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Abstract

This paper characterizes the optimal income tax and disability insurance (DI) in the

presence of formal and informal care for disabled people provided within households.

In the model, each household is comprised of a disabled member and an able mem-

ber who can provide “intra-household care” for the disabled member. Moreover, both

the ability of able members and the level of disability of disabled members are hetero-

geneous across households. I first show that the intra-household care increases labor

supply of disabled agents by reducing negative effects of disability on their labor sup-

ply. I also find that under reasonable assumptions optimal DI benefits are positive and

progressive with respect to household earnings. Both features can be interpreted as re-

distribution mechanisms: positivity as the redistribution from the mildly disabled to

the severely disabled, and progressivity as the redistribution from the more productive

to the less productive.

�Very preliminary: Please do not cite or circulate.
ykwlee76@yonsei.ac.kr; School of Economics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722,

Korea

1



1 Introduction

Disability is one of the most serious risks over the life cycle. It can reduce individuals’ earn-

ings and welfare considerably due to the decline in labor productivity and limitations in

various types of daily and economic activities. Moreover, disability has become more preva-

lent in OECD countries.1 While individuals may insure themselves against the disability

risk through their own savings, such self-insurance is often insufficient, especially in the

case of early or persistent disability. For this reason, many countries have public disabil-

ity insurance (DI) programs and a large volume of literature has been devoted to public DI

programs’ welfare and behavioral effects on disabled individuals.

In the literature, several papers recently turn their attention to the impact of disabil-

ity on the families of disabled individuals.2 Disability of an individual may affect the labor

supply of his spouse or other members of the household in addition to his own labor sup-

ply. Moreover, disabled individuals often receive various types of care from their families

or relatives, such as the assistance with activities of daily living (ADL) and medical care as-

sociated with the disability. Such care, which will be referred to as intra-household care

throughout this paper, takes non-disabled household members time and monetary costs

and hence may have an additional impact on their labor supply. Unfortunately, no paper in

the literature has taken into account the household responses and intra-household care in

the optimal design of DI, as standard papers in the literature simply assume single-person

households in their models. Therefore, standard findings and policy proposals from those

papers could be misleading to the extent that the household responses and intra-household

care matter.

This paper contributes to the literature by addressing the issue. More specifically, this

paper analyzes the optimal DI and income tax in the presence of household responses and

intra-household care for disabled individuals. To this end, I consider a model with the fea-

tures that account for the household effects on DI. First, each household is comprised of an

able agent and a disabled agent, and both types of agents are heterogeneous across house-

1For the prevalence and welfare effects of disability for the U.S., see Meyer and Mok (2013), for example.
2See, for example, Fadlon and Nielsen (2015) and Autor et al. (2017), which are reviewed later in this section.
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holds: able agents in labor productivity and disabled agents in the level of disability. Sec-

ond, able agents can provide intra-household care for disabled agents to mitigate the labor

disutility caused by disability. In this model, each household determines the labor supply

of its disabled member (as well as its able member) by comparing the gain from the labor

(wage) and the costs (utility costs of labor supply due to disability, costs of intra-household

care, and forgone DI benefits). Hence, this model provides a useful framework to investi-

gate the roles of behavioral responses of non-disabled individuals and intra-household care

in the labor supply of disabled individuals and DI benefits.

Using the model, I first establish that intra-household care always increases the labor

supply of disabled individuals. This outcome is intuitive because intra-household care

would be provided only if the benefit from the care to a disabled agent, i.e., the reduc-

tion in the labor disutility, exceeds the cost of the care to an able agent. In other words,

intra-household care takes place only if it can reduce the household’s total cost of disability

related to a disabled agent’s labor supply. Consequently, intra-household care promotes the

labor force participation of disabled individuals by reducing the costs of their labor supply

for their households.

Then, I derive the optimal DI and income tax formulae that account for the household

responses and intra-household care. In addition to usual behavioral effects of income tax-

ation, the formulae feature the term that represents the effect of DI benefits on the labor

supply of disabled agents. As the DI benefits increase, some households have disabled

members withdraw from the labor force, which causes the tax revenue from the households

to decline. This in turn reduces social welfare as the government has smaller tax revenue

which could be used for welfare-improving redistribution. This effect is first incorporated

to the optimal tax formulae by Kleven, Kreiner, and Saez (2009) in the context of income tax-

ation of couples. This paper generalizes their analysis by explicitly accounting for the role

of intra-household care as DI benefits affect the labor supply of disabled agents through the

intra-household care channel.

Finally, I show that optimal DI benefits are always positive and decreasing in household

earnings under reasonable assumptions. Both properties can be interpreted as redistribu-
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tion from more fortunate households to less fortunate ones. More specifically, DI benefits

should be positive to promote the redistribution from less severely disabled agents to more

severely disabled agents. Likewise, DI benefits should decrease with household earnings

to enhance the redistribution from more productive agents to less productive ones. To test

the validity of these results, I examine when the conditions for positive and progressive DI

benefits are satisfied, assuming that functions associated with intra-household care exhibit

constant absolute or relative risk aversion (CARA or CRRA). Such analyses reveal that they

are indeed satisfied for realistic parameter values, which validates the characterization of

the optimal DI benefits. [Needs calibration]

This paper is related to several lines of literature. First, this paper builds on a large body

of literature on optimal DI such as Diamond and Mirrlees (1978), Golosov and Tsyvinski

(2006), and Low and Pistaferri (2015). While numerous papers analyzed optimal DI, no

paper takes account of the household responses or intra-household care. Furthermore,

most papers ignored the interaction between DI and income taxation, except for Lee (2015).

The current paper makes a substantial contribution to the literature, as it is the first paper

that characterizes the optimal DI and income tax with both household responses and intra-

household care explicitly taken into account.

This paper is also associated with the literature on nonlinear optimal taxation following

Mirrlees (1971) and Saez (2001).3 Unlike the current paper, however, most papers in the

literature analyzed optimal income taxation of individuals abstracting from the household

responses. Kleven, Kreiner, and Saez (2009) recently addressed this problem by exploring

the optimal income taxation of couples. Their setup is similar to that of the current pa-

per in that both primary and secondary earners are heterogeneous in labor productivity

and the cost of providing labor, respectively, and the distinction between two-earner and

one-earner couples is the key to characterizing the optimal tax system. The current paper

generalizes their analysis by considering intra-household care and providing an in-depth

analysis on the validity of key assumptions. [calibration should be added].

The current paper is motivated by the findings in the literature on the impact of disabil-

3See Piketty and Saez (2013) for an excellent review.
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ity or other health and income shocks to individuals on the labor supply of their spouses.

In theory, individuals are likely to increase labor supply in response to such shocks to their

spouses through the negative income effects. The increase in spousal labor supply was

termed the added worker effect and empirically examined by many papers.4 While some

of the papers were specifically focused on the added worker effect on the disability or DI

context, they did not incorporate their findings to the optimal design of DI. As discussed,

one of the contributions of the current paper is to account for their findings in optimal DI

and income tax.

The rest of the paper is organized as follows. Section 2 introduces the model. Section

3 then characterizes the behavior of households such as labor supply of able and disabled

agents and intra-household care, given a DI and income tax system. Based on the behavior

of households, Section 4 derives the formulae for optimal DI and income tax and estab-

lishes the positivity and progressivity of optimal DI benefits. This analysis is followed by

Section 5, which examines the validity of assumptions used to derive the key results in Sec-

tion 4. Finally, Section 6 concludes.

2 Model

The economy is populated by a continuum of two-member households. Each household

consists of two members: (i) the first member who is able, and (ii) the second member who

is disabled. Each household is characterized with n 2 [n; �n] ; the labor productivity of an

able member, and q � 0; the severity of disability of a disabled member. Disability in this

model is partial in the sense that disabled agents may still supply labor despite physical

limitations. Both n and q differ across households, but they are assumed to be independent

for analytic simplicity. The distributions ofn and q are represented by distribution functions

F (n) and P (q) and density functions f (n) and p (q) : I assume that both n and q are only

privately informed.

