to achieve efficiency, fairness, and strategic requirements for pairwise matchings.
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To accommodate physical and geographical restrictions in operating transplants, we assume that each

kidney exchange takes place between two patient-donor pairs, involving four people at a time (we call this

“pairwise exchange”).8 Formally, consider a mapping µ : N → N ∪ ∅ such that for each i, j ∈ N , µ(i) = j

if and only if µ(j) = i. If µ(i) = j ∈ N , pair i is matched to pair j and patient i receives a kidney from

donor j; if i 6= j, pairs i and j form a 2-way match at µ; if i = j, pair i self-matches. If µ(i) = ∅, then pair i

remains unmatched. Let N(µ) ≡ {i ∈ N : µ(i) ∈ N} be the set of “matched” pairs at µ.

A mapping µ is a matching if (1) for each i, j ∈ N , µ(i) = j only if patient i is compatible with donor j,

and (2) two distinct pairs i, j ∈ N are not matched if patients i and j are compatible with their own donors.9

Let M(R) be the set of matchings at R. Note that no patient is matched to an incompatible donor at any

matching inM(R). Each patient is only concerned about her own match in comparing matchings. That is,

she (weakly) prefers a matching to another if and only if she (weakly) prefers who she is matched with at

the former to who she is matched to at the latter.

A matching is Pareto efficient at R if there is no other matching in M(R) that is weakly preferred by

all patients and is strictly preferred by at least one patient. A matching µ is maximal at R if for each

µ′ ∈ M(R), |N(µ′)| ≤ |N(µ)|. The structure of maximal matchings is fully characterized by the “Gallai-

Edmonds decomposition” (Gallai 1963, 1964; Edmonds 1965; Bogomolnaia and Moulin, 2004; Roth et al.

2005). It is also well known that the set of maximal matchings coincides with the set of Pareto efficient

matchings when each exchange takes place between two pairs. Let M∗(R) be the collection of maximal

matchings at R.

We now define “priority-based maximal matchings”. Given 1 � 2 � · · · � n, let M0 ≡ M∗(R) and for

each k ∈ {1, · · · , n},

Mk ≡

{
{µ ∈Mk−1 : k ∈ N(µ)} if there is µ ∈Mk−1 such that k ∈ N(µ);

Mk−1 otherwise,

and lastly, let M∗�(R) ≡ Mn. Note that M∗�(R) is the subset of maximal matchings at which pairs with

the highest possible priorities are matched (Roth et al. 2005; Nicolò and Rodŕıguez-Álvarez 2017). This set

can be identified with linear programming or by using maximum weight matchings in a properly defined

graph (Roth et al. 2005; Okumura 2014).

Example 1. Let R be a problem with 4 pairs such that

R =

 R1 R2 R3 R4

2, 3 1, 4 1 ∅
1, 4 2, 3 2, 3, 4 1, 2, 3, 4

 • •• •
1 23 4

Note that pairs 1 and 3 are mutually compatible and so are pairs 1 and 2; patient 2 can receive a transplant

from donor 4, but patient 4 cannot receive a transplant from any donor. For this profile, we haveM∗(R) =

M0 = {µ, µ̄} where µ(1) = 3, µ̄(1) = 2 and all other pairs remain unmatched. For the priority ordering

1 � 2 � 3 � 4, we have M0 =M1 and M2 =M3 =M4 =M∗�(R) = {µ̄}. �
8The pairwise exchange models have been the main focus of the literature (Bogomolnaia and Moulin 2004; Roth et al. 2005,

2007; Saidman et al. 2006), but there are attempts to relax restrictions of the size of exchanges: for instance, see Ausubel and
Morrill (2014).

9Condition (2) says that when two pairs are matched, at least one of them should not be able to make a self-match.
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From the definition, the matchings in M∗�(R) are equivalent in welfare: each pair is indifferent over all

matchings in M∗�(R). Therefore, the set of matched pairs remains the same across all µ∗ ∈ M∗�(R). We

choose any matching from M∗�(R) and set it as a benchmark when we extend the model by introducing

suppressants in Section 3.

3. Kidney Exchange with Immunosuppressants

We now introduce suppressants. Let R be a problem where no patient is compatible with her own donor.

Let K be any non-negative integer representing the number of patients who can use suppressants for in-

compatible transplants. We consider all possible values of K and construct a solution that applies to any

K ∈ Z+∪{0}.10 If K = 0, for instance, we have a standard kidney exchange problem without suppressants;

if K ≥ n, any patient can receive an incompatible transplant, as in South Korea, in which case it is natural

to minimize the use of suppressants.11

As explained in Introduction, if patient i uses a suppressant, she becomes compatible with all donors,

including her own. For each i ∈ N , let R̂i be the preference of patient i after receiving a suppressant. For

each S ⊆ N with |S| ≤ K, let RS ≡ ((R̂i)i∈S , RN\S) and M(RS) be the set of matchings at RS such that

each patient i ∈ S is matched to an incompatible donor at Ri.
12 If patient i is matched to a compatible

donor j at Ri, she receives a compatible transplant from donor j at µ. When patient i is matched to donor j

who is incompatible at Ri but compatible at RSi , she receives an incompatible transplant from donor j. At

each µ ∈ M(RS), let C(µ) be the set of pairs whose patients receive compatible transplants and I(µ) be

the set of pairs whose patients receive incompatible transplants. Note that |I(µ)| ≤ K should always hold

and patient i receives an incompatible transplant if and only if i ∈ S.

We continue with the assumption that each patient prefers a compatible transplant to an incompatible

transplant, which she again prefers to no transplant. We also assume that a patient is only concerned about

her own match in comparing matchings. We define a solution as a pair (σ, ϕ) where for each R, (i) a

recipient choice rule σ selects at most K pairs from N (namely, σ(R) ⊆ N and |σ(R)| ≤ K); and (ii) a

matching rule ϕ, paired with σ, selects a set of matchings for Rσ(R) (namely, ϕ(Rσ(R)) ⊆M(Rσ(R))). Let

ϕσ(R) ≡ ϕ(Rσ(R)) be the set of matchings chosen by the solution.

