
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337151979

On the Optimal Design of Biased Contests *

Preprint · November 2019

CITATIONS

0
READS

84

2 authors:

Some of the authors of this publication are also working on these related projects:

Information Sharing in Private Value Lottery Contest View project

Qiang Fu

National University of Singapore

40 PUBLICATIONS   420 CITATIONS   

SEE PROFILE

Zenan Wu

Peking University

20 PUBLICATIONS   11 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Qiang Fu on 17 November 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/337151979_On_the_Optimal_Design_of_Biased_Contests?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/337151979_On_the_Optimal_Design_of_Biased_Contests?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Information-Sharing-in-Private-Value-Lottery-Contest?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qiang_Fu22?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qiang_Fu22?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Singapore?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qiang_Fu22?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zenan_Wu?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zenan_Wu?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Peking_University?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zenan_Wu?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qiang_Fu22?enrichId=rgreq-1b33ea9795f78aa02465286a941a53c6-XXX&enrichSource=Y292ZXJQYWdlOzMzNzE1MTk3OTtBUzo4MjYxNTE4NDQ5NzA0OTZAMTU3Mzk4MTM1NzI4Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


On the Optimal Design of Biased Contests∗
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Abstract

This paper explores the optimal design of biased contests. A designer imposes an

identity-dependent treatment on contestants, which varies the balance of the playing

field. A generalized lottery contest typically yields no closed-form equilibrium solutions,

which nullifies the usual implicit programming approach to optimal contest design and

limits analysis to restricted settings. We propose an alternative approach that allows

us to circumvent this difficulty and characterize the optimum in a general setting

under a wide array of objective functions without solving for the equilibrium explicitly.

Our technique applies to broad contexts, and the analysis it enables generates novel

insights into incentive provision in contests and their optimal design. For instance,

we demonstrate that the conventional wisdom of leveling the playing field, which is

obtained in limited settings in previous studies, does not generally hold.
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1 Introduction

Contests are widely administered in practice to mobilize productive efforts. For instance,

the internal labor market inside a firm largely resembles a contest, in which workers strive

to be promoted to higher rungs on hierarchical ladders (see, for instance, Rosen, 1986).

Governments, firms, and even wealthy individuals sponsor innovation contests to secure

technological solutions or promote focused research efforts for valuable projects (see Che

and Gale, 2003). In a contest, contenders expend costly effort to vie for limited prizes and

are rewarded based on their relative performance instead of absolute output metrics. The

economics literature has long recognized this simple mechanism as a convenient remedy for

the pervasive moral hazard problem. Lazear and Rosen (1981) and Rosen (1986), among

others, propose the celebrated thesis that contests could achieve the same level of efficiency

as an incentive contract.

The ubiquity of contest-like competitive activities has triggered broad interest in their

strategic substance and the optimal design of competitive schemes that spur incentive pro-

vision.1 In this paper, we explore a classic question in the contest literature: How should

a designer bias the competition in a contest to boost its performance? Contestants’ strate-

gic behaviors sensitively depend on their relative competitiveness. This can exogenously

be determined by contestants’ innate strength—e.g., prize valuations—and various environ-

mental factors of the competition, e.g., home court advantage in sports and litigation. It

can also be determined endogenously by the choice of contest rules. A designer can im-

pose identity-dependent preferential treatments on contestants—tailored to their individual

characteristics—to vary contestants’ relative standing. Consider, for instance, government

policies that favor small and medium-sized enterprises (SMEs) in public procurement to

support local entrepreneurship (Che and Gale, 2003; Epstein, Mealem and Nitzan, 2011)

and colleges that allocate bonus points to minority applicants (Fu, 2006; Franke, 2012). In

CEO succession races, the leading candidate is often appointed president or chief operating

officer (COO) of the firm: The key appointment endows him/her with superior corporate

resources, which boosts the candidate’s productivity relative to others (Fu and Wu, 2019b).

The literature broadly embraces the notion that a more level playing field fuels more

competitions and incentivizes contestants.2,3 The conventional wisdom, however, must be

examined more comprehensively, as the vast literature on optimal biased contests has typi-

1See Fu and Wu (2019a) for a recent survey of theoretical studies of contests.
2See the recent survey of Chowdhury, Esteve-González and Mukherjee (2019) on biased contests.
3Two notable exceptions are provided by Fu, Lu and Lu (2012) and Drugov and Ryvkin (2017). The

former show that a performance-maximizing administrator may allocate more productive resources to an ex
ante stronger firm. The latter show that it can be optimal to bias an otherwise symmetric contest. Both
studies focus on two-player settings.
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cally focused on relatively restricted settings—e.g., two players, stylized contest technologies,

and limited objective functions—due to technical challenges. This paper develops a novel

optimization approach that allows us to circumvent the analytical difficulty and identify the

key properties of the optimum in broad contexts. Our analysis illuminates the nature of in-

centive provision in contests and yields novel implications that could refute the conventional

wisdom.

Nature of the Generalized Optimization Problem

The conventional wisdom of leveling the playing field is underpinned primarily by the

rationale that favoring the underdog boosts his incentive, which further deters the favorite

from slackening off. This logic, however, rests on contestants’ nonmonotone best responses

in bilateral strategic relation (Lazear and Rosen, 1981; Dixit, 1987). Involving more than

two players fundamentally alters the nature of the strategic interaction in a contest and its

optimal design.

First, setting optimal identity-dependent preferential treatments in a two-player setting is

a unidimensional problem, because favoring one equivalently handicaps the other. With more

than two contestants, the strategic interactions are no longer reciprocal or direct; instead,

contestants are entangled in an intricately reflexive network, which expands the channels

through which a treatment could manipulate their behavior.

Imagine a contest with three players who are indexed by 1, 2, and 3. Suppose that

favoritism is awarded to player 3. This directly affects his own incentive, which further

compels the other two to vary their effort choices in response. The favoritism given to player

3, however, also affects the strategic interaction between players 1 and 2: Player 1’s response

to the change in player 3’s effort forces player 2 to adjust his behavior, and vice versa.

The incentive effect of the favoritism awarded to player 3 is compounded by the interaction

between players 1 and 2, which does not exist in a bilateral competition and obscures the

role played by the treatment: Its overall effect must sum up contestants’ strategic responses

over all of the links.

Second, an important dimension of the optimal biased contest design problem is missing

in a two-player setting. With more than two contestants, setting biased rules not only

manipulates the competitive balance of the playing field, but also serves to select preferred

contestants: A designer can effectively exclude a contestant by imposing an excessively

strong handicap on him, thereby diminishing his winning chances and discouraging him

from active bidding; this is possible only if the contest involves at least three contenders.