4For U.S., see Charles (1999), Cullen and Gruber (2000), Stephens (2002), Coile (2004), Blundell, Pistaferri,

and Saporta-Eksten (2016), and Haan and Prowse (2017). For the analysis for other countries, refer to Fadlon

and Nielsen (2015) for Denmark, Gallipoli and Turner (2011) for Canada, and Autor et al. (2017) for Norway.

5



In each household, an able member with n earns labor income z with labor hours z=n

at the utility cost h (z=n) ; which satisfies h0 > 0; h00 > 0; and h (0) = 0: A disabled member

may also provide labor supply l at a fixed wage rate w > 0: Following Kleven, Kreiner, and

Saez (2009), I assume that l is binary, either 1 or 0. In addition to labor supply, an able

member may also provide a disabled member in his household with various types of care

such as medical care and assistance with activities of daily living. Such care will be referred

to as intra-household care and denoted by k � 0. On the one hand, able agents incur a

cost v (k) to provide k units of intra-household care. v (k) captures time costs of informal

care and/or monetary costs of medical care and satisfies v0 > 0; v00 > 0; and v (0) = 0:

On the other hand, the intra-household care can improve the welfare of disabled agents.

To capture this effect parsimoniously, I assume the labor disutility of a disabled agent is

ql [1�m (k)]. In this formulation, m (k) represents the positive effects of intra-household

care k and has the following properties: m0 > 0; m00 < 0; m (0) = 0; andmaxk�0m (k) � 1: A

few points are worth further discussion. First, if a disabled agent forgoes labor supply, or l =

0, the disutility becomes zero and intra-household care becomes useless. Second, the labor

disutility of disabled agents is proportional to the severity of their disability. Third, intra-

household care can mitigate the labor disutility but only partially becausemaxk�0m (k) � 1:

Based on the discussion so far, I assume the utility function for a household with (n; q)

as follows.

u (c; z; k; l) = c� h
� z
n

�
� v (k)� ql [1�m (k)] ; (1)

where c is household consumption. The utility function is quasi-linear, which is standard

in the literature, although it is augmented by the terms associated with intra-household

care.5 To describe the household budget constraint, notice first that income tax cannot be

directly conditioned on n or q due to private information. Thus, I assume that income tax

is based on (z; l) ;which fully characterizes household earnings because l is binary and w is

common to all households. Hence, I denote by Tl (z) the income tax for a household with

an able member’s earnings z and a disabled member’s labor supply l:Using the income tax

5Following Kleven, Kreiner, and Saez (2009) and other papers in the literature, the concavity of utility func-

tion will be captured by the social welfare function, which I will describe in Section 4.
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function, we can write the household budget constraint as

c = z + wl � Tl (z) : (2)

In the next section, I will describe the household problem and characterize the solution

with the focus on the labor supply of disabled agents.

3 Optimal behavior of households

3.1 Household’s problem

Each household chooses (c; z; k; l) to maximize the utility function (1) subject to the budget

constraint (2). To solve this problem, I first characterize the households’ behaviors condi-

tional on l and then describe the choice of l: To this end, I define the value function of a

household with (n; q) conditional on l as follows.

Vl (n; q) � max
fz;kg

h
z � Tl (z)� h

� z
n

�
+ wl � v (k)� ql f1�m (k)g

i
: (3)

The objective function in (3) is obtained from substituting (2) into (1). Let (zl; kl) denote

the solution to the household problem (3) given l: Then, zl should satisfy the following first-

and second-order conditions (FOCs and SOCs, hereafter).

1� T 0l (zl) =
1

n
h0
�zl
n

�
(4)

T 00l (zl) +
1

n2
h00
�zl
n

�
> 0 (5)

There are implications of these conditions that will be used in the government’s optimal

taxation problem. First, zl is decreasing in the marginal tax rate T 0l : To quantify this rela-

tionship, I denote by "l the elasticity of zl with respect to the marginal retention rate 1� Tl;

which is defined as

"l �
dzl

d
�
1� T 0l

� 1� T 0l
zl

=
h0
�
zl
n

�
zl
n h

00
�
zl
n

� : (6)

Second, zl increases with n; or more productive agents earn more. To see this, we take total

differential to (4) to obtain
@zl
@n

=
1
n2

�
h0 + zl

n h
00�

T 00l +
1
n2
h00

; (7)
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which is positive because of h0 > 0; h00 > 0; and (5). In this sense, @zl=@n > 0 is equivalent

to the second-order condition (5) given the assumptions on h:

As for kl; note first that k0 = 0 regardless of q because the marginal benefit from intra-

household care is zero when l = 0: By contrast, k1 can be positive and should satisfy the

following FOC:6

qm0 (k1) � v0 (k1) with inequality iff k1 = 0: (8)

Lemma 1 below summarizes the properties of k1 implied by (8).

Lemma 1 Define � � v0(0)
m0(0) ; Av (k) �

v00(k)
v0(k) > 0; and Am (k) � �m00(k)

m0(k) > 0: Then, k1 and

@k1=@q have the following properties.

1. If q � �; then k1 = 0 and @k1
@q = 0:

2. If q > �; then k1 > 0 and

@k1
@q

=
1

q [Av (k1) +Am (k1)]
> 0: (9)

Proof. Note that (8) can be rewritten as q � v0(k)
m0(k) and v0(k)

m0(k) is increasing in k: Thus, if

q � � = v0(0)
m0(0) ; the FOC holds as inequality, which means k1 = 0 and @k1=@q = 0. However,

if q > �; there is k1 > 0 that satisfies (8) as equality. Also, if we take total differential to (8),

we obtain (9).

According to Lemma 1, more severely disabled agents receive more intra-household

care after a threshold level of disability � = v0 (0) =m0 (0). Also, @k1=@q increases as m be-

comes less concave and v becomes less convex, since Av and Am measure the curvature of

v andm:

Another implication of the FOCs (4) and (8) is that z only depends on n whereas k only

depends on q: Thus, the value function Vl can be decomposed as Vl (n; q) = Ul (n)� Cl (q) ;

where

Ul (n) � zl � Tl (zl)� h
�zl
n

�
+ wl; (10)

Cl (q) � v (kl) + ql [1�m (kl)] :
6Due to the assumptions on h; m; and v; the SOC for kl is automatically satisfied.
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Ul (n) is interpreted as the utility associated with after-tax household earnings and labor

disutility of an able agent. Cl (q) represents the total cost of disability for a household be-

cause it includes both disutility due to disability and costs of intra-household care. Note

that only C1 (q) can be positive as C0 (q) = 0 due to l = 0 and k0 = 0: Thus, I define

C (q) � C1 (q) = v (k1) + q [1�m (k1)] (11)

and refer toC (q) as the disability cost of labor for a household with (n; q) :7 AsC (q) is crucial

to the decision making on disabled agents’ labor supply, I summarize its key properties in

the following lemma.

Lemma 2 C (q) is increasing and concave. It is partitioned into two parts as follows.

1. If q � � � v0(0)
m0(0) ; then C (q) = q; C 0 (q) = 1; and C 00 (q) = 0:

2. If q > �; then C (q) < q; C 0 (q) = 1�m (k1) 2 [0; 1); and

C 00 (q) = �1
q

�
m0 (k1)

Av (k1) +Am (k1)

�
< 0:

Proof. If q � �; k1 = 0 by Lemma 1. Then, C (q) = q and C 0 (q) = 1: If q > �; 0 < m (k1) � 1

since k1 > 0 by Lemma 1 andm0 (k) > 0: This result implies 0 � C 0 (q) < 1 because C 0 (q) =

1�m (k1) by the envelope theorem. To prove C (q) < q;

C (q) =

Z �

0
C 0 (x) dx+

Z q

�
C 0 (x) dx <

Z q

0
1dx = q:

Finally,C 00 (q) = �m0 (k1)
dk1
dq :Using the formula for dk1dq in Lemma 1, we obtain the equation

for C 00 (q) in Lemma 2.