3.1. Properties of Solutions

We propose several welfare criteria and explore their implications. Let (σ, ϕ) be a solution. Our first

requirement says that all patients should become weakly better off as suppressants become available. For

10We note that K may not always be large due to several institutional constraints and a fixed time period under consideration.
Incompatible transplants are operated by nephrologists and surgeons in specialized clinics. Given the limited personnel and
the capacity of these clinics, including special equipments for desensitization – such as an automated centrifuge – the number
of operations available for a certain period of time can be bounded. When these restrictions do not bind, we can set K to be
sufficiently large.

11When the K-constraint binds, we solve a maximization problem of the number of compatible transplants (subject to
responsiveness), which is a dual problem of minimizing the number of incompatible transplants; When the K-constraint does
not bind, on the other hand, we solve a minimization problem. A solution to this maximization/minimization problem is the
Pairwise Cycles and Chains solution presented in Section 3.2.

12Patients use suppressants only for incompatible transplants.
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this, all patients who receive compatible transplants in the absence of suppressants (through exchanges)

should receive compatible transplants at a matching selected by the solution. This implies that all patients

chosen to use suppressants are those who cannot receive transplants in the absence of suppressants.

Responsiveness: For each R, each µ∗ ∈M∗�(R), and each µ ∈ ϕσ(R), N(µ∗) ⊆ C(µ).

This is a fairness consideration that many practitioners in medical institutions may overlook. However,

a social planner should make sure that no patient is penalized in the transition to a new system, so as

to achieve minimal fairness in sharing the benefit of the new technology.13 We are primarily interested in

responsive solutions, but this requirement is trivially satisfied by several solutions: for example, consider a

solution that disposes of all suppressants and chooses the benchmark matching. Consider another solution,

the one that matches pairs through standard kidney exchange at first, removes all matched pairs, and then

uses available suppressants for the remaining patients. Both solutions are trivially responsive, but they do

not utilize suppressants effectively: the former obviously wastes them. The latter does not match as many

patients as possible: for the profile in Example 1, for instance, suppose that K = 1. This solution matches

pairs 1 and 2 at first, and then assigns a suppressant to either patient 3 or patient 4 for a self-match.

Therefore, three patients are matched. However, there is an allocation that is better for everyone: assign a

suppressant to patient 4 first, and then match pairs 1 and 3 and pairs 2 and 4, respectively.

To avoid the undesirable assignments described above, we next introduce two efficiency requirements

on a solution. A standard efficiency requirement is that there should be no possible Pareto improvement

from the choice made by the solution. Let R be a problem and S, T ⊆ N be two recipient sets such that

|S|, |T | ≤ K. A matching µ ∈ M(RS) Pareto dominates another matching µ′ ∈ M(RT ) at R if all patients

weakly prefer µ to µ′ and at least one patient strictly prefers µ to µ′ at R.

Pareto efficiency: For each R and each µ ∈ ϕσ(R), there are no S ⊆ N with |S| ≤ K and µ̄ ∈M(RS)

such that µ̄ Pareto dominates µ at R.

Another efficiency requirement can be defined by means of the number of transplants: a solution should

choose a set of recipients and matchings so as to maximize the total number of transplants as well as the

number of compatible transplants.

Maximality: For each solution (σ̄, ϕ̄), each R, each µ ∈ ϕσ(R), and each µ̄ ∈ ϕ̄σ̄(R), |C(µ)| ≥ |C(µ̄)|
and |N(µ)| ≥ |N(µ̄)|.

This requirement, a kind of “utilitarian efficiency”, implies Pareto efficiency.14 We next check if maxi-

mality is compatible with responsiveness. Unfortunately, we obtain an impossibility.

Proposition 1. No solution jointly satisfies maximality and responsiveness.15

Proof. Let R be a problem with 4 pairs such that

13This requirement also provides patients a good incentive to participate in the new system: when patients are asked whether
they stay in the existing system or participate in the new system, they choose the latter only if they become better off.
Responsiveness guarantees a better outcome for every participant, enlarging the exchange pool and increasing gains from
participation. Similar welfare requirements have also been studied in other contexts: for instance, see Kojima (2012) and Dǒgan
(2016) for affirmative action in school choice problems and Thomson (2013) for various resource allocation problems.

14This logical relation is proven in Appendix A.
15This impossibility persists even if we modify maximality into a weaker version: For each solution (σ̄, ϕ̄), there are no R,

µ ∈ ϕσ(R), and µ̄ ∈ ϕ̄σ̄(R) such that |C(µ)| ≤ |C(µ̄)| and |N(µ)| ≤ |N(µ̄)| where at least one inequality holds strictly.

5



R =

 R1 R2 R3 R4

3 3 1, 2 1

1, 2, 4 1, 2, 4 3, 4 2, 3, 4

 •• • •
12 3 4

Let the priority ordering be 1 � 2 � 3 � 4. In the absence of suppressants, there is one priority-based

maximal matching µ∗ such that µ∗(1) = 3 and µ∗(2) = µ∗(4) = ∅. Suppose that K = 1. Any solution

satisfying maximality should assign the suppressant to patient 1 and match pairs 1 and 4 and pairs 2 and 3,

respectively. Note that patient 1 receives a compatible transplant from donor 3 at µ∗, but she receives an

incompatible transplant from donor 4 when K = 1, becoming worse off. This violates responsiveness.

This result is disappointing, but recall that we are mainly interested in responsive solutions. We can

define a weaker requirement than maximality by applying the same idea to responsive solutions only.

Constrained Maximality: For each responsive solution (σ̄, ϕ̄), each R, each µ ∈ ϕσ(R), and each

µ̄ ∈ ϕ̄σ̄(R), |C(µ)| ≥ |C(µ̄)| and |N(µ)| ≥ |N(µ̄)|.

There is no logical relation between this requirement and Pareto efficiency ; similarly, Pareto efficiency

is logically independent of responsiveness.16 Surprisingly, however, Pareto efficiency is implied by the

combination of these two requirements:

Proposition 2. Responsiveness and constrained maximality jointly imply Pareto efficiency.