Which contestants should be excluded from the competition is an intriguing question, and

can be explored only in a setting with three or more players.

A more general analysis would vastly expand the scope of the contest design problem, but
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imposes substantial complications. Optimal contest design results in a mathematical pro-

gram with equilibrium constraints (MPEC) and typically requires an implicit programming

approach. This approach requires that we solve for the equilibrium bidding strategies for any

given parameterized contest rule, insert the equilibrium solution into the objective function,

and solve for the optimal rule that maximizes the contest objective (e.g., Franke, Kanzow,

Leininger and Schwartz, 2013). The approach loses its bite when more than two contestants

are involved, as an asymmetric n-player contest, in general, yields no closed-form equilibrium

solution. This limitation casts doubt on the generality of the conventional wisdom obtained

in restricted settings. Our paper proposes an alternative optimization approach that allows

us to characterize the optimum without solving explicitly for the equilibrium.

Next, we provide a snapshot of the approach and its underlying logic.

Optimization Approach

We adopt the frequently used framework of a generalized lottery contest to model a noisy

contest in which higher effort does not ensure a win; this implies either a random underlying

production process or an imprecise performance evaluation system. Imagine a winner-take-

all contest with n ≥ 2 players who differ in their prize valuations. For a given effort profile

x ≡ (x1, . . . , xn), a contestant wins with a probability

pi(x) =
fi(xi)∑n
j=1 fj(xj)

,

where fi(·) maps one’s effort outlays onto his effective output and is conventionally called the

impact function of contestant i ∈ {1, . . . , n}. We focus on the two most popularly adopted

instruments for identity-dependent preferential treatments in the literature. The impact

function takes the form

fi(xi;αi, βi) = αi · h(xi) + βi,

where αi, a multiplicative bias, influences the marginal output of one’s effort, while βi, an

additive headstart, directly adds to his output. The designer imposes treatment (αi, βi), with

αi, βi ≥ 0, on each contestant i; the vector (α,β) ≡
(
(α1, . . . , αn), (β1, . . . , βn)

)
represents

the prevailing contest rule and depicts how each contestant is favored or handicapped vis-à-

vis his opponents.

The contest game is unsolvable in general. We propose an indirect approach to the op-

timization problem. Its primary logic is laid out as follows. Despite the lack of a solution

to the equilibrium, a unique equilibrium is shown to exist for any feasible contest rule under

mild regularity conditions. The equilibrium condition alludes to a correspondence between

contestants’ equilibrium winning probability distribution and their effort profile. The ob-
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jective for contest design can be rewritten accordingly as a function of equilibrium winning

probability distribution. Instead of optimizing over the choice of contest rule, the winning

probability distribution is treated as a design variable: We let the designer directly assign

winning probabilities among contestants to maximize the reformulated objective function.

Finally, we demonstrate that any winning probability distribution can be induced by a con-

test rule in equilibrium, which closes the loop.

The key element of the approach is the aforementioned correspondence that enables us to

reformulate the objective function. It provides a system of equations, and each expresses an

individual’s equilibrium effort as a function of his own equilibrium winning odds and prize

valuation. Counterintuitively, neither the contest rule (α,β) nor opponents’ equilibrium

efforts appear in the function; the roles they play in the equilibrium are encapsulated in

the contestant’s equilibrium winning probability. The correspondence literally dissolves the

linkage between contestants in the game, and disaggregates the strategic interaction into

a series of individual decision problems. The optimization problem thus reduces to a sim-

ple programming that allocates probability mass among contestants based on their prize

valuations.

In addition to the technical novelty, our approach unravels the nature of incentive pro-

vision in contests. When choosing his effort, a contestant is ultimately motivated by two

factors: (i) the (exogenous) reward for his win, and (ii) the (endogenous) prospect for his

win, i.e., his expectation of winning odds. Our approach—by assigning winning odds based

on contestants’ prize valuations—dismisses the distraction caused by the complex strategic

interactions in the game, and directly internalizes the trade-offs in contestants’ effort choice.

Implications and Applications

Our approach could substantially expand the scope of the analysis of optimal biased

contests. In this paper, we set up a general objective function that addresses a wide spectrum

of concerns in contest design; we primarily focus on the qualitative implications that reveal

general properties of optimal biased contests.4 The main results are summarized below.

Suboptimality of Headstart Allowing for additive headstarts β—in addition to the free-

dom to set multiplicative biases α—cannot further improve the performance of the contest

when the designer benefits from contestants’ efforts. It is thus without loss of generality to

focus solely on the optimal choice of multiplicative biases α.

4When a specific functional form is imposed on h(·)—e.g., a Tullock contest with h(xi) = (xi)
r—a closed-

form solution can be obtained for the optimum, which enables convenient and lucid analyses in parameterized
settings.
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A General Exclusion Principle The literature has debated whether certain players

should be excluded from the competition (e.g., Baye, Kovenock and de Vries, 1993; and

Fang, 2002). In contrast to previous studies that allow for outright exclusion, we consider

implicit exclusion by setting identity-dependent biases. Under a general objective function

that addresses broad concerns in contest design, we show that the optimal exclusion is

monotone in the sense that exclusion always starts from the bottom-ranked contestants.

Maximizing Total Effort and the Expected Winner’s Effort We apply our approach

to the classical effort-maximizing problem. We demonstrate that to maximize total effort in

an n-player contest, the optimum must involve at least three active contestants whenever a

sufficient pool of potential contestants is available. As a result, a two-player setting is a knife-

edge case, as it is suboptimal when the contest involves more than two players. Further,

the optimum precludes the possibility of a “superstar,” in the sense that an individual

contestant’s winning odds must be strictly less than 1/2. We then proceed to the objective of

maximizing the expected winner’s effort, which is popularly studied in the auction literature

but less often in the contest literature, partly due to the nonadditivity and nonlinearity of

the objective function. In contrast to maximization of total effort, we show that the optimum

keeps only the two top-ranked contestants active.

Leveling the Playing Field: Reexamined The literature on biased contests has cen-

tered on two fundamental questions: (i) Should the optimal contest equalize contestants’

winning odds (leveling the playing field in terms of ex post equilibrium outcomes)? (ii)

Should the contest rule favor weaker contestants vis-à-vis their stronger opponents (by lev-

eling the playing field in terms of ex ante biased contest rules)? Our analysis systematically

addresses these questions in a more general setting, and the results overturn the conventional

wisdom.