All results of Lemma 2 are quite intuitive. Trivially, C (q) = q when no intra-household

care is provided to disabled agents. In the case of positive intra-household care, C (q) < q

because, if C (q) � q; zero intra-household care would be preferred to any positive intra-

household care. Moreover, C 0 (q) > 0 indicates that an increase in q raises the disability

cost of labor despite additional intra-household care. In other words, intra-household care

7“Labor” in the term obviously means the labor of the disabled member in a household. For the able mem-

ber’s labor, I will refer to h (z=n) as “labor disutility” to avoid confusion.
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cannot fully offset the negative effect of the increase in the severity of disability. Finally,

C 00 (q) < 0 suggests that the total disability cost increases more slowly than q because of the

endogenous intra-household care.

3.2 Labor supply of disabled agents

Now I turn to analyze the labor supply of disabled agents. A household with (n; q) chooses

l = 1 if V1 (n; q) � V0 (n; q) ; or equivalently, by Vl (n; q) = Ul (n)� Cl (q) ; if

�U (n) � U1 (n)� U0 (n) � C (q) : (12)

In this condition, the left-hand side (LHS) captures the change in after-tax household in-

come and labor disutility of an able member due to a disabled member’s labor supply,

whereas the right-hand side (RHS) represents the disability cost of labor. Thus, if (12) is sat-

isfied for a household, the disabled member should supply labor because �U (n) � C (q)

means that the labor supply of the disabled agent generates a positive net gain for the

household. Notice for future reference thatC (q) = q if intra-household care were not avail-

able, because k1 = 0 and v (0) = 0: Therefore, in this case, �U (n) � q replaces (12) as the

condition for disabled agents’ labor supply.

One of the key questions in this paper is how endogenous intra-household care affects

the labor supply of disabled agents and corresponding responses of able agents. To address

this question, let us define labor thresholds q� (n) with intra-household care and q�nc (n)

without intra-household care as follows.8

q�nc (n) = U1 (n)� U0 (n) = C (q� (n)) (13)

It is easy to see that this equation is based on (12). Since C (q) is increasing in q by Lemma

2, �U (n) � C (q) if q � q� (n) ; whereas �U (n) < C (q) if q > q� (n) : Then, by (12), a

household with (n; q) chooses l = 1 if q � q� (n) ; and l = 0 if q > q� (n) : In this model,

therefore, mildly disabled agents with small q tend to supply labor (l = 1) ;whereas severely

disabled agents with large q tend to remain out of the labor force (l = 0). For this reason,

8The subscript “nc” in q�nc stands for “no care.”
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we can define B � T1 � T0 as DI benefits because it measures government transfers for

households with l = 0; or equivalently, those with severe disability.

We can also formulate disabled agents’ labor force participation rate based on the dis-

cussion so far. Let � (n) and �nc (n) denote the participation rates of disabled agents in

households with the same n; respectively, with and without intra-household care.9 For-

mally, they are calculated as follows.

� (n) � Pr [�U (n) � C (q)] = Pr [q � q� (n)] (14)

�nc (n) � Pr [�U (n) � q] = Pr [q � q�nc (n)] : (15)

Moreover, using (14) and (15), we can calculate the economy-wide participation rate of dis-

abled agents as

� �
Z �n

n
� (n) f (n) dn;

�nc �
Z �n

n
�nc (n) f (n) dn:

As q� and q�nc provide thresholds for the labor supply of disabled agents with and without

intra-household care, we can examine the impact of intra-household care on the labor sup-

ply of disabled agents by comparing q� and q�nc; as in the following proposition.

Proposition 1 For any n; disabled agents’ labor force participation rates and associated la-

bor thresholds have the following properties.

1. If�U (n) � 0; then �nc (n) = � (n) = 0 and q�nc (n) = q
� (n) = 0:

2. If 0 < �U (n) � �; then 0 < �nc (n) = � (n) < 1 and 0 < q�nc (n) = q
� (n) :

3. If�U (n) > �; then 0 < �nc (n) < � (n) � 1 and 0 < q�nc (n) < q
� (n) :

Proof. In case 1, if �U (n) � 0; no q can satisfy (12) because C (q) � 0 and q � 0: Hence

result 1 follows.
9In this model, the labor participation rate is identical to the employment rate as there is no involuntary

unemployment. Nonetheless, I will only use the labor participation rate because this model is focused on the

supply side of labor.
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In case 2, 0 < �U (n) � � implies 0 < q�nc (n) � � by (13) and C (q�nc (n)) = q�nc (n) by

Lemma 2. Using (13) again, we obtain q�nc (n) = q
� (n) :Hence,

� (n) = Pr [q � q� (n)] = Pr [q � q�nc (n)] = �nc (n) :

In case 3, �U (n) > � implies q�nc (n) > �: For such q�nc (n) ; C (q
�
nc (n)) < q�nc (n) by

Lemma 2. By (13),

C (q�nc (n)) < q
�
nc (n) = �U (n) = C (q

� (n)) ;

which implies q�nc (n) < q
� (n) because C (q) is increasing. Consequently,

� (n) = Pr [q � q� (n)] = Pr [q � q�nc (n)] + Pr [q�nc (n) < q � q� (n)] > �nc (n) ;

which concludes the proof.

Proposition 1 characterizes how intra-household care’s effects on disabled agents’ labor

supply are associated with income tax. To better understand Proposition 1, I illustrate three

cases of the proposition in Figure 1. In case 1, which corresponds to panel (a) of Figure

1, �U (n) � 0. In this case, no positive q can satisfy (12), and, as a result, no disabled

agents participate in the labor force. This result suggests that if the government were to

induce some disabled agents to work, then it should design the income tax T0 (z) and T1 (z)

in a way that U1 (n) > U0 (n) : In case 2, (12) can be satisfied for some positive q because

0 < �U (n) � � and some disabled agents provide labor supply. As presented in panel (b)

of Figure 1, however, we have q�nc (n) = q� (n) � � because C (q) = q if q � � by Lemma 2.

Therefore, the income tax only incentivizes mildly disabled agents who do not receive any

intra-household care, which makes intra-household care irrelevant in this case. By contrast,

�U (n) is sufficiently large in case 3 and some disabled agents with q > � also provide labor

supply, as shown in panel (c) of Figure 1. Furthermore, since q� (n) > C (q� (n)) = q�nc (n) by

Lemma 2, intra-household care does promote the participation of disabled agents in labor

force. In particular, while l = 1 for q � q�nc (n) and l = 0 for q > q� (n) regardless of the

availability of intra-household care, l changes from 0 to 1 for q 2 (q�nc (n) ; q� (n)]: they are

induced to provide labor supply through the care by their household members, although

they would remain out of the labor force without such care.
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The results in Proposition 1 indicate that if sufficient incentives are provided to house-

holds with disabled agents through a proper design of T1 (z) and T0 (z) ; intra-household

care can enhance disabled agents’ labor force participation. This finding bears an interest-

ing policy implication. While many countries try to encourage disabled people to work to

reduce their fiscal burden, most policies are focused on the financial incentives for disabled

people themselves. As such, the role of various types of care for disabled people within their

households have been ignored. As shown in Proposition 1, however, if some policy can pro-

vide incentives for the intra-household care for disabled people, especially when they work,

it can facilitate labor force participation of individuals with disability.

4 Optimal tax and DI benefits for households

In this section, I characterize the optimal tax and DI benefits in the model. I begin by de-

scribing the government’s problem and derive the optimal tax formulae. Then, I analyze

how optimal income tax depends upon the labor force participation of disabled agents.