Proof. Let (σ, ϕ) be a solution satisfying responsiveness and constrained maximality. Suppose by contra-

diction that it is not Pareto efficient. Then, for some R and some µ ∈ ϕσ(R), there are S ⊆ N with

|S| ≤ K and µ̄ ∈ M(RS) such that µ̄ Pareto dominates µ at R. This implies that C(µ) ⊆ C(µ̄) and

N(µ) ⊆ N(µ̄) with at least one proper inclusion relation. Since (σ, ϕ) is responsive, for each µ∗ ∈ M∗�(R),

we have N(µ∗) ⊆ C(µ). From C(µ) ⊆ C(µ̄), we obtain N(µ∗) ⊆ C(µ̄). Now, consider another solution such

that (1) for R, it chooses S and µ̄ and (2) for all other problems, it makes the same selection as (σ, ϕ). This

solution is responsive by construction and at R, |C(µ)| ≤ |C(µ̄)| and |N(µ)| ≤ |N(µ̄)|, with at least one

strict inequality. This contradicts constrained maximality of (σ, ϕ).

3.2. Pairwise Cycles and Chains (PCC) Solution

We now ask whether responsiveness and constrained maximality are compatible. The answer is yes. To

show this, we propose the “pairwise cycles and chains” solution, which is defined in several steps. Let K

and R be given.

Pairwise cycles and chains (PCC) solution:

Step 1. Choose any matching from M∗�(R) and denote it by µ∗.

Step 2. Define R∗ as follows:

2.1 for each i ∈ N(µ∗) and each j ∈ N , if patient i is incompatible with donor j but patient j is compatible

with donor i, let these pairs be mutually incompatible at R∗;

16Appendix A includes several examples showing these relations.
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2.2 for each i /∈ N(µ∗) and each j ∈ N , if patient i is incompatible with donor j, but patient j is compatible

with donor i, let these pairs be mutually compatible at R∗;

2.3 for each i /∈ N(µ∗), let patient i be compatible with her own donor i at R∗;

2.4 for each i ∈ N and j ∈ N , if i and j are mutually compatible, let these pairs be mutually compatible

at R∗; if i and j are mutually incompatible, let them be mutually incompatible at R∗.

Step 3. Identify

{
X ≡ argmaxµ∈M(R∗):N(µ∗)⊆N(µ) and |I(µ)|≤K |N(µ)|
X̄ ≡ argminµ∈X |I(µ)|

}
and choose µ̄ ∈ X̄.

Step 4. Let σ(R) ≡ I(µ̄) be the recipients of suppressant and {µ ∈ X̄ : I(µ) = I(µ̄)} be the set of matchings

chosen by the PCC solution.

In Step 1, we identify a priority-based maximal matching µ∗ in the absence of suppressants and set it as

a benchmark matching. The PCC solution is designed so as to ensure that all patients matched at µ∗ receive

compatible transplants. Next, we modify R to R∗ in Step 2, which is a key to achieving our requirements.

In (2.1), we delete all directed edges from the pairs in N(µ∗) to the pairs outside N(µ∗). We thereby remove

the possibility that any pair in N(µ∗) is matched to an incompatible donor. This guarantees responsiveness

of the final matching. In (2.2), we change all the remaining directed edges into undirected edges; and in

(2.3), we add self-directed edges for all nodes outside N(µ∗). In (2.4), we maintain all undirected edges

as initially. It is (2.2)-(2.4) that allows us to find a largest set of self- and 2-way matches. In Step 3, we

choose maximal matchings at R∗, subject to the number of patients receiving incompatible transplants not

exceeding K and all patients in N(µ∗) being matched. If there are multiple matchings, we choose a matching

that minimizes the use of suppressants.The choice is finalized in Step 4. This solution can be implemented

by integer programming, as discussed in Appendix B.

Remark 1. A special case of this problem occurs when the K-constraint does not bind and all patients

receive transplants (e.g., K ≥ n). Formally, this is when there are S ⊆ N with |S| ≤ K and µ ∈ M(RS)

such that S ∩N(µ∗) = ∅ and |N(µ)| = n. For this case, the PCC solution chooses a “minimax” matching in

Step 3, namely, a maximal matching that minimizes the use of suppressants, still subject to responsiveness.

Therefore, all patients are matched and the number of compatible transplants is maximized.

Here is an instance of the PCC solution.

Example 2. Suppose that K = 3. Let R be a problem with 8 pairs such that R1 R2 R3 R4 R5 R6 R7 R8

3, 4 3 1, 2 ∅ 1, 2 ∅ ∅ 5, 7

N \ {3, 4} N \ {3} N \ {1, 2} N N \ {1, 2} N N N \ {5, 7}

.

This problem is illustrated in Figure 1(i). Let the priority ordering be 1 � 2 � · · · � 8.

Step 1. We choose any matching from M∗�(R). There is only one matching µ∗ in M∗�(R) such that

µ∗(1) = 3 and for each i /∈ {1, 3}, µ∗(i) = ∅. Therefore, N(µ∗) = {1, 3}.
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(iii) PCC matching

Figure 1: (i) and (ii): R∗ is obtained from R, as directed in Step 2 of the PCC solution; (iii) All pairs except for pair 4 are

matched at the final matching; the circled nodes represent the pairs who use suppressants.

Step 2. We derive R∗ from R. Since N(µ∗) = {1, 3}, we delete a directed edge from 1 to 5 and transform

the following directed edges into undirected edges: edges from 4 to 1, from 2 to 5, from 5 to 8, from 7 to 8.

We also add self-directed edges for each node other than 1 and 3. We represent new edges as dashed ones

in Figure 1(ii). R∗1 R∗2 R∗3 R∗4 R∗5 R∗6 R∗7 R∗8
3, 4 2, 3, 5 1, 2 1, 4 2, 5, 8 6 7, 8 5, 7, 8

N \ {3, 4} N \ {2, 3, 5} N \ {1, 2} N \ {1, 4} N \ {2, 5, 8} N \ {6} N \ {7, 8} N \ {5, 7, 8}


Step 3. We identify X and X̄. We find that X = {µ14, µ16, µ26, µ27, µ35, µ36} such that

µ1i(1) = 3

µ1i(2) = 5

µ1i(7) = 8

µ1i(i) = i

 with i = 4 or 6;


µ2i(1) = 4

µ2i(2) = 3

µ2i(5) = 8

µ2i(i) = i

 with i = 6 or 7;


µ3i(1) = 4

µ3i(2) = 3

µ3i(7) = 8

µ3i(i) = i

 with i = 5 or 6.