First, we demonstrate that to maximize total effort, a designer favors the weaker contes-

tant in a two-player contest such that she always equalizes contestants’ winning odds, which

generalizes the conventional wisdom obtained in Tullock contest settings—i.e., h(xi) = (xi)
r.

However, a perfectly leveled playing field is an artifact of bilateral competition. With three

or more contestants, the ex ante strongest player can be the least likely winner. Contestants’

equilibrium winning probabilities can even be nonmonotone with respect to the rankings of

their prize valuations.5 We construct a parameterized setting and provide comparative stat-

ics that illustrate how the contest technology h(·) affects the equilibrium winning probability

distribution in the optimum.

5In a standard lottery contest with h(xi) = xi, Franke, Kanzow, Leininger and Schwartz (2013) show in
a numerical example that the optimal biased contest rule favors ex ante weaker contestants but does not
fully level the playing field, in the sense that an ex ante stronger contestant wins with a larger probability.
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Second, we demonstrate that the optimum may even further upset the balance of the

contest by biasing the rule in favor of ex ante stronger contestants; the optimal biases

can be nonmonotone, in the sense that an ex ante middle-ranked contestant receives the

most favoritism. A comparative statics analysis is conducted in a Tullock contest setting to

illustrate the underlying logic.

The rest of the paper proceeds as follows. Section 2 describes the contest model and

introduces the design instruments and contest objectives. Section 3 sets up the contest design

problem, develops a novel optimization approach, and characterizes optimal asymmetric

contests. Section 4 discusses the conventional wisdom of leveling the playing field in detail,

and Section 5 concludes. Proofs not in the main text are relegated to Appendix B.

2 Setup and Preliminaries

In this section, we present the fundamentals of the underlying contest game.

2.1 Generalized Lottery Contests

There are n ≥ 2 risk-neutral contestants competing for a prize. The prize bears a value

vi > 0 for each contestant i ∈ N ≡ {1, . . . , n}, with v1 ≥ . . . ≥ vn > 0, which is common

knowledge. A contestant’s prize valuation is a measure of his strength, as a higher valuation

tends to incentivize more effort. To win the prize, contestants simultaneously submit their

effort entries xi ≥ 0 and incur a cost of c(xi). The heterogeneity among contestants is

encapsulated in the different prize valuations, which allows for an unambiguous ranking of

contestants in terms of their strength and facilitates comparative static analyses.

We consider a generalized lottery contest with a ratio-form contest success function: For

a given effort profile x ≡ (x1,, . . . , xn), a contestant i wins the prize with a probability

pi(x) =


fi(xi)∑n
j=1 fj(xj)

if
∑n

j=1 fj(xj) > 0,

1

n
if
∑n

j=1 fj(xj) = 0,

(1)

where the function fi(·), labeled the impact function in the contest literature, converts one’s

effort into his effective output in the lottery contest and satisfies fi(xi) ≥ 0 for all xi ≥ 0.

Obviously, a contestant i ∈ N is excluded from the contest if fi(xi) = 0 for all xi ≥ 0.

In the extreme case in which one contestant has an increasing impact function, while every

other contestant’s impact function is a zero constant, we assume that he wins automatically.6

6This assumption is imposed to guarantee the existence of a pure-strategy Nash equilibrium.

6



Appendix A presents two rationales for the model’s microeconomic underpinning: (i) a noisy-

ranking approach adapted from the discrete-choice model (Clark and Riis, 1996; Jia, 2008);

and (ii) a research tournament analogy (Loury, 1979; Dasgupta and Stiglitz, 1980; Fullerton

and McAfee, 1999; Baye and Hoppe, 2003).

Given the effort profile x ≡ (x1, . . . , xn) and the above contest success function (1),

contestant i’s expected payoff can be written as

πi(x) := pi(x) · vi − c(xi).

The set of impact functions
{
fi(·)

}n
i=1

, together with contestants’ valuations v ≡ (v1, . . . , vn)

and the effort cost function c(·), defines a simultaneous-move contest game.

2.2 Regularity Condition and Equilibrium Property

We impose the following regularity condition on the contest game.

Definition 1 (Regular Concave Contests) A contest
(
v,
{
fi(·)

}n
i=1

, c(·)
)

is called a

regular concave contest if (i) the impact function for contestant i ∈ N is either a nonnegative

constant or a twice-differentiable function, with fi(xi) ≥ 0, f ′i(xi) > 0, and f ′′i (xi) ≤ 0 for

all xi ≥ 0; and (ii) the effort cost function satisfies c(0) = 0, c′(xi) > 0 and c′′(xi) ≥ 0 for

all xi > 0.

The above definition simply requires the usual concave impact functions and a convex

effort cost function. These regularity conditions ensure that a contestant’s payoff function is

concave in effort, and is widely adopted in the literature. Szidarovszky and Okuguchi (1997)

and Cornes and Hartley (2005) prove the existence and uniqueness of the equilibrium in the

above contest game under the restriction of fi(0) = 0 for all i ∈ N . Therefore, their results

cannot be applied directly to contests in which headstarts are in place, i.e., fi(0) > 0 for

some i ∈ N . The following theorem generalizes their results by relaxing the zero-headstart

assumption.

Theorem 1 (Existence and Uniqueness of Equilibrium) There exists a unique pure-

strategy Nash equilibrium in a regular concave contest game
(
v,
{
fi(·)

}n
i=1

, c(·)
)
.

Our study focuses on the above-defined concave contests for two reasons. First, when

impact functions are convex, a pure-strategy equilibrium tends to fade away. Although

mixed-strategy equilibria exist, they generally are not unique and their specific properties

remain elusive in the literature (e.g., Ewerhart, 2015, 2017). Second, the regularity condition

implies a production technology with nonincreasing marginal output, which is common in
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many real-life scenarios. This condition can also be understood in a natural and intuitive

manner when the contest model is interpreted as the aforementioned research tournament

à la Fullerton and McAfee (1999), in which case diminishing marginal return can naturally

be expected: In scientific research, duplicating input increases the likelihood of success, but

does not necessarily double the chance of a discovery.7

2.3 Design Instruments and Contest Objectives

Theorem 1 ensures the existence and uniqueness of a pure-strategy equilibrium in the

underlying contest game, which allows us to set up the contest design problem in a two-stage

structure. In the first stage, anticipating contestants’ strategic plays in the second stage, the

designer sets the contest rule and announces it publicly. In the second stage, contestants

exert effort simultaneously to vie for the prize. We first discuss the instruments available to

the designer and then elaborate on the properties and implications of the objective function.