4.1 Government’s problem

In this economy, social welfare is defined as follows.Z �n

n

Z 1

0
	(V (n; q)) p (q) f (n) dqdn;

where 	 is an increasing and concave function that translates household utility V to social

welfare. It reflects the government’s redistribution preferences and concavity of the house-

hold utility function. Based on the analysis in the previous section, social welfare can be

rewritten asZ �n

n

"Z q�(n)

0
	(U1 (n)� C (q)) p (q) dq +

Z 1

q�(n)
	(U0 (n)) p (q) dq

#
f (n) dn: (16)

The government chooses the tax policy (T0; T1) to maximize the social welfare (16) sub-

ject to the government budget constraint (GBC)Z �n

n
[T1 (z1)P (q

� (n)) + T0 (z0) f1� P (q� (n))g] f (n) dn � 0; (17)
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and conditions on the households’ choice of zl and q� : (13) for all n 2 [n; �n] ; and

_Ul (n) =
zl
n2
h0
�zl
n

�
; for any n 2 [n; �n] and l 2 f0; 1g : (18)

In the government’s problem, the GBC (17) reflects the result that zl is independent of q:

Thus, z1 (n) and T1 (z1 (n)) are applied to all households with given n and q � q� (n) ; and

z0 (n) andT0 (z0 (n)) to households with givenn and q > q� (n) :For this reason,
R q�
0 T1 (z1) dP (q)

and
R1
q� T0 (z0) dP (q) are simplified to T1 (z1)P (q� (n)) and T0 (z0) f1� P (q� (n))g ; respec-

tively. Also in the problem, (18) is the envelope condition of the household problem with

respect to n: Finally, it is noteworthy that the government’s problem includes no condition

on C (q) or k1 (q) : This is due to the fact that the income tax Tl (z) cannot influence the

choice of kl; as clear in (8) of the household problem. Hence, the government simply takes

C (q) and k1 (q) as given in the government’s problem.

4.2 Optimal tax formulae

To characterize the optimal tax formulae, I define the average social marginal welfare weight

gl (n) as follows.

g1 (n) �
R q�(n)
0 	0 (U1 (n)� C (q)) p (q) dq

�P (q� (n))
;

g0 (n) �
R1
q�(n)	

0 (U0 (n)) p (q) dq

� [1� P (q� (n))] =
	0 (U0 (n))

�
;

where � is the Lagrangian multiplier for the GBC (17). As clear in the definition, gl (n)mea-

sures the average social value of a one-dollar increase in consumption for households with

a given n and a choice of l:Notice that gl (n) is expressed in terms of dollars because of � in

the denominator. As we will see, their relative size will determine the direction of redistrib-

ution between households with l = 1 and those with l = 0:

To solve the government’s problem, I make the following assumption for the SOC of the

government’s problem for zl:

Assumption 1 The function � (z) � 1� 1
n
h0( zn)

1
n [h0(

z
n)+

z
n
h00( zn)]

is decreasing in z:
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Assumption 1 is satisfied, for example, for standard functions such ash (z=n) = (z=n)1+1=" = (1 + 1=")

with " > 0:Given this assumption, we can solve the government’s problem to derive the op-

timal tax formulae, which are presented in the following proposition.

Proposition 2 Under Assumption 1 and if there is no bunching, the optimal tax rates satisfy

the following formulae for any n:

T 01
1� T 01

=
1 + "1
"1

1

P (q�) f (n)n

Z �n

n

�
(1� g1)P (q�)�

T1 � T0
C 0 (q�)

p (q�)

�
f (x) dx; (19)

T 00
1� T 00

=
1 + "0
"0

1

[1� P (q�)] f (n)n

Z �n

n

�
(1� g0) [1� P (q�)] +

T1 � T0
C 0 (q�)

p (q�)

�
f (x) dx; (20)

along with the SOC with respect to q� (n) :

(T1 � T0)
�
p0 (q�)

p (q�)
� C

00 (q�)

C 0 (q�)

�
< 0: (21)

In the above conditions, all terms outside the integrals are evaluated at n and the terms inside

the integrals at x:

Proof. See Appendix A.1.

Proposition 2 presents the optimal formulae for marginal tax rates and the SOC of the

government’s problem. The optimal tax formulae (19) and (20) are distinct from the corre-

sponding formulae in Kleven, Kreiner, and Saez (2009) due to the presence of the marginal

disability cost of laborC 0 (q�) : To better understand the role of this novel term, let us exam-

ine (19) in detail, as (20) can be explained similarly.

To this end, suppose that (T1; T0) is the optimal income tax system. Then, no pertur-

bation could change social welfare because, otherwise, some reform could improve social

welfare. Based on this principle, I examine the optimality of T1 (z1 (n)) for households with

n by analyzing the effects of raising T 01 for earnings z1 (n0) of households with n0 2 [n� dn; n]

by a constant d�: By construction, such a perturbation increases T1 (z1 (x)) for x � n by a

constant dT � d� � dz1;where dz1 = z1 (n)� z1 (n� dn) :Now let us investigate the welfare

effects of the perturbation, which will be expressed in terms of government’s tax revenue

used for redistribution.

15



First, social welfare changes due to the mechanical increase in tax payments by house-

holds with x � n and l = 1:On the one hand, the additional tax revenue dT
R �n
n P (q

�) f (x) dx

can be redistributed to improve social welfare. On the other hand, as each of such house-

holds reduces consumption by the additional tax payment dT , social welfare falls by dT
R �n
n g1P (q

�) f (x) dx:

Thus, the combined effect on social welfare is calculated as

dW1 = dT

Z �n

n
[(1� g1)P (q�)] f (x) dx:

Second, social welfare also falls because of the behavioral responses of the two-earner house-

holds with n0 2 [n� dn; n] ; who face higher marginal tax rates. This welfare effect is repre-

sented by the fall in tax revenue from such households. To measure this effect, let �z1 (n0)

denote the fall in z1 (n0) for households with n0 2 [n� dn; n] due to the rise in T 01 by d�:

Then, their tax payment falls by T 01 (z1 (n
0)) �z1 (n0)P (q� (n0)) f (n0) ;which is integrated over

[n� dn; n] to yield the total tax reduction:

dW2 =

Z n

n�dn
T 01
�
z1
�
n0
��
�z1

�
n0
�
P
�
q�
�
n0
��
f
�
n0
�
dn0

� T 01 (z1 (n)) �z1 (n)P (q
� (n)) f (n) dn:

Using the total differential of (4), I obtain

�z1 (n)

�
T 00 +

1

n2
h00
�z1
n

��
= �d� :

Combining this condition with (7), I can rewrite �z1 (n) as

�z1 (n) = �d�
1

T 00 + 1
n2
h00
= �d� @z1

@n

1
1
n2

�
h0 + z1

n h
00
� :

Substituting this into the equation for dW2 yields

dW2 = �T 01
@z1
@n

1
1
n2

�
h0 + z1

n h
00
�P (q�) f (n) d�dn = �T 01 1=h0

1
n2

�
h0 + z1

n h
00
�
=h0
P (q� (n)) f (n) d�dz1

which can be rewritten as

dW2 = �
T 01

1� T 01
"1

1 + "1
nP (q� (n)) f (n) dT;

due to (4), (6), and d�dz1 = dT:
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In the case of individual income taxation, these two effects would be sufficient as all

other effects are cancelled out due to the envelope theorem. In this model, however, the

tax perturbation has an additional welfare effect, which is associated with the labor supply

decision of disabled agents. For disabled agents in households with x � n; the increase

in T1 reduces �U (x) by dT; which in turn lowers q� (x) by dq� (x) in a way that C (q� (x)) �

C (q� (x)� dq� (x)) = dT: The approximation of this equation by differentials yields

dq� (x) =
dT

C 0 (q� (x))
:

The change in q� (x) implies that some disabled agents exit from the labor market by choos-

ing l = 0: The number of such “switchers” in households with (x; q) is measured as

[P (q� (x))� P (q� (x)� dq� (x))] f (x) � p (q� (x)) dq� (x) f (x) ;

where I use approximation by differentials again. Then, as tax revenue from each of such

households falls by T1 � T0; total change in tax revenue due to the change in l is calculated

as

dW3 = �dT
Z �n

n

[T1 � T0]
C 0 (q�)

p (q�) f (x) dx:

For the optimality of the pre-perturbation income tax system, dW1 + dW2 + dW3 = 0;

which impliesZ �n

n
[(1� g1)P (q�)] f (x) dx�

"1
1 + "1

T 01
1� T 01

nf (n)P (q�)�
Z �n

n

[T1 � T0]
C 0 (q�)

p (q�) f (x) dx = 0:

It is straightforward to see that this condition is equivalent to the optimal tax formula (19)

for households with l = 1 for disabled members.