Since for all µ ∈ X, |I(µ)| = 3 = K, we have X̄ = X. We choose one of the matchings identified above.17

For instance, let µ̄ ≡ µ16.

Step 4. We finalize the choice. The PCC solution assigns suppressants to {2, 6, 7} and choose the final

matching µ16, as illustrated in Figure 1(iii). �

Now, here is our main result.

Theorem 1. The PCC solution satisfies Pareto efficiency, responsiveness, and constrained maximality.

By construction, the PCC solution is responsive and maximizes the total number of transplants subject

to responsiveness. It is not obvious, however, that it also maximizes the number of compatible transplants

among all responsive solutions. To prove this, we introduce a graph composed of two different types of edges

and elaborate on it. Note again that we restrict our attention to pairwise exchanges only.

Proof. Responsiveness: Let R be a problem and µ∗ ∈M∗�(R) be a maximal matching chosen in Step 1 of the

PCC solution. Let R∗ be the profile derived from R in Step 2 of the PCC solution. Let (S, µpcc) be chosen by

17Step 3 of the PCC solution can be modified so as to use the priorities in selecting a matching from X̄. The detail is deferred
to Appendix C.
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the PCC solution for R. We claim that each patient i ∈ N(µ∗) is never matched to an incompatible donor

at any matching µ ∈M(R∗). Consider i ∈ N(µ∗) and any j ∈ N . If patient i is incompatible with donor j

at R, then she is also incompatible with donor j at R∗. Therefore, it is not feasible to match patient i and

donor j at any matching in M(R∗). On the other hand, N(µ∗) ⊆ N(µpcc) by the construction of X in

Step 3 of the PCC solution. Altogether, we conclude that each i ∈ N(µ∗) is matched to a compatible donor

at µpcc.

Constrained maximality : Let R be a problem and (σ(R), µpcc) be a choice made by the PCC solution for R.

Consider any responsive solution (σ̄, ϕ̄) and any µ ∈ ϕ̄σ̄(R). We first show that the number of matched

pairs at µpcc is at least as large as at µ.

Claim. |N(µpcc)| ≥ |N(µ)|.

Proof. We prove that µ ∈M(R∗). Consider any two distinct pairs, i and j. We show that if they can form

a 2-way match at Rσ̄(R), they can also form a 2-way match at R∗. To form a 2-way match at Rσ̄(R), i and

j should be mutually compatible at Rσ̄(R) and at least one of them should not belong to σ̄(R).18

Suppose that i, j /∈ σ̄(R). For them to be mutually compatible at Rσ̄(R), they should be mutually

compatible at R and therefore, they are mutually compatible at R∗ trivially. Suppose that i ∈ σ̄(R) and

j /∈ σ̄(R). For them to be mutually compatible at Rσ̄(R), there should be a directed edge from i to j at R

(equivalently, patient j should be compatible with donor i). By responsiveness, on the other hand, we

should have i /∈ N(µ∗). By the construction of R∗, i and j become mutually compatible at R∗. A symmetric

argument applies to i /∈ σ̄(R) and j ∈ σ̄(R). Therefore, if a 2-way match is formed at Rσ̄(R), then it can

also be formed at R∗.

Next consider a single pair. We show that if it self-matches at Rσ̄(R), it can also self-match at R∗. This

is because by responsiveness, σ̄(R) ∩N(µ∗) = ∅ and each pair in N \N(µ∗) can self-match at R∗ by (2.3).

Altogether, µ ∈ M(R∗). Since µpcc ∈ X and by the definition of X in Step 3 of the PCC solution, we

conclude that |N(µpcc)| ≥ |N(µ)|. �

By Claim, |N(µpcc)| ≥ |N(µ)| and therefore, the proof is complete if we show that |C(µpcc)| ≥ |C(µ)|.
Suppose by contradiction that |C(µpcc)| < |C(µ)|. Since |N(µpcc)| ≥ |N(µ)|, we have |I(µpcc)| > |I(µ)|.

We introduce a graph representing µ and µpcc. The nodes are the pairs in N(µ) ∪ N(µpcc). We draw

two types of edges as follows. Two nodes form an undirected solid edge if they make a 2-way match at µpcc;

similarly, two nodes form an undirected dashed edge if they make a 2-way match at µ. By the definition

of matchings, each node may involve at most one solid edge and at most one dashed edge (see Figure 2(ii)

and Figure 3(iii)).

Consider a “sequence of alternating edges” in this graph, which is an ordered list of distinct edges

between i1 and i2, i2 and i3, · · · , and ik−1 and ik, where i1 6= i2 and a solid edge is followed by a dashed

edge and a dashed edge is followed by a solid edge along the list. If ik = i1 for some k ≥ 3, the sequence is

an “alternating cycle”. Since solid edges and dashed edges alternate along the alternating cycle, each node

in the cycle should involve one dashed edge and one solid edge. On the other hand, if ik 6= i1 for some k ≥ 2

18If both belong to σ̄(R), these two pairs do not form a 2-way match according to our definition of matchings.
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C(µ) C(µpcc)

•a •

••

(i) δa = −1

C(µ) C(µpcc)

a• •

•
•

(ii) δa = −2

Figure 2: |Na ∩ I(µ)|+ δa < 0 (Case 1) Choose an alternating path and then add self-directed edges to its nodes, if any.

Among the nodes involving dashed edges, the nodes in C(µ) receive compatible transplants at µ; the nodes outside C(µ) receive

incompatible transplants at µ.

and the sequence cannot be “extended further” – that is, i1 forms exactly one edge with i2 and ik also forms

exactly one edge with ik−1 – the sequence is an “alternating path” with two endnodes, i1 and ik.
19

Let A be the set of all alternating cycles and alternating paths in the graph. For each a ∈ A, let Na be

the set of nodes that appear in a. Now, to each node in Na, add a solid self-directed edge if it self-matches

at µpcc; similarly, add a dashed self-directed edge if it self-matches at µ (see Figures 2(i), 3(i), and 3(ii)).