2.3.1 Design Instruments

As mentioned previously, we follow the tradition in the literature and mainly focus on two

types of instruments to model identity-dependent preferential treatment: (i) multiplicative

biases—i.e., weights on contestants’ effective output—and (ii) additive headstarts. To put

this formally, the impact function takes the form

fi (xi;αi, βi) = αi · h (xi) + βi. (2)

The function h(·) is exogenously given as the fundamental contest technology ; the identity-

dependent treatment imposed on each contestant i ∈ N is given by a tuple (αi, βi), with

αi, βi ≥ 0.8 The contest technology h (xi) is assumed to have the following properties.

Assumption 1 (Concave Contest Technology) h(·) is twice differentiable, with h′(x) >

0, h′′(x) ≤ 0, and h(0) = 0.9

Both the multiplicative bias, αi, and the additive headstart, βi, are popularly adopted in

the literature to model preferential treatments. Fu (2006); Franke (2012); Franke, Kanzow,

Leininger and Schwartz (2013, 2014); and Epstein, Mealem and Nitzan (2011) focus on the

7See Appendix A for further discussion.
8 Drugov and Ryvkin (2017) study a two-player contest in which contestant 1 wins with a probability

p1 = (x1 + β)/(x1 + x2), and contestant 2 wins with a probability 1− p1. Their setting is equivalent to one
in which contestants 1 and 2 are imposed with an identity-dependent headstart of β and −β, respectively.
The model differs from ours in that we assume βi ≥ 0 for all i ∈ N .

9With αi, βi ≥ 0, Assumption 1 ensures that the game satisfies the requirements of Definition 1, and
Theorem 1 applies, by which a unique pure-strategy equilibrium exists.
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former, while Clark and Riis (2000); Konrad (2002); Siegel (2009, 2014); Kirkegaard (2012);

and Li and Yu (2012) consider the latter. Franke, Leininger and Wasser (2018) allow for

both. Both instruments vary a contestant’s (deterministic) output, but through starkly

different channels: αi scales up or down a contestant’s output for any given effort, while

βi directly boosts it regardless of his effort. The contrast inspires interesting comparisons,

which generate useful implications for contest design.

We assume for convenience that all contestants are endowed with the same contest tech-

nology h(·), and thus contestants’ heterogeneity is encapsulated in the difference in their

prize valuations. This setting enables lucid comparative statics. It is noteworthy that our

analysis can readily be extended to a setting that allows for heterogeneous contest technolo-

gies {hi(·)}ni=1, which will be discussed in Section 5.

It is useful to point out that our analysis primarily focuses on moral hazard situations

in which economic agents’ efforts are hidden choices and difficult to contract upon (see, for

instance, Lazear and Rosen, 1981, and Gershkov, Li and Schweinzer, 2009). The designer

assigns the treatment in anticipation of contestants’ strategic choice of efforts, but imple-

menting these instruments does not require that efforts be observable or verifiable. Consider

the aforementioned example of CEO succession races: A key appointment improves the

favorite candidate’s productivity, while his/her actual effort is hardly verifiable.

2.3.2 A General Objective Function

Prior to the competition, the designer chooses (α,β) to maximize an objective function

Λ(·), which is a function of the effort profile x ≡ (x1, . . . , xn); the profile of winning proba-

bilities p ≡ (p1, . . . , pn); and the profile of prize valuations v ≡ (v1, . . . , vn). We impose the

following regularity condition on the objective function Λ(x,p,v).

Assumption 2 (Objective Function) Fixing p ≡ (p1, . . . , pn) and v ≡ (v1, . . . , vn),

Λ(x,p,v) is weakly increasing in xi for all i ∈ N .

The assumption simply requires that contestants’ efforts accrue to the benefit of the

contest designer: For a given winning probability distribution p, an increase in a contestant’s

effort does not reduce her payoff.

The objective function Λ(x,p,v) encompasses a wide array of scenarios. Let us first

consider the following:

Λ(x,p,v) :=
n∑
i=1

xi + ψ

n∑
i=1

pivi − γ
n∑
i=1

(
pi −

∑n
j=1 pj

n

)2

, (3)

with ψ ≥ 0 and γ ≥ 0. The function obviously satisfies the requirement of Assumption 2.
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When the weights ψ and γ both reduce to zero, the above expression boils down to

Λ(x,p,v) =
∑n

i=1 xi, the popularly studied objective of total effort maximization. The

objective function (3) allows the designer to have a direct preference for contestants’ winning

probability distribution. The term
∑n

i=1

(
pi − (

∑n
j=1 pj)/n

)2
is the variance of the winning

probabilities. With γ > 0, the designer prefers a less predictable outcome. For instance,

in sports competitions, spectators often not only appreciate contenders’ efforts, but also

demand more suspense about the eventual winner (see Chan, Courty and Hao, 2008; and

Ely, Frankel and Kamenica, 2015).10 The contest objective also accommodates the pursuit

of selection efficiency (see Meyer, 1991; Hvide and Kristiansen, 2003; Ryvkin and Ortmann,

2008; and Fang and Noe, 2018): The additional component
∑n

i=1 pivi strictly increases when

a contestant of a higher valuation is able to win more often, which also provides an example

of how contestants’ prize valuations could directly affect the designer’s payoff.11

In many competitive events, however, only the winner’s performance is relevant to the

organizer’s interest. Suppose that the contest designer does not care about the overall effort,

but only the expected winner’s effort. The objective function can be written as

Λ(x,p,v) =
n∑
i=1

pixi. (4)

This contest objective has gained increasing attention in the literature (e.g., Moldovanu

and Sela, 2006; Serena, 2017; and Barbieri and Serena, 2019) Imagine, for instance, that

the buyer in a procurement tournament is only concerned about the quality of the winning

product; a similar observation can be seen in an architectural design competition. Also, a

CEO succession race motivates candidates to develop their managerial skills: Large public

firms—e.g., GE and HP—often have difficulty retaining losing candidates, which would lead

them to focus only on the acquisition of human capital from the winner (Fu and Wu, 2019b).

Design objective (4) clearly satisfies Assumption 2.

10Such a preference is also assumed by Fort and Quirk (1995), Szymanski (2003), and Runkel (2006) in
two-player settings.