In the optimal tax formulae, the 1=C 0 (q� (n)) term appears in both (19) and (20), but

with the opposite signs. This is because it represents the impact of a change in T1 or T0

on disabled agents’ labor force participation. Intuitively, if T1 (z1 (n)) rises or if T0 (z0 (n))

falls by a dollar with all other things left unaffected, then the utility gap between a two-

earner household and a one-earner household, �U (n) ; is reduced by a dollar. Hence, the

labor supply becomes less attractive to disabled agents, as reflected by a corresponding

one-dollar decline in C (q� (n)) by (13). As a result, the labor force participation rate of dis-

abled agents falls because q� (n) decreases by dq�=dC = 1=C 0 (q� (n)) : This analysis clearly
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shows that 1=C 0 (q� (n)) quantifies the reduction in q� (n) in response to a one-dollar in-

crease in T1 (z1 (n)) ; or a one-dollar decrease in T0 (z0 (n)) :

4.3 Optimal design of DI benefits

As noted, DI benefits can be expressed as B (n) = T1 (z1 (n)) � T0 (z0 (n)) in this model be-

cause it is the government’s transfer to households with l = 0 or relatively seriously disabled

agents. Thus, we should understand the properties of T1 and T0 to characterize the optimal

DI benefitsB (n). To this end, we could use the optimal tax formulae (19) and (20) in Propo-

sition 2. Those formulae, however, are not so helpful to understand B (n) because they do

not tell which of T 00 and T 01 is larger. Therefore, it is generally ambiguous whether B (n) is

positive and howB (n) changes with n; according to Proposition 2.

From the social insurance perspective, however, one could argue that DI benefits should

be positive for all n and decreasing in n: Since both the ability of able agents and the severity

of disability are random in this model, we can interpret the households with low n or high

q as less fortunate and those with high n or low q as more fortunate. For redistribution to

improve social welfare, therefore, B (n) > 0 can be desirable because B (n) represents the

redistribution from households with low q to those with high q: Similarly, B0 (n) < 0 can

be also justified because the condition means that households with high n receive less DI

benefits than those with low n:

Based on the discussion so far, I explore conditions under whichB (n) > 0 andB0 (n) �

0 for any n: It turns out that B (n) has those properties under assumptions listed below.

In the next section, I examine their validity and show that they tend to be satisfied for

reasonable parameter values if functions associated with intra-household care, such as

v (k) ; m (k) ; and P (q) ; are assume to exhibit CARA or CRRA. Now I present the assump-

tions required forB (n) > 0 andB0 (n) � 0 and explain them.

Assumption 2 	0 (U � C (q)) is convex in q:

Assumption 3 For all q; qp (q) =P (q) � 1:

Assumption 4 A functionM (q) � w�C(q)
C0(q)

p(q)
P (q)(1�P (q)) is decreasing in q:
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Assumption 2 is needed for the society to have sufficiently strong preferences for redis-

tribution. Taking the second derivative of	0 (U � C (q)) ;we can see Assumption 2 implies

d2 [	0 (U � C (q))]
dq2

= 	000 (U � C (q))
�
C 0 (q)

	2 �	00 (U � C (q))C 00 (q) � 0:
Because 	00 < 0 and C 00 � 0; Assumption 2 requires that 	000 should be positive and suf-

ficiently large. For example, if we use 	(V ) = V 1��= (1� �) with � > 0; the assumption

means that � should be large enough. However, the analysis in the next section reveals that

it is satisfied even for a reasonably small �: Assumptions 3 and 4 are technical assumptions.

Assumption 3 is satisfied for P (q) = (q=qmax)
� if 0 < � � 1; or for P (q) = 1 � exp (��q)

with � > 0: Notice that for both functions, p (q) is decreasing in q; which means that as

disability becomes severe, the number of agents declines. This property seems reasonable

for a function to match the distribution of the severity of disability. Finally, the validity of

Assumption 4 depends mostly on the behavior of P (q) : If q is unbounded as in the expo-

nential distribution P (q) = 1 � exp (��q) ; � > 0; the assumption tends to be satisfied. By

contrast, if q is bounded by qmax so that P (qmax) = 1; then 1
1�P (q) eventually explodes to the

infinity. Thus, the expression in the assumption could eventually be increasing. As will be

discussed later, however, we can avoid this issue by imposing a reasonable condition. With

the assumptions discussed so far, I now present the proposition that characterizesB (n) :

Proposition 3 Under Assumptions 1-4, and assuming no bunching at the optimum, the op-

timal DI benefits are characterized as follows.

1. B0 (n) � 0; or equivalently, T 01 � T 00 for all n:

2. B (n) � B (�n) > 0 for all n � �n <1:

3. Disabled agents’ labor force participation rate increases with n; that is, dq�=dn � 0:

4. Define � (n) as the labor income tax rate for a disabled agent in a household with n :

� (n) � w ��U (n)
w

=
w � C (q� (n))

w
: (22)

Then, d�=dn � 0:
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Proof. See Appendix A.2.

First of all, Proposition 3 establishes two important results: B0 (n) � 0 and B (n) > 0

for any n: Therefore, under the optimal DI system, all households with no labor supply of

disabled agents receive positive amounts of DI benefits. However, the amount of DI benefits

declines as able agent’s ability n increases, or equivalently, as z0 (n) increases. As noted,

these properties make sense from the perspective of redistribution.

The third result of Proposition 3 states dq�=dn � 0: Hence, the participation rate of dis-

abled agents rises with the productivity of able agents. Intuitively, �U (n) increases with n

under the optimal tax and DI system because B (n) falls with n: Due to the increase in the

utility gap, more disabled agents are induced to provide labor supply as n rises. Thus, the

labor force participation rate of disabled agents tends to be higher for richer households.

The last result of the proposition is concerned with � (n) ; which can be interpreted as

the labor income tax rate of a disabled agent in a household with (n; q) : To see why, recall

that if a disabled agent supplies labor, the household income increases mechanically by w:

However, the household income goes up only by�U (n) = U1 (n)�U0 (n) due to the income

tax and corresponding adjustments in z0 and z1: In this sense, we can interpret �U (n) =w

as the net-of-tax rate or the retention rate for the labor income of a disabled agent. Thus,

the relationship between � (n) and�U (n) can be formulated as

1� � (n) = �U (n)

w
=
C (q� (n))

w
;

which is transformed to (22) in Proposition 3. From this equation, d�=dn � 0 follows be-

cause dq�=dn � 0 and C is increasing.10 This result is consistent other results in Propo-

sition 3. As the optimal system provides more work incentives for disabled agents in rich

households or high n households, the labor income tax rate for disabled agents should also

decline with n.
10It is also worth our attention that � (n) � 1 because C (q) � 0 but � (n) < 0 is possible if C (q� (n)) > w:
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5 Validity of key assumptions

In the previous section, I derive the theoretical properties of the optimal income tax and

DI system based on several assumptions. However, one may wonder how reasonable those

assumptions are. If they are unlikely to hold for reasonablly calibrated m (k) ; v (k) ; P (q) ;

and f (n) functions, the findings in Propositions 2 and 3 would be irrelevant for the tax and

DI policy. Therefore, I examine the validity of Assumptions 1-4 here. For this purpose, I

parameterize the model with functional forms that are widely used in economic analysis,

and investigate whether or under what conditions Assumptions 1-4 are satisfied. Through

this analysis, we can conclude that they are indeed quite reasonable.