If a is an alternating path, only the two endnodes may form self-directed edges, because all other nodes

involve one solid edge and one dashed edge, according to the definition of alternating paths, forming 2-way

matches at µ and µpcc. If a is an alternating cycle, no self-directed edge can be added. This is because each

node of the alternating cycle involves one dashed edge and one solid edge and therefore, cannot self-match.

Consider a path or a cycle, a ∈ A and the set of nodes appearing in a, Na. Since the solid edges

represent µpcc,

• the number of pairs in Na who are matched at µpcc (namely, |Na ∩N(µpcc)|) is equal to the number

of nodes in Na involving solid edges in the graph. For instance, consider path a in Figure 2(i): three

nodes involve solid edges of the path, and therefore, |Na ∩N(µpcc)| = 3.

• Similarly, the number of pairs in Na who receive compatible transplants at µpcc (namely, |Na∩C(µpcc)|)
is equal to the number of nodes in C(µpcc) involving solid edges in the graph; the number of pairs

in Na who receive incompatible transplants at µpcc (namely, |Na ∩ I(µpcc)|) is equal to the number

of nodes outside C(µpcc) involving solid edges. In Figure 2(i), for instance, |Na ∩ C(µpcc)| = 2 and

|Na ∩ I(µpcc)| = 1.

More generally, for each S ⊆ N , |S ∩N(µpcc)| =
∑

i∈S |{i}∩N(µpcc)| and |N(µpcc)| =
∑

i∈N |{i}∩N(µpcc)|.
These equalities also hold if we replace N(µpcc) with I(µpcc) or C(µpcc). For the other matching µ, we can

similarly calculate |Na ∩N(µ)|, |Na ∩ C(µ)|, and |Na ∩ I(µ)|, by focusing on C(µ) and the dashed edges in

the graph. For instance, in Figure 2(i), we have |Na ∩N(µ)| = 4, |Na ∩ C(µ)| = 2, and |Na ∩ I(µ)| = 2.

Let δa ≡ |Na ∩ N(µpcc)| − |Na ∩ N(µ)|. If δa is positive, µpcc matches δa more pairs than µ in Na; if

δa is negative, µ matches |δa| more pairs than µpcc in Na. It is easy to check that δa ∈ {−2,−1, 0, 1, 2},
19By definition, both alternating cycles and alternating path are formed by at least two distinct nodes.
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given all possible dashed/solid edges that the nodes in Na may involve.20 An alternating cycle, for instance,

has δa = 0 (the number of nodes involving the solid edges is the same as that involving the dashed edges);

similarly, an alternating path starting and ending with the solid edges, without any self-directed edges, has

δa = 2 (the two endnodes involve solid edges, but not dashed edges).

Depending on the values of δa and |Na ∩ I(µ)|, there are two possible cases of a.

Case 1. |Na ∩ I(µ)| + δa < 0. We show that a is an alternating path, not an alternating cycle, and

should have |Na ∩ I(µpcc)| = 0, |Na ∩ I(µ)| = 1, and |Na ∩ C(µpcc)| + 1 = |Na ∩ C(µ)|. Note that for

|Na∩I(µ)|+δa < 0 to hold, we should have δa ∈ {−1,−2}, because |Na∩I(µ)| ≥ 0. If a were an alternating

cycle, then δa = 0. Therefore, a should be an alternating path.

Subcase 1.1. δa = −1. For |Na ∩ I(µ)| + δa < 0 to hold, we should have |Na ∩ I(µ)| = 0. By the

definition of δa, on the other hand, |Na ∩N(µpcc)| = |Na ∩N(µ)| − 1. That is, along the path, µ has

no incompatible transplant, but has one more matched pair than µpcc (as in Figure 2(i)). Given these

observations, we propose a new matching: choose the dashed edges of the nodes in Na, while keeping

the solid edges of all other pairs. This matching has one more matched pair than µpcc, but has at

most as many incompatible transplants as µpcc, contradicting the choice of X in Step 3 of the PCC

solution. Therefore, Subcase 1.1 is infeasible.

Subcase 1.2. δa = −2. For |Na∩I(µ)|+δa < 0 to hold, |Na∩I(µ)| ≤ 1 (as in Figure 2(ii)). We show

that |Na ∩ I(µpcc)| < |Na ∩ I(µ)|. If not, |Na ∩ I(µpcc)| ≥ |Na ∩ I(µ)|. By the definition of δa, on the

other hand, |Na∩N(µpcc)| = |Na∩N(µ)|−2. That is, µ has at most as many incompatible transplants

as µpcc, but has two more matched pairs than µpcc along the path. Given these observations, we propose

a new matching: choose the dashed edges of the nodes in Na, while keeping the solid edges of all other

pairs. This matching has two more matched pairs than µpcc, but has at most as many incompatible

transplants as µpcc, contradicting the choice of X in Step 3 of the PCC solution. Altogether, 0 ≤
|Na∩I(µpcc)| < |Na∩I(µ)| ≤ 1, which implies that |Na∩I(µpcc)| = 0 and |Na∩I(µ)| = 1. Altogether,

we conclude that |Na ∩ I(µpcc)|+ 1 = |Na ∩ I(µ)| and |Na ∩ C(µpcc)|+ 1 = |Na ∩ C(µ)|.

Case 2. |Na ∩ I(µ)|+ δa ≥ 0. We consider three subcases depending on the value of δa.