11The contest designer may care about both effort supply and contestants’ welfare (e.g., Epstein, Mealem
and Nitzan, 2011). Recall that a contestant i has an expected payoff πi = pivi − xi with linear effort
cost functions. This preference can formally be expressed as Λ(x,p,v) := φ

∑n
i=1 πi + (1 − φ)

∑n
i=1 xi =

φ
∑n
i=1 pivi + (1 − 2φ)

∑n
i=1 xi. Assumption 2 is satisfied if and only if φ ≤ 1

2 , in which case this objective
function boils down to a case of the objective function (3). Higher efforts, however, would cause net disutility
to the designer if her preference over contestants’ welfare is excessively strong—i.e., φ > 1

2—which defies
Assumption 2.
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3 Optimal Contest Design: Analysis

Given the existence and uniqueness of a pure-strategy equilibrium in the contest game for

arbitrary (α,β), the optimal contest design problem yields a typical mathematical program

with equilibrium constraints (MPEC): Contestants’ equilibrium effort profile, x, is endoge-

nously determined in the equilibrium as a function of (α,β) set by the designer, and the

designer chooses (α,β) for the following optimization problem:

max
{x,α,β}

Λ(x,p,v)

subject to xi = arg max
xi≥0

πi(x;α,β),

pi(x;α,β) =


fi (xi;αi, βi)∑n
j=1 fj(xj;αj, βj)

if
∑n

j=1 fj(xj;αj, βj) > 0,

1

n
if
∑n

j=1 fj(xj;αj, βj) = 0.

The conventional approach of solving the MPEC requires an equilibrium solution of

effort profile x for an arbitrary (α,β), which is, in general, unavailable. This nullifies the

conventional approach and calls for an alternative technique. We take a detour to bypass

the difficulty, and the approach can be described as follows:

i. We resort to the first-order conditions for the unique equilibrium of a contest game

under an arbitrary contest rule (α,β), and show that the optimum can always be

achieved by a contest rule with zero headstart. This allows us to simplify the opti-

mization problem.

ii. According to the simplified optimization problem, we establish a correspondence be-

tween contestants’ equilibrium effort profile x and equilibrium winning probability

distribution p.

iii. Based on the correspondence mentioned above, we rewrite the objective as a function

of the winning probability distribution. Instead of searching directly for the optimal

contest rule, we let the designer assign equilibrium winning probabilities to contestants.

We then solve for the probability distribution that maximizes the objective function.

iv. Finally, we identify the contest rule that induces the desirable winning probability

distribution in equilibrium.

In the rest of this section, we first lay out the fundamentals of our approach and then

apply it to optimal contest design problems.
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In the unique equilibrium of a contest game, the first-order condition ∂πi(x)/∂xi = 0

must be satisfied for an active contestant i ∈ N . With the impact functions specified in

expression (2), the condition can be rewritten as∑
j 6=i
[
αjh(xj) + βj

]{∑n
j=1

[
αjh(xj) + βj

]}2 · h
′(xi) =

1

αivi
· c′(xi), for xi > 0.

Similarly, the following inequality holds if contestant i remains inactive in equilibrium:∑
j 6=i
[
αjh(xj) + βj

]{∑n
j=1

[
αjh(xj) + βj

]}2 · h
′(xi) ≤

1

αivi
· c′(xi), for xi = 0.

The above equilibrium conditions, together with the winning probability pi(x) specified

in Equation (1), imply immediately that

pi(1− pi)vi = c′(xi) ·
αih(xi) + βi
αih′(xi)

, for xi > 0, 12 (5)

and

pi(1− pi)vi ≤ c′(xi) ·
αih(xi) + βi
αih′(xi)

, for xi = 0. (6)

Conditions (5) and (6) establish the relationship between efforts and winning probabilities in

equilibrium: The left-hand side is a quadratic function of the equilibrium winning probability

pi, while the right-hand side is a strictly increasing function with respect to equilibrium effort

xi. This relationship lays a foundation for our subsequent analysis, and many general insights

ensue.

3.1 Suboptimality of Additive Headstart

Equilibrium conditions (5) and (6) allow us to compare the two design instruments: mul-

tiplicative biases vs. additive headstarts. We now demonstrate that the former outperforms

the latter. To put this more specifically, we show that fixing an arbitrary contest rule with

positive headstarts, we can always construct an alternative contest rule with zero headstart

that induces the same equilibrium winning probability distribution but strictly higher effort.

As a result, the alternative contest rule generates a weakly higher payoff to the designer

under Assumption 2, which in turn indicates that the designer cannot strictly benefit from

her freedom to award additive headstart.

12We need αi > 0 for the right-hand side to be well defined, which clearly holds. In fact, if αi = 0, it
is straightforward to see that xi = 0 is a strictly dominant strategy for player i due to the fact that costly
effort has zero impact on player i’s winning probability.
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A sketch proof is provided below to unveil the key logic for the result. Denote by

(α∗,β∗) ≡
(
(α∗1, . . . , α

∗
n), (β∗1 , . . . , β

∗
n)
)

the optimal contest rule that maximizes Λ(x,p,v);

the corresponding equilibrium effort profile and winning probabilities are denoted by x∗ ≡
(x∗1, . . . , x

∗
n) and p∗ ≡ (p∗1, . . . , p

∗
n), respectively. Suppose that β∗t > 0 for some t ∈ N in

the optimum. Let us focus on the case of an active contestant t, i.e., x∗t > 0, as the logic

naturally extends to inactive ones with x∗t = 0.

Recall the equilibrium condition

p∗t (1− p∗t )vt = c′(x∗t ) ·
α∗th(x∗t ) + β∗t
α∗th

′(x∗t )
.

Denote by x† the unique solution to the following equation:

c′(x∗t ) ·
α∗th(x∗t ) + β∗t
α∗th

′(x∗t )
= c′(x†) · h(x†)

h′(x†)
.13 (7)

Simple analysis would verify that x† > x∗t , given β∗t > 0. Consider an alternative contest

rule with α̃ ≡ (α̃1, . . . , α̃n) and β̃ ≡ (β̃1, . . . , β̃n), such that

(
α̃i, β̃i

)
:=


(
α∗t h(x∗t )+β∗t

h(x†)
, 0
)

for i = t,

(α∗i , β
∗
i ) for i 6= t.

In words, all contestants are awarded the same identity-dependent treatment as before except

for contestant t. Under this new contest rule, headstart is removed for contestant t. Simple

algebra verifies that the equilibrium effort profile under the new contest rule (α̃, β̃)—which

we denote by x̃∗ ≡ (x̃∗1, . . . , x̃
∗
n)—is given by

x̃∗i =

{
x† for i = t,

x∗i for i 6= t.