Throughout this section, I use the following social welfare function.

	(V ) = V 1��= (1� �) ; � > 0 (23)

This function satisfies 	0 > 0; 	00 < 0; and 	000 > 0; as assumed above. In this function, V

is expressed in terms of goods and, therefore, 	 should capture potential concavity in the

household’s utility function. Hence, � � 1 is likely in (23). Regarding v (k) ; m (k) ; and P (q),

we consider two cases: the CARA and CRRA parameterizations. In the CARA parameteriza-

tion, all of the functions are assumed to exhibit constant absolute risk aversion, and in the

CRRA parameterization, all of them are assumed to exhibit constant relative risk aversion.

5.1 CARA parameterization

In the CARA case, I use the following functions for simulation.

m (k) = 1� exp (��k) ; � > 0

v (k) = a [exp (k)� 1] ;  > 0; a > 0

P (q) = 1� exp (��q) ; � > 0

Note that all of them are in CARA forms. I also assume that both k and q are unbounded.

It is easy to see that these functions satisfy all assumptions in Section 2: m (0) = 0; m0 >
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0; m00 < 0; maxk�0m (k) � 1 and v (0) = 0; v0 > 0; v00 > 0. For these functions, household’s

FOC (8) is written as

q � v0 (k1)

m0 (k1)
=
a

�
exp [( + �) k1] with equality for k1 > 0:

This condition implies that k1 = 1
�+ (ln q � ln�) if q > � = a

� and k1 = 0 otherwise.

Hence, only agents with serious disability q > � receive intra-household care in the CARA

parameterization. By (11), we can also obtain the formula for C (q) as follows.

C (q) =

8<: q if q � �

Aq� � a if q > �

where � � 
+� 2 (0; 1) and A � �1�� + a���: With this function, I examine the validity of

Assumptions 2-4.

5.1.1 Examining key assumptions

Assumption 2 For Assumption 2, 	0 (U1 � C (q)) should be convex in q: Given the func-

tional forms of	(V ) andC (q) ;we can show that the second derivative of	0 (U1 � C (q)) is

positive if and only if

G (q) � (1 + �)�
�
U1 � C (q)
C 0 (q) q

��
�C

00 (q) q

C 0 (q)

�
> 0: (24)

Note that U1 � C (q) � 0 because 	 allows only non-negative values. First, Assumption 2

is trivially satisfied for q � � because C 00 (q) = 0 makes G (q) always positive. Second, for

two-earner households with q > �; G (q) is rewritten as

G (q) = (1 + �)�
�
U1 + a�Aq�

A�q�

�
(1� �) :

Since G (q) increases with q and decreases with U1; (24) holds true for any (n; q) if it holds

for U1 (�n) and q = �:

(1 + �) >

�
U1 (�n) + a�A��

A���

�
(1� �)

According to simulations with various parameter values, this inequality tends to hold true

for most parameter values if � � 1 and U1 (�n) is not too large.
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Assumption 3 As P (q) = 1� exp (��q) ; � > 0; Assumption 3 requires

qp (q)

P (q)
=
q� exp (��q)
1� exp (��q) =

�q

exp (�q)� 1 � 1;

Because �q � exp (�q)� 1 for any q � 0; Assumption 3 is always satisfied regardless of �:

Assumption 4 Using the formulae for C (q) and P (q) ; we can calculateM (q) in Assump-

tion 4 as the following.

M (q) =

8<: � w�q
1�exp(��q) if q � �

�
A�

(w+a)q1���Aq
1�exp(��q) if q > �

If q � �; or for households with k1 = 0; M (q) declines with q because the numerator is

decreasing whereas the denominator is increasing. Hence, Assumption 4 is satisfied in this

case. If q > �; the denominator ofM (q) is an increasing exponential function whereas the

numerator is a polynomial function which is increasing for small q but decreasing for large

q: Thus,M (q) tends to fall with q because the growth of its denominator tends to dominate

that of its numerator. Therefore, Assumption 4 is likely to be satisfied for q > �: Combining

these results, we can conclude that Assumption 4 tends to hold true.

5.2 CRRA parameterization

In the CRRA case, I use the following functions.

m (k) =
b

1� �k
1��; � 2 (0; 1) ; b > 0;

v (k) =
a

1 + 
k1+ ;  > 0; a > 0:

P (q) =

�
q

qmax

��
; � 2 (0; 1) ; q � qmax

It is easy to see that these functions satisfy all the assumptions made in Section 2, except

for maxk�0m (k) � 1: Since m (k) = 1 if k = �k �
�
1��
b

� 1
1�� ; I will set the range of q so that

k1 � �k andm (k1) � 1: For that purpose, I rewrite the household FOC (8) as

q � v0 (k1)

m0 (k1)
=
a

b
k+�1 with equality for k1 > 0:
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From this condition, we can obtain k1 as follows.

k1 =

�
b

a
q

� 1
+�

Thus, q � a
b

�
1��
b

� +�
1�� is required to make k1 � �k:Hence, I assume that q � qmax � a

b

�
1��
b

� +�
1�� :

Using the functions ofm and v;we can find

C (q) = q �Aq�;

where � � 1+
�+ > 1 and A � b�

a��1
+�

(1��)(1+) : With this C (q) and P (q) above, let us examine

Assumptions 2-4 and the condition (21).

5.2.1 Examining key assumptions

Assumption 2 I show above that Assumption 2 is equivalent to (24). Using C (q) above,

G (q) in (24) is calculated as

G (q) = (1 + �)�A� (�� 1) U1q
��2 � q��1 +Aq2��2

1� 2A�q��1 +A2�2q2��2 :

To characterize this function, it is informative to calculate limq!0G (q) and limq!1G (q) :

The condition � > 1 implies 2� � 2 > � � 1 > � � 2: Thus, by comparing the powers of the

terms inG (q) ;we can conclude limq!1G (q) = � + 1
� > 0 and

lim
q!0

G (q) = (1 + �)�A� (�� 1)U1 lim
q!0

q��2;

which implies limq!0G (q) is finite if � � 2 but limq!0G (q) = �1 if � < 2: Hence, if � < 2;

it is impossible for G (q) to be always positive, whereas if � � 2; G (q) tends to be U-shaped

and G (q) > 0 is possible for sufficiently large �: Therefore, Assumption 2 can be satisfied

under two conditions: (i) � � 2; or equivalently, 2� +  � 1; and (ii) � is sufficiently large.

Assumption 3 As P (q) = (q=qmax)
� with � > 0; Assumption 3 is equivalent to � � 1 be-

cause
qp (q)

P (q)
=
q�q��1 (qmax)

��

q� (qmax)
�� = � � 1:

In fact, this is the assumption made by Kleven, Kreiner, and Saez (2009).
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Assumption 4 With the CRRA functions,M (q) in Assumption 4 is calculated as

M (q) = �

�
w � q +Aq�
q �A�q�

��
(qmax)

�

(qmax)
� � q�

�
:

To understand its properties, let us examine the limiting values ofM (q). First, limq!0M (q) =

1 because the denominator in parentheses is zero. To find limq!qmaxM (q) ; note the ex-

pression in square brackets explodes to infinity as q goes to qmax: As for the expression in

parentheses, the denominator qmax�A� (qmax)� is finite and positive because it isC 0 (qmax) qmax

and C 0 (qmax) 2 (0; 1) by Lemma 2. Therefore, if the numerator w � C (qmax) = w � qmax +

A (qmax)
� is positive, then limq!qmaxM (q) = 1. In this case, M (q) cannot be decreasing

for all q because limq!0M (q) = limq!1M (q) = 1: By contrast, if w � C (qmax) < 0; M (q)

can be decreasing for all q since limq!0M (q) = 1 and limq!1M (q) = �1: Indeed, sim-

ulations indicate that M (q) is diminishing for all q under the assumption w < C (qmax) :

Hence, it can ensure Assumption 4 to be satisfied.