Subcase 2.1. δa ≥ 0. We show that |Na ∩ I(µpcc)| ≤ |Na ∩ I(µ)| + δa. If not, |Na ∩ I(µpcc)| >
|Na ∩ I(µ)| + δa (as in Figure 3(i)). That is, the number of incompatible transplants at µpcc along

the path is larger than that at µ by even more than δa. By the definition of δa, on the other hand,

|Na ∩ N(µpcc)| − |Na ∩ N(µ)| = δa. That is, the number of matched pairs at µpcc along the path is

larger than that at µ by δa. Given these observations, we propose a new matching: choose the dashed

edges of the nodes in Na (including self-directed dashed edges, if any) and add self-directed edges to

the nodes in Na involving no dashed edge (node i, for instance, in Figure 3(i)), while keeping the solid

20An alternating cycle has the same number of dashed edges and solid edges with no self-directed edges, so δa = 0. Consider
an alternating path starting in a solid edge and ending in a dashed edge. If both endnodes have self-directed edges, δa = 0;
similarly, if they have no self-directed edge, δa = 0. If only one of them has a self-directed edge, then δa ∈ {−1, 1}. Consider an
alternating path starting and ending in solid edges. If none of the two endnodes have a self-directed edge, δa = 2. If only one
has it, δa = 1 and if both have them, δa = 0. A similar argument applies to an alternating path starting and ending in solid
edges.
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C(µ) C(µpcc)

••

• •
••

i

(i) |Na ∩ I(µpcc)| = 3

|Na ∩ I(µ)|+ δa = 2 (δa = 1)

C(µ) C(µpcc)

• •
• •

• • •

a

b

(ii) k1 > 0 and k3 > 0

C(µ) C(µpcc)

a

b

• •
• •

•

• •

•

(iii) k1 > 0 and k4 > 0

Figure 3: Proof of constrained maximality. (i) Choose the dashed edges and add a self-directed edge to i. Compared to

the solid edges, this matching has the same number of transplants in total, but has one less incompatible transplant. (ii) Choose

the dashed edges of paths a and b. Compared to the solid edges, this matching has one more transplant in total, but has the

same number of incompatible transplants. (iii) Choose the dashed edges of the paths a and b. Compare to the solid edges, this

matching has the same number of transplants in total, but has one less incompatible transplant.

edges of all other pairs. This matching has the same number of matched pairs as µpcc, but has a smaller

number of incompatible transplants than µpcc, contradicting the choice of X̄ in Step 3 of the PCC

solution. Therefore, |Na∩I(µpcc)| ≤ |Na∩I(µ)|+δa. Together with |Na∩N(µpcc)| = |Na∩N(µ)|+δa,

we obtain |Na ∩ C(µpcc)| ≥ |Na ∩ C(µ)|.

Subcase 2.2. δa = −1. We show that |Na ∩ I(µpcc)| ≤ |Na ∩ I(µ)| − 1. If not, |Na ∩ I(µpcc)| >
|Na ∩ I(µ)| − 1 (or equivalently, |Na ∩ I(µpcc)| ≥ |Na ∩ I(µ)|). By the definition of δa, on the other

hand, |Na ∩ N(µpcc)| − |Na ∩ N(µ)| = −1. That is, along the path, µ has one more matched pair

than µpcc, but has at most as many incompatible transplants as µpcc. Given this observation, we

propose a new matching: choose the dashed edges of the nodes in Na (including self-directed dashed

edges, if any), while keeping the solid edges of all other pairs. This matching has one more matched

pair than µpcc, but has at most as many incompatible transplants as µpcc, contradicting the choice

of X in Step 3 of the PCC solution. As in Subcase 2.1, we obtain |Na ∩ C(µpcc)| ≥ |Na ∩ C(µ)|.

Subcase 2.3. δa = −2. We show that |Na ∩ I(µpcc)| ≤ |Na ∩ I(µ)| − 1. If not, |Na ∩ I(µpcc)| >
|Na ∩ I(µ)| − 1 (or equivalently, |Na ∩ I(µpcc)| ≥ |Na ∩ I(µ)|). Then, the similar argument of Subcase

2.2 applies and we can find a matching that has two more matched pairs than µpcc, but has at most as

many incompatible transplants as µpcc, contradicting the choice of X in Step 3 of the PCC solution.

Therefore, |Na ∩ I(µpcc)| ≤ |Na ∩ I(µ)| − 1. By the definition of δa, |Na ∩N(µpcc)| − |Na ∩N(µ)| = −2

and therefore, |Na ∩ C(µpcc)| ≥ |Na ∩ C(µ)| − 1.

Cases 1 and 2 take care of all the pairs that appear in an alternating path or an alternating cycle in A.

There may remain some pairs that are matched at µ or at µpcc, but do not appear in any alternating path

or cycle. Let i be one of those pairs. Since pair i is not matched to any other pair in either matching, there

are three possibilities:

(i) pair i self-matches both at µ and µpcc (namely, |{i} ∩ I(µpcc)| = |{i} ∩ I(µ)| = 1);
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(ii) pair i self-matches at µ but is unmatched at µpcc (namely, |{i} ∩ I(µpcc)| = 0 < |{i} ∩ I(µ)| = 1);

(iii) pair i self-matches at µpcc, but is unmatched at µ (namely, |{i} ∩ I(µpcc)| = 1 > |{i} ∩ I(µ)| = 0).

Note that |{i} ∩ C(µpcc)| = |{i} ∩ C(µ)| = 0 in (i) to (iii). All the pairs that have not been discussed in

Cases 1 and 2, (i) to (iii) are unmatched at µpcc and at µ.

Now, we return to the proof. Recall that |C(µpcc)| < |C(µ)| and |I(µpcc)| > |I(µ)|.

(1) For the first inequality to hold, there should exist S ⊆ N such that |S∩C(µpcc)| < |S∩C(µ)|. From our

analyses above, for this to hold, there should exist path a described in Case (1.2) or path a described

in (2.3) such that |Na ∩C(µpcc)| = |Na ∩C(µ)| − 1. In either case, |Na ∩N(µpcc)| = |Na ∩N(µ)| − 2,

|Na ∩ I(µpcc)| = |Na ∩ I(µ)| − 1, |Na ∩C(µpcc)| = |Na ∩C(µ)| − 1. Let k1 be the number of alternating

paths of this type.