The new contest rule outperforms under Assumption 2. It induces the same winning prob-

ability distribution, because α̃t · h(x†) + β̃t = α∗t · h(x∗t ) + β∗t by our construction, while the

effort of contestant t strictly increases because x† > x∗t by Equation (7).14 This argument

leads to the following.

13The existence and uniqueness of the solution x† follows from the facts that c′(x) · h(x)/h′(x) is strictly
increasing in x, limx↘0 c

′(x) · h(x)/h′(x) = 0, and limx↗∞ c′(x) · h(x)/h′(x) =∞.
14A closer inspection of Equation (7) indicates that x† > x∗t may not hold if the headstart βt is allowed

to be negative, in which case the comparison depends on the properties of c′(·), h(·), and h′(·). Drugov
and Ryvkin (2017) allow for negative headstart (see Footnote 8) and show that headstart can be optimal,
depending on the sign of c′′′(·).

13



Theorem 2 (Suboptimality of Headstart) Suppose that Assumptions 1 and 2 are sat-

isfied. The optimum can always be achieved by choosing multiplicative biases α only and

setting headstarts β to zero.

It is thus without loss of generality to abstract away headstart and focus on multiplicative

biases when searching for the optimal biased contests, i.e., assuming fi(xi;αi, βi) = αi ·h(xi),

with βi = 0 for all i ∈ N .15 Franke, Leininger and Wasser (2018, Proposition 3.6) obtain

similar results. Specifically, they show in a standard lottery contest—i.e., h(xi) = xi—that

a positive headstart is suboptimal when the designer aims to maximize total effort. Our

analysis generalizes Franke et al. (2018) in two dimensions: First, we allow for a flexible

contest technology, and second, the optimization problem addresses a broad objective.16

3.2 Reformulated Design Problem

Theorem 2 allows us to derive the fundamental equilibrium correspondence that under-

pins our optimization approach: With βi = 0, the following must hold in an equilibrium:

pi(1− pi)vi = c′(xi) ·
h(xi)

h′(xi)
, ∀ i ∈ N . (8)

A system of n set-valued functional equations depicts the relation between winning proba-

bility distribution p and contestants’ effort profile x in equilibrium, with the right-hand side

strictly increasing with xi. For convenience, we call the system of equations the equilibrium

correspondence of the contest game. The correspondence reminds us of the first-order con-

dition (5) for an active player. However, it also holds for an inactive contestant, as xi = 0 is

associated with pi = 0. Further, define the inverse of log(c′(x) · h(x)/h′(x)) by g(·).17 The

correspondence (8) can be rewritten as

xi = g
(

log(pi
(
1− pi)

)
+ log(vi)

)
,∀ i ∈ N . (9)

Two remarks are in order before we proceed. First, each equation in the system of

equations (9) literally delineates a direct and unique relation between xi and (pi, vi) for an

individual contestant i ∈ N . The equilibrium probability pi can be viewed as a sufficient

15Headstarts, however, can be preferred to multiplicative biases by an effort-maximizing contest designer
in all-pay auctions. See Li and Yu (2012) and Franke, Leininger and Wasser (2018) for more details.

16Allowing for a general objective function Λ(x,p,v) substantially enriches the optimization problem.
Adjusting design instruments varies both x and p, which obscures the optimum. In proving Theorem 2, our
analysis bypasses the difficulty by constructing an alternative contest rule that preserves the same winning
probability distribution while boosting efforts.

17Assumption 1 and the convexity of the effort cost function imply that g(·) is well defined. In particular,
g(·) is a strictly increasing function, with g(−∞) = 0 and g(∞) =∞.
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statistic of the equilibrium in the contest: pi is not exogenously given, but a function en-

dogenously determined jointly by contestants’ equilibrium effort profile x ≡ (x1, . . . , xn) and

the treatment α ≡ (α1, . . . , αn). Second, the correspondence (9) unveils the nature of incen-

tive provision in contests. A contestant’s effort decision, regardless of the game theoretical

structure of the contest, takes into account two basic factors: (i) value (vi), i.e., how much

he can be rewarded when he wins; and (ii) prospect (pi), i.e., the expectation about how

likely he is to win.

The correspondence (9) opens a new avenue for contest design. The objective func-

tion Λ(x,p,v) can be rewritten as Λ
(
x(p,v),p,v

)
; instead of setting α directly, we treat

winning probability distribution p as the design variable and let the designer maximize

Λ
(
x(p,v),p,v

)
, subject to (9) and the following feasibility constraints:

n∑
i=1

pi = 1, and pi ≥ 0, for all i ∈ N . (10)

A maximizer automatically exists for any smooth and continuous objective Λ
(
x(p,v),p,v

)
given that the choice set, defined by (10), is an (n− 1)-dimensional simplex.

The following result is established as the last piece of the puzzle.

Theorem 3 (Implementing Winning Probabilities by Setting Biases) Fix any

equilibrium winning probability distribution p ≡ (p1, . . . , pn) ∈ ∆n−1.

i. If pj = 1 for some j ∈ N , then p ≡ (p1, . . . , pn) can be induced by the following set of

biases α(p) ≡
(
α1(p), . . . , αn(p)

)
:

αi(p) =

{
1 if i = j,

0 if i 6= j.

ii. If there exist at least two active contestants, then p ≡ (p1, . . . , pn) can be induced by

the following set of biases α(p) ≡
(
α1(p), . . . , αn(p)

)
:

αi(p) =


pi

h

(
g
(

log(pi(1−pi))+log(vi)
)) if pi > 0,

0 if pi = 0.

(11)

Theorem 3 formally states that the contest designer can properly construct the set of

weights α to induce any equilibrium winning probability distribution.18 The result closes

18It should be noted that the biases α that induce each given p are not unique. For instance, the same
equilibrium outcome can be induced by multiplying all αi by some positive factor.
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the loop for the reformulated optimization problem: Upon obtaining the maximizer to

Λ
(
x(p,v),p,v

)
, the optimal biases α∗ ≡ (α∗1, . . . , α

∗
n) can readily be obtained by invok-

ing Theorem 3.

Consider, for example, the widely studied Tullock contest with h (xi) = (xi)
r and assume

a linear effort cost function c(xi) = xi. An equation in the correspondence (9) boils down to

xi = rpi(1− pi)vi.