The assumption w < C (qmax) is quite reasonable. In this model, w represents the av-

erage wage for disabled workers and C (qmax) means the disability cost of labor for most

severely disabled agents. As the average wage is unlikely to more than cover all the costs

associated with disability for most severely disabled agents, w < C (qmax) seems a realis-

tic assumption. Hence, Assumption 4 also is likely to be satisfied in reality with the CRRA

functions.

6 Concluding remarks

To be written
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A Appendix

A.1 Proof of Proposition 2

To begin with, the GBC (17) can be rewritten asZ �n

n

hn
z1 + w � h

�z1
n

�
� U1

o
P (q�) +

n
z0 � h

�z0
n

�
� U0

o
f1� P (q�)g

i
f (n) dn � 0 (25)

using (10).11 Let �; � (n) ; and �l (n) ; respectively, be multipliers for (25), (13), and (18).

Then, I can write the Hamiltonian for the government’s problem as

H (n) =

"Z q�

0
	(U1 � C (q)) p (q) dq +

Z 1

q�
	(U0) p (q) dq

#
f (n)

+�
hn
z1 + w � h

�z1
n

�
� U1

o
P (q�) +

n
z0 � h

�z0
n

�
� U0

o
f1� P (q�)g

i
f (n)

+� (n) [U1 � U0 � C (q�)]

+�1 (n)
z1
n2
h0
�z1
n

�
+ �0 (n)

z0
n2
h0
�z0
n

�
:

The FOCs w.r.t. Ul; zl; and q� are given as follows.

@H

@U1
=

Z q�

0
	0 (U1 � C (q)) p (q) dqf (n)� �P (q�) f (n) + � (n) = � _�1 (n) (26)

@H

@U0
=

Z 1

q�
	0 (U0) p (q) dqf (n)� � [1� P (q�)] f (n)� � (n) = � _�0 (n) (27)

@H

@z1
= �

�
1� 1

n
h0
�z1
n

��
P (q�) f (n) + �1 (n)

�
1

n2
h0
�z1
n

�
+
z1
n3
h00
�z1
n

��
= 0 (28)

@H

@z0
= �

�
1� 1

n
h0
�z0
n

��
[1� P (q�)] f (n) + �0 (n)

�
1

n2
h0
�z0
n

�
+
z0
n3
h00
�z0
n

��
= 0 (29)

@H

@q�
= � [T1 (z1)� T0 (z0)] p (q�) f (n)� � (n)C 0 (q�) = 0 (30)

and the following transversality conditions:

�l (�n)Ul (�n) = �l (n)Ul (n) = 0 for l 2 f0; 1g (31)

Along with the FOCs, we also need conditions under which control variables (z1; z0; q�)

are maximizers almost everywhere in n:Hence, the Hessian of the Hamiltonian with respect

11Throughout the appendix, I suppress variables’ dependence on n or n0 unless it causes confusion.
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to (z1; z0; q�) should be negative definite. To see this, let Hxy denote the second derivative

ofH with respect to x and y:UsingHz1z0 = 0;we can write the Hessian as follows.

D2H =

26664
Hz1z1 0 Hz1q�

0 Hz0z0 Hz0q�

Hz1q� Hz0q� Hq�q�

37775
The usual conditions for the Hessian to be negative definite imply Hz1z1 < 0; Hz0z0 < 0;

andHq�q� < 0: By the definition of � (z) in Assumption 1, we can rewrite (28) as

Hz1 = �1

�
1

n2
h0
�z1
n

�
+
z1
n3
h00
�z1
n

�� �
1 +

�P (q�) f (n)n

�1
� (z1)

�
= 0;

which implies 1 + �P (q�)f(n)n
�1

� (z1) = 0 because the terms in the first square brackets are

strictly positive. Using this result, we can showHz1z1 < 0 because

Hz1z1 = �1

�
1 +

�P (q�) f (n)n

�1
� (z1)

�
@

@z1

�
1

n2
h0
�z1
n

�
+
z1
n3
h00
�z1
n

��
+

�1

�
1

n2
h0
�z1
n

�
+
z1
n3
h00
�z1
n

�� @

@z1

�
1 +

�P (q�) f (n)n

�1
� (z1)

�
=

�
1

n2
h0
�z1
n

�
+
z1
n3
h00
�z1
n

��
�P (q�) f (n)n�0 (z1) < 0;

where �0 (z1) < 0 by Assumption 1. By the same logic, Assumption 1 also ensures

Hz0z0 =

�
1

n2
h0
�z0
n

�
+
z0
n3
h00
�z0
n

��
� [1� P (q�)] f (n)n�0 (z0) < 0:

Finally,Hq�q� < 0 requires

Hq�q� = � [T1 (z1)� T0 (z0)] p0 (q�) f (n)� � (n)C 00 (q�) < 0:

From this condition, we obtain (21) using � [T1 (z1)� T0 (z0)] p (q�) f (n) = � (n)C 0 (q�) by

(30).

To drive the optimal tax formulae, I use (4) and (6) to rewrite (28) and (29) as

�1 (n) = ��n
�
1� 1

nh
0 � z1

n

��
P (q�) f (n)

1
nh

0
�
z1
n

� �
1 + z1

n h
00
�
z1
n

�
=h0
�
z1
n

�� = ��P (q�) f (n)n T 01
1� T 01

1

1 + 1="1
; (32)

�0 (n) = ��n
�
1� 1

nh
0 � z0

n

��
[1� P (q�)] f (n)

1
nh

0
�
z0
n

� �
1 + z0

n h
00
�
z0
n

�
=h0
�
z0
n

�� = �� [1� P (q�)] f (n)n T 00
1� T 00

1

1 + 1="0
: (33)
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If we impose relevant individual rationality conditions, Ul (�n) and Ul (n) are positive. Then,

by (31),

�l (�n) = �l (n) = 0; for l = 0; 1;

which, by (32) and (33), means

T 0l (zl (�n)) = T
0
l (zl (n)) = 0 for l = 0; 1: (34)

Also, we can solve (30) for � (n) as

� (n) = �

�
T1 (z1)� T0 (z0)

C 0 (q�)

�
p (q�) f (n) : (35)

Integrating (26) and (27) from n to �n yields

�
�
�1
�
n0
���n
n
= �1 (n) =

Z �n

n

"Z q�

0
	0 (U1 � C (q)) p (q) dqf
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� �P (q�) f
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dn0;
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n

�Z 1
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	0 (U0) p (q) dqf
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� � [1� P (q�)]� �

�
n0
��
dn0:

Substituting (35) into these equations yields

�1 (n) =
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n

"R q�
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Using the definition of gl; these equations can be re-expressed as

�1 (n) = ��
Z �n

n

�
(1� g1)P (q�)�
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Equating these equations to (32) and (33), I obtain the optimal tax formulae:

T 01
1� T 01

=

�
1 +

1

"1

�
1

P (q�) f (n)n

Z �n

n

�
(1� g1)P (q�)�

T1 (z1)� T0 (z0)
C 0 (q�)

p (q�)

�
f
�
n0
�
dn0;