(2) For the second inequality to hold, there should exist S ⊆ N such that |S ∩ I(µpcc)| > |S ∩ I(µ)|. From

our analyses above, for this to hold, there should be either at least one pair i that self-matches at µpcc

but is unmatched at µ, as described in (iii) above (let k2 be the number of such pairs), or at least one

alternating path b ∈ A as discussed in Case 2.1, such that δb ∈ {1, 2} and |Nb∩I(µ)| < |Nb∩I(µpcc)| ≤
|Nb ∩ I(µ)|+ δb. For path b of this type, if any, there are three possibilities:

(2.1) δb = 1 and |Nb ∩ I(µpcc)| = |Nb ∩ I(µ)| + 1. Then |Nb ∩ C(µpcc)| = |Nb ∩ C(µ)|. Let k3 be the

number of alternating paths of this type.

(2.2) δb = 2 and |Nb ∩ I(µpcc)| = |Nb ∩ I(µ)| + 2. Then |Nb ∩ C(µpcc)| = |Nb ∩ C(µ)|. Let k4 be the

number of alternating paths of this type.

(2.3) δb = 2 and |Nb ∩ I(µpcc)| = |Nb ∩ I(µ)|+ 1. Then |Nb ∩C(µpcc)| = |Nb ∩C(µ)|+ 1. Let k5 be the

number of alternating paths of this type.

Any c ∈ A that is not covered in (1) or (2) has |Nc∩I(µpcc)| ≤ |Nc∩I(µ)| and |Nc∩C(µpcc)| ≥ |Nc∩C(µ)|.
Similarly, any self-matched pair j that has not been discussed in (1) and (2) above has |{j} ∩ I(µpcc)| ≤
|{j} ∩ I(µ)| and |{j} ∩ C(µpcc)| = |{j} ∩ C(µ)|) = 0.

Therefore, for |C(µpcc)| < |C(µ)| to hold, we should have k1 > k5. On the other hand, for |I(µpcc)| >
|I(µ)| to hold, we should have k2 + k3 + 2k4 + k5 > k1. Altogether, k1 > 0 and k2 + k3 + 2k4 > 0 should

hold. That is, k1 is positive and at least one of k2, k3, and k4 is positive.

Since k1 > 0, there is path a discussed in (1), along which µ has two more matched pairs than µpcc, but

has only one more incompatible transplants than µpcc. If k2 > 0, there is a pair i who self-matches at µpcc,

receiving an incompatible transplant, but is unmatched at µ. We now propose a new matching: choose the

dashed edges of the nodes in Na∪{i}, while keeping the solid edges of all other pairs. This matching has one

more matched pair than µpcc, but has the same number of incompatible transplants as µpcc, contradicting

the choice of X in Step 3 of the PCC solution. If k3 > 0, there is path b discussed in (2.1), along which

µpcc has one more matched pair than µ and one more incompatible transplant than µ (see Figure 3(ii)).

We propose a new matching: choose the dashed edges over the nodes in Na ∪ Nb, while keeping the solid

edges of all other pairs. This matching has one more matched pair than µpcc, but has the same number
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of incompatible transplants as µpcc, contradicting the choice of X in Step 3 of the PCC solution. Lastly,

if k4 > 0, there is path b discussed in (2.2), along which µpcc has two more matched pairs than µ and two

more incompatible transplants than µ (see Figure 3(iii)). We propose a new matching: choose the dashed

edges of the nodes in Na ∪Nb, while keeping the solid edges of all other pairs. This matching has the same

number of matched pairs as µpcc, but has one less incompatible transplants than µpcc, contracting the choice

of X̄ in Step 3 of the PCC solution. This completes the proof.

Pareto efficiency : By Proposition 2, this requirement is implied by responsiveness and constrained

maximality.

4. Concluding Remark

In this paper, we investigate the implications of introducing suppressants to the kidney exchange problem.

We propose several welfare criteria in assigning suppressants and matching patients to donors. We introduce

the PCC solution and show that it satisfies Pareto efficiency, responsiveness, and constrained maximality.

There remain several interesting issues. First, we may think of different procedures of assigning suppres-

sants, instead of assigning K suppressants all at once as we do in this paper. For instance, suppose that

we assign suppressants sequentially, one by one (or more generally, several units at a time). Each time, we

apply the PCC solution to assign one unit of suppressant and let all patients who receive transplants leave

the pool. It is easy to check that this sequential allocation of suppressants may make some patients worse

off than under the all-at-once allocation of suppressants.

Second, we may consider adapting the deferred acceptance (DA) solution to our setting. Since there is a

single priority ordering over patients, the DA solution can be defined as follows: Among all sets of 2-cycles

and at most K number of 1- or 2-chains (such that each pair only appears in at most one of these 2-chains

and 2-cycles), choose ones including the patient with the highest priority; among the resulting collections,

choose ones including the patient with the second highest priority; and so on. From what we obtain, we

choose the patients at the head of chains to be recipients of suppressant and let patients receive kidneys

from donors along the directed edges in the cycles and chains. From this construction, we obtain a “stable”

assignment: If a patient does not receive a transplant, then either (i) all patients with lower priorities do not

receive transplants, or (ii) all available suppressants are assigned to patients with higher priorities. However,

this solution violates responsiveness.

Third, there remains a participation issue, as a key feature of our proposal is that patient-donor pairs

who are assigned suppressants still participate in kidney exchange pool, rather than opting out to make

direct transplants within pairs. Provided that it does not make a significant difference from which donor a

patient receives a kidney when using a suppressant, they would still participate to help other pairs receive

transplants. Such an “altruistic” motivation is well documented in the standard kidney exchange program

where compatible pairs participate (Sönmez and Ünver 2014; Roth et al. 2005; Gentry et al. 2007). There

are other ways to provide an incentive to promote their participation more explicitly: for example, these

patients could be provided with higher priorities when they need another operation in case of transplant

failure. Sönmez et al. (2017) give insights into this possibility in a dynamic kidney transplant problem.
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Appendix A

(1) Maximality implies Pareto efficiency : Suppose otherwise. Let (σ, ϕ) be a solution that satisfies maxi-

mality but not Pareto efficiency. Then, there are a problem R, a recipient set S ⊆ N with |S| ≤ K, and a

matching µ̄ ∈M(RS) such that µ̄ Pareto dominates µ at R for some µ ∈ ϕσ(R). Therefore, C(µ) ⊆ C(µ̄) and

N(µ) ⊆ N(µ̄) with at least one proper inclusion, which implies that |C(µ)| ≤ |C(µ̄)| and |N(µ)| ≤ |N(µ̄)|
with at least one strict inequality. Let (σ̄, ϕ̄) be the solution such that for R, σ̄(R) = S and ϕ̄σ̄(R) = {µ̄};
for each other R, (σ̄, ϕ̄) makes the same selection as (σ, ϕ). This contradicts maximality of (σ, ϕ).