The above-mentioned objective function (3) can be rewritten as

Λ
(
x(p,v),p,v

)
:=

n∑
i=1

[
rpi(1− pi)vi

]
+ ψ

n∑
i=1

pivi − γ
n∑
i=1

(
pi −

∑n
j=1 pj

n

)2

,

which gives rise to a quadratic programming. Standard technique would obtain a handy

closed-form solution to the optimal biases α.19 Our paper, however, would primarily focus

on the general implications of the contest design problem, instead of solving for closed-form

solutions in specific settings.

The reformulation enormously simplifies the design problem. By the equilibrium cor-

respondence (9), each contestant chooses his effort as if he responds merely to (pi, vi), his

own winning odds and prize valuation: The strategic linkages between contestants seem-

ingly dissolve when the winning probability distribution is treated as a design variable. This

approach insulates the designer from the distraction of the complex strategic interaction of

the contest game; instead, the reformulated optimization problem boils down to a simple

programming that allocates probability mass among contestants purely based on the profile

of their prize valuations.

3.3 A General Exclusion Principle

We now derive a general property of the optimal contest based on our approach. Recall

that the contest designer, when setting α, can effectively exclude a contestant by imposing

zero weight on his entry, which discourages him from exerting positive effort. The design

problem involves a hidden dimension: the selection of active contestants in the competition.

In other words, which contestants should be included in the optimal contest?

Define τ : N → N as a permutation of the set of players N ≡ {1, . . . , n}. In particular,

player i is replaced by player τ(i) in the rearrangement. With slight abuse of notation, let

us define τ(x) := (xτ(1), . . . , xτ(n)), τ(p) := (pτ(1), . . . , pτ(n)), and τ(v) := (vτ(1), . . . , vτ(n)).

19The application of our optimization approach and the solutions to optimal biases in Tullock contest
settings are available from authors upon request.
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Similarly, let τij(x) denote the permutation obtained by swapping contestants i and j.

To obtain more mileage, we impose the following condition on the objective function

Λ(x,p,v).

Assumption 3 The contest designer’s objective Λ(x,p,v) satisfies the following properties:

i. for all permutations τ of N , Λ(x,p,v) = Λ
(
τ(x), τ(p), τ(v)

)
;

ii. if (pi, xi) = (0, 0) for some contestant i ∈ N , then Λ(x,p,v) ≤ Λ
(
x,p, τij(v)

)
for all

j ∈ N such that vj < vi;

iii. fixing p ≡ (p1, . . . , pn) and v ≡ (v1, . . . , vn), Λ(x,p,v) is strictly increasing in xi if

pi > 0.

Part (i) of the above assumption implies that the designer’s preference is anonymous:

She does not have ex ante preference over certain players. Our setting allows the designer to

directly benefit from the values contestants derived from the prize, i.e., v ≡ (v1, . . . , vn). Part

(ii) of the assumption indicates that the prize value for a contestant is more likely to accrue

to the designer’s benefit when he is active. The requirement is automatically satisfied in the

simplest case in which the objective function is independent of contestants’ prize valuations,

e.g., in which the designer maximizes total effort or the expected winner’s effort. Part (iii)

states that the designer would strictly benefit if an active player exerts more effort.

Part (iii) of Assumption 3 immediately implies Assumption 2:20 Theorem 2 thus remains

in place, and headstarts are suboptimal for contest design under Assumption 3. Despite the

additional requirements, Assumption 3 is by no means restrictive. It is straightforward to

verify that all of the examples discussed in Section 2.3.2 satisfy the requirements. We obtain

the following.

Theorem 4 (Exclusion Principle) Suppose that Assumptions 1 and 3 are satisfied. If

p∗i = 0 for some i ∈ N in the optimum, then p∗j = 0 for all j ∈ N , with vj < vi.

By Theorem 4, exclusion in the optimum must be monotone. That is, whenever the de-

signer intends to exclude contestants, she must target the ex ante weakest. This result stands

in contrast to those obtained in previous studies. In an all-pay auction, Baye, Kovenock and

de Vries (1993) show that an effort-maximizing contest designer may strategically exclude

the strongest contestant. In contrast, Fang (2002) demonstrates that the designer does not

have a strict incentive to exclude players from a lottery contest—i.e., h(xi) = xi—and thus

the exclusion principle of the all-pay auction identified by Baye et al. (1993) does not extend

20To be more rigorous, we need to impose the condition that Λ(x,p,v) is weakly increasing in xi at pi = 0
for all i ∈ N .
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to lottery contests. Both studies assume total effort maximization and outright exclusion,

while we allow for a general objective function and an indirect exclusion approach, i.e., as-

signing zero or excessively small weights to discourage participation. Theorem 4 provides a

new exclusion principle when the designer is able to bias the contest, and complements the

literature on player exclusion.

The monotone exclusion principle may compel one to conjecture that an ex ante stronger

contestant—i.e., one with a larger vi—would win with a (weakly) higher probability in the

optimum. However, this does not necessarily hold in general. As will be discussed in depth

in Section 4, the ranking of active contestants’ equilibrium winning probabilities depends on

a number of factors.

3.4 Optimal Contests: Maximizing Total Effort and the Expected

Winner’s Effort

To demonstrate the utility and versatility of our approach, we investigate two typical

scenarios for contest design. First, we set ψ and γ in the objective function (3) to zero, and

consider the situation in which the contest designer aims to maximize aggregate effort, i.e.,

Λ(x,p,v) =
∑n

i=1 xi. Second, we consider the objective function (4), the maximization of

the expected winner’s effort—i.e., Λ(x,p,v) =
∑n

i=1 pixi.

Maximizing Total Effort With slight abuse of notation, let us denote the effort-maximizing

winning probabilities and the corresponding optimal biases by p∗ ≡ (p∗1, . . . , p
∗
n) and α∗ ≡

(α∗1, . . . , α
∗
n), respectively. Consider a two-player contest with v1 ≥ v2. It is well known in the

literature that in a Tullock contest setting—i.e., h(xi) = (xi)
r—the optimum fully balances

the playing field, with p∗1 = p∗2 = 1
2
, for all r ∈ (0, 1]. This can be achieved by setting α∗2 to

(v1/v2)r with (v1/v2)r ≥ 1 and normalizing α∗1 to one.