T 00
1� T 00

=

�
1 +

1

"0

�
1

[1� P (q�)] f (n)n

Z �n

n

�
(1� g0) [1� P (q�)] +

T1 (z1)� T0 (z0)
C 0 (q�)

p (q�)

�
f
�
n0
�
dn0:

30



A.2 Proof of Proposition 3

Result 1: B0 (n) � 0 or T 01 � T 00 for all n

I prove this by contradiction. Suppose T 01 > T
0
0 for some n: Notice first that T 00 = T

0
1 = 0

at both �n and n because T 0l (zl (n)) is proportional to �l (n) by (28) and (29), and �l (�n) =

�l (n) = 0 by the transversality conditions (31). Since both T 01 and T 00 are continuous, and

T 00 = T 01 = 0 at both �n and n, there should be an interval (na; nb) for which T 01 > T 00 and

T 01 = T 00 for na and nb: Then z1 < z0 on (na; nb) and z1 = z0 for na and nb due to the FOCs

of the household problem 1 � T 0l = 1
nh

0 � zl
n

�
. Since z1 < z0 over (na; nb) ; U 01 < U 00 because

of the envelope condition U 0l (n) =
zl
n2
h0
�
zl
n

�
: Using this result, we obtain q� (na) > q� (nb)

because
dq�

dn
=
U 01 � U 00
C 0 (q�)

< 0 over (na; nb) :

Moreover, as z1 = z0 at na and nb;

U1 (na)� U0 (na) = w ��T (na) = C (q� (na)) ;

U1 (nb)� U0 (nb) = w ��T (nb) = C (q� (nb)) ;

where �T (n) = T1 (z1 (n)) � T0 (z0 (n)) : Because q� (na) > q� (nb) and C 0 > 0; we obtain

�T (na) < �T (nb) :

On the other hand, notice that
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1
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1� 1
nh
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nh
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Hence, by Assumption 1 and z1 < z0 on (na; nb) and z1 = z0 for na and nb;

T 01
1� T 01

"1
1 + "1

>
T 00

1� T 00
"0

1 + "0
on (na; nb) ;

T 01
1� T 01

"1
1 + "1

=
T 00

1� T 00
"0

1 + "0
for na and nb:

These equations can be rewritten using (19) and (20) as


1 (n) > 
0 (n) for n 2 (na; nb) ;


1 (n) = 
0 (n) for n = na; nb;
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where
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�
f
�
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�
dn0:

These equations imply that the graphs of
1 (n) and
0 (n) cross each other atna andnb, and

that 
01 (na) > 

0
0 (na) and 
01 (nb) < 


0
0 (nb) : At the end points, T 01 = T

0
0; z1 = z0; and U 01 =

U 00: These conditions imply that dq�=dn = U 01�U 00
C0(q�) = 0;which in turn leads to dP (q�) =dn = 0:

Due to these results, 
01 (na) > 

0
0 (na) and 
01 (nb) < 


0
0 (nb) are equivalently written as
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> 1� g0 (nb) +

�T (nb)

C 0 (q� (nb))

p (q� (nb))
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:

These inequalities imply

g0 (na)� g1 (na) <
�T (na)
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From these inequalities, we obtain
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C 0 (q� (na))
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where g0 (na)� g1 (na) > g0 (nb)� g1 (nb) is formally proved in Lemma 3 below. Since�T =

w � C (q�) at na and nb; the above inequality can be rewritten as

w � C (q� (na))
C 0 (q� (na))

p (q� (na))

[1� P (q� (na))]P (q� (na))
>
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:

By Assumption 4, this inequality implies q� (na) < q� (nb) and

�T (na) = w � C (q� (na)) > w � C (q� (nb)) = �T (nb) :

This inequality, however, contradicts the result�T (na) < �T (nb) that I have shown above.

This contradiction invalidates the initial supposition that T 01 > T
0
0 for somen:Consequently,

we can conclude that T 01 � T 00 for all n 2 [n; �n] :
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Result 2: B (n) � B (�n) > 0

Since T 00 � T 01 on (n; �n) and T 00 = T
0
1 for n and �n;we have z1 � z0 on (n; �n) and z1 = z0 for

n and �n: By Assumption 1,

T 01
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"1
1 + "1

=
1� 1

nh
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1

z1
n2
h001 +
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�
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0
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T 00
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with equality for n and �n. Due to (19) and (20), this equation implies that 
0 (n) � 
1 (n)

on (n; �n) and 
0 (n) = 
1 (n) for n and �n. To satisfy these conditions, 
00 (�n) � 
01 (�n) should

hold true by a similar argument as above. Using the conditions satisfied at �n;we have
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or equivalently,
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Therefore,�T (�n) > 0 because g0 (�n)� g1 (�n) > 0:

To show�T (n) � �T (�n) for n � �n; notice that T 00 � T 01; z0 � z1; and U 00 � U 01 imply that

dq�=dn � 0: Also, for n < �n; z0 � z1 implies�
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�z1
n

��
�
�
z0 � h
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��
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because z�h
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is an increasing function up to z such that 1� 1

nh
0 = 0: Since z1 and z0 are

determined by 1 � 1
nh
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�
= T 0l � 0; z1 � z0 leads to the above inequality. Combining the

results so far, we have
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Consequently, we conclude that�T (n) � �T (�n) :

Result 3: dq�=dn � 0

By the total differential of (13) and the envelope condition (18),
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:

We have z1 � z0 because T 01 � T 00: Therefore, dq�=dn is non-negative.
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Result 4: d�=dn � 0

From the definition of � (n) ;
d�

dn
=
U 00 � U 01
w

:

Since z1 � z0 and U 01 � U 00 because T 01 � T 00;we obtain d�=dn � 0:

A.3 Proof of Lemma 3

Lemma 3 Under Assumptions 2 and 3, if T 01 > T
0
0 on (na; nb)with equality at end points,
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dn
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Rearranging terms, we obtain
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Because dq�=dn = U 01�U 00
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Using this equation, we can rewrite d[g0(n)�g1(n)]
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where
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Regarding the sign ofA (n) ; notice that U1�C (q) � U0 for q � q�: Because	 is concave

and	0 is convex,
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> 0; we conclude A (n) < 0: As for B (n) ; notice first
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C(q�) < 0 because z0 > z1 and U 00 (n) > U 01 (n) > 0 due to the assumption
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The second equality holds because by the mean value theorem, for any q 2 [0; q�] ; there

exists q̂ such that

	0 (U1 � C (q�))�	0 (U1 � C (q)) = �	00 (U1 � C (q̂))C 0 (q̂) (q� � q) :

As q�p(q�)
P (q�) � 1 by Assumption 3, we multiply the inequality by q�p(q�)

P (q�) to obtain

[g0 (n)� g1 (n)]
p (q�)

P (q�)
< �	

00 (U0)C 0 (q�)

�
:

Therefore, B (n) < 0 because dq�=dn < 0 and the terms in the square brackets in (36) are

positive. Since both A (n) and B (n) are negative, we can conclude d[g0(n)�g1(n)]
dn < 0; which

implies g0 (na)� g1 (na) > g0 (nb)� g1 (nb) :
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Figure 1: Labor supply of disabled agents. Each panel corresponds to a case in Proposition

1. In all panels, �U (n) = U1 (n) � U0 (n) and labor supply requires �U (n) � C (q) : In

panel (a), no q satisfies the condition as �U (n) � 0. Hence, no disabled agents provide

labor supply. In panel (b), �U (n) � � and C (q) = q for q that satisfies �U (n) � C (q) :

Thus, q� (n) = q�nc (n), and intra-household care does not affect the labor force participation

rate of disabled agents. In panel (c), C (q) < q for some q that satisfies �U (n) � C (q)

because�U (n) > �. Thus, q� (n) > q�nc (n), and intra-household care raises the labor force

participation rate of disabled agents.
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