(2) Pareto efficiency and constrained maximality are logically independent: Let K = 1 and R be a problem

with N = {1, 2, 3}. Suppose that patient 2 is compatible with donor 1 but all other patients are incompatible

with each other donor. No patient can be matched in the absence of suppressants. Now, consider a solution

that chooses {3} as a recipient and chooses a matching composed of one self-match by pair 3 for this problem.

This selection is Pareto efficient, but constrained maximality is violated at R, because if patient 1 were a

recipient and pairs 1 and 2 were matched, the number of incompatible transplant remains the same, but

the total number of transplant increases by 1. Conversely, constrained maximality does not imply Pareto

efficiency either. Consider the problem in the proof of Proposition 1. Consider a solution that chooses {1}
as the recipient and chooses a matching µ composed of one 2-way match between pairs 2 and 3 and one

self-match of pair 1. Obviously, this is not Pareto efficient. We show that this solution satisfies constrained

maximality. Let µ̄ be any matching chosen by a responsive solution. Pair 1 should always be matched

with pair 3 and either patient 2 or 4 can self-match at best by using a suppressant. Therefore, the number

of compatible transplants is always 2 and the number of matched pairs will be 3 at most at µ̄, implying

|C(µ̄)| ≤ |C(µ)| and |N(µ̄)| ≤ |N(µ)|.

(3) Pareto efficiency and responsiveness are logically independent: Let (σ, ϕ) be the solution defined by

setting for each R, σ(R) = ∅ and ϕσ(R) =M∗�(R). It trivially satisfies responsiveness, but violates Pareto

efficiency. Next, consider the problem R in the proof of Proposition 1. Consider the solution that chooses

{1} as the recipient and chooses a matching composed of 2-way matches between pairs 1 and 4 and pairs 2

and 3. The selection is Pareto efficient, but not responsive.

Appendix B

As a supplementary material, we discuss how to compute the PCC solution using integer programming as

in Roth et al. (2004). Let R be a problem. We represent it as an n× n matrix M = (mij)i,j∈N as follows.

For each i, j ∈ N , if patient i is compatible with donor j, we write mij = 1; otherwise, mij = 0. Let

M∗ ≡ (m∗ij)i,j∈N be the similarly defined n× n matrix that represents R∗ in Step 2 of the PCC solution.

Step 1 of the PCC solution: A priority-based maximal matching inM∗�(R) is identified by a maximum

weight matching of a properly defined graph (Okumura, 2014). For the details of this graph, see Okumura

(2014). Let N∗ be the set of pairs that are matched in this maximum weight matching, which corresponds

to N(µ∗) in Step 1 of the PCC solution.
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Step 3 of the PCC solution identifying X: solve for the following integer programming problem.

max
x

∑
i,j∈N

xij s.t.

(i) xij ≤ m∗ij , xij = xji ∈ {0, 1}, ∀i, j ∈ N ;

(ii)
∑
j∈N

xij ≤ 1, ∀i ∈ N ;

(iii)
∑
j∈N

xij = 1, ∀i ∈ N∗;

(iv)
∑

i∈N :mij=0

xij ≤ K.

Let x∗ be a solution to this problem and let k∗ ≡
∑

i,j∈N x
∗
ij .

Step 3 of the PCC solution identifying X̄: solve for the following integer programming problem.

min
x

∑
i,j∈N :mij=0

xij s.t.

(i) xij ≤ m∗ij , xij = xji ∈ {0, 1}, ∀i, j ∈ N ;

(ii)
∑
j∈N

xij ≤ 1, ∀i ∈ N ;

(iii)
∑
j∈N

xij = 1, ∀i ∈ N∗;

(iv)
∑

i∈N :mij=0

xij ≤ K;

(v)
∑

i∈N,j∈N
xij ≥ k∗.

Though integer programming with binary variables is NP-complete (Karp, 1972), there are various

heuristic solutions to solve these problems that are used in practice. Several computation packages are also

available (e.g., the mixed-integer linear programming tool at Matlab).

Appendix C

Theorem 1 says that any allocation chosen by the PCC solution satisfies Pareto efficiency, responsiveness,

and constrained maximality. These requirements are still met even if we choose a particular PCC allocation

by using the patients’ priorities. Precisely, this is done by modifying the selection of µ̄ in Step 3 of the PCC

solution: after defining X and X̄ as in Section 3, we add the following:

Let X0 ≡ X̄ and for each k ∈ {1, · · · , n}, let

Xk ≡

{
{µ ∈ Xk−1 : k ∈ N(µ)} if there is µ ∈ Xk−1 such that k ∈ N(µ);

Xk−1 otherwise,

and let µ̄ ∈ Xn.

For instance, consider the problem in Example 2. If we use the priority ordering 1 � 2 � · · · � n, we

obtain X0 = X1 = X2 = X3, X4 = X3 \ {µ16}, X5 = X4 \ {µ36}, and X6 = X7 = X8 = {µ26}. As for

computation, it is enough to add the following iteration at the end of the integer programming presented in

Appendix B.
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3.1 Add a constraint of “
∑

j∈N x1j = 1” to the existing constraints (i) to (v) of the minimization

problem identifying X̄. If there is a solution, keep this constraint with the existing constraints;

otherwise, modify the constraint to
∑

j∈N x1j = 0 and keep it with the existing constraints.

Proceed to 3.2.

For each k = {2, · · · , n};

3.k Add “
∑

j∈N xkj = 1” to the existing constraints of the minimization problem identifying X̄.

If there is a solution, keep this constraint with the existing constraints; otherwise, modify the

constraint to
∑

j∈N xkj = 0 and keep it with the existing constraints. Proceed to 3.(k + 1).

Let this process terminate at 3.n.

The resulting outcome is the priority-based matching that is chosen in Step 3 of the PCC solution.
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