A closer look at the aforementioned equilibrium correspondence reveals that this leveling-

the-playing-field principle immediately extends regardless of the contest technologies. To see

this, recall that in the equilibrium,

xi = g
(

log
(
pi(1− pi)

)
+ log(vi)

)
,∀ i ∈ N ,

which indicates that xi strictly increases with pi(1−pi). Note that pi (1− pi) is nonmonotone

in pi: It increases first and then drops, being maximized uniquely at pi = 1
2
. To put this

intuitively, one gives up when he faces a slim chance of winning, while he also slackens off

when he expects an easy win, which underpins the nonmonotone best-response function in a

standard contest game (Dixit, 1987). With a simple additive objective function Λ(x,p,v) =∑n
i=1 xi, the following naturally emerges in the optimum without further analysis.
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Theorem 5 (Winning Probabilities in Two-player Effort-maximizing Contests)

Suppose that n = 2, Assumption 1 is satisfied, and the designer aims to maximize total effort.

Then the optimal contest perfectly levels the playing field, i.e., p∗1 = p∗2 = 1/2.

When more than two players are involved in a contest, bias setting also determines the

set of active contestants in the competition. Theorem 4 shows that any exclusion must be

bottom-up, while the next result concerns itself with the proper number of active contestants

and the equilibrium winning probability distribution in the optimum.

Theorem 6 (Effort-maximizing Contests with Three or More Players) Suppose

that n ≥ 3, Assumption 1 is satisfied, and the designer aims to maximize total effort. Then

the following statements hold:

i. The optimal contest allows for at least three active players.

ii. The optimal contest does not allow any contestant to win with a probability more than

1/2, i.e., p∗i < 1/2, ∀ i ∈ N .

The first part of Theorem 6 generalizes Franke, Kanzow, Leininger and Schwartz (2013,

Theorem 4.6), and shows that a head-to-head competition is suboptimal whenever a third

contestant is available, regardless of the distribution of contestants’ prize valuations. Al-

though the claim does not seem obvious, the same correspondence would unravel it imme-

diately. Suppose otherwise that in a multiplayer contest only two players are kept active.

Optimization requires that they have equal chance to win. Recall that xi strictly increases

with pi(1− pi), and pi(1− pi) is maximized when pi = 1
2
, with d

[
pi(1− pi)

]
/dpi

∣∣
pi=1/2

= 0.

With a simple additive objective function Λ(x,p,v) =
∑n

i=1 xi, the designer can be strictly

better off by adjusting contest rule α to award a third player a very small probability of

winning: In the new equilibrium, the third player contributes positive effort; the other two

would barely reduce their efforts, because the marginal effect on pi(1 − pi) is negligible.

To summarize, allowing for a third player always boosts the performance of the contest

regardless of his relative competence.

The second part of the theorem provides a key property of the optimum regarding the

winning probability distribution. The optimum precludes a “superstar,” in the sense that

an individual contestant’s winning odds must be strictly less than the sum of the others’,

i.e., p∗i < 1/2, ∀ i ∈ N . First, it is never optimal to let contestant i win with a probability pi

strictly more than 1/2. Otherwise, the designer can induce the same amount of effort from

contestant i by assigning 1 − pi instead and induce more effort from other contestants by

allocating to them the saved probability mass 2pi − 1.

Second, assigning an equilibrium winning probability 1/2 to contestant i is suboptimal.

An argument analogous to that of Theorem 6(i) would unravel the nuance. Suppose, to
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the contrary, that pi = 1/2. Then total effort must increase if a small probability mass is

shifted away to another contestant j: pi(1 − pi) is concave and maximized at p1 = 1/2, so

the negative effect on contestant i is zero on the margin, while the corresponding positive

effect on j is not.

The presence of an overwhelmingly dominant contestant stifles other contestants’ incen-

tive. However, it is unclear, in the case of n ≥ 3, whether the optimal contest completely

levels the playing field—i.e., p∗i = 1/n—and whether an ex ante stronger contestant would

necessarily be handicapped more, i.e., a larger vi is associated with a smaller αi in the op-

timum. We apply our approach to explore these classical questions in Section 4 and show

that the conventional wisdom does not universally hold.

Maximizing the Expected Winner’s Effort Next, we consider the design objective

of maximizing the expected winner’s effort. Unlike the maximization of aggregate effort∑n
i=1 xi, the objective function

∑n
i=1 pixi is nonadditive in the contestant’s effort, because

winning probabilities pis are functions of effort profile x and are factored in multiplicatively,

which complicates the analysis. Our approach is immune to the nuance because of the re-

formulation. Denote by p∗∗ ≡ (p∗∗1 , . . . , p
∗∗
n ) the winning probabilities in the optimal contest.

We obtain the following.

Theorem 7 (Optimal Contest that Maximizes the Expected Winner’s Effort)

Suppose that Assumption 1 is satisfied and the designer aims to maximize the expected win-

ner’s effort. Then only the two ex ante strongest contestants would remain active in the

optimal contest. Moreover, the ex ante stronger player always wins with a strictly higher

probability than the underdog, independent of the shape of g(·). That is, if v1 > v2, then

p∗∗1 > p∗∗2 > 0.21

By Theorem 7, the optimal contest that maximizes the expected winner’s effort involves

only two active contestants: All contestants other than the two ex ante strongest are excluded

from the competition, which stands in contrast to the optimum established in Theorem 6

under total effort maximization when n ≥ 3. Further, the playing field is never fully balanced,

and the top dog always wins more often. This stands in contrast to the principle obtained

in Theorem 5 for two-player effort-maximizing contests.

The result can again be interpreted in light of the correspondence (9). It is intuitive to

infer that the optimum—which maximizes the weighted sum
∑n

i=1 pixi—must concentrate

the probability mass on the minimal number of the most productive contestants, i.e., the

two strongest contestants. Further, suppose otherwise that the two active contestants win

with equal chance. The designer can be strictly better off by shifting a small amount of

21It is straightforward to show that p∗∗1 = p∗∗2 = 1/2 if v1 = v2.
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probability mass from p2 to p1. Recall that xi = g
(

log
(
pi(1− pi)

)
+ log(vi)

)
. Its impact on

pi(1− pi) fades away on the margin, while a larger probability is attached to a higher effort:

x1 > x2 because v1 > v2. In short, the optimal contest must sufficiently preserve individual

incentives by limiting the number of contestants, and requires that the winning probability

assignment be “assortative,” i.e., a more productive contestant wins more often.

4 Leveling the Playing Field: Reexamined

In this section, we apply our approach to explore a classical question in the contest

literature: How should the balance of the playing field be optimally set to maximize total

effort when contestants are heterogeneous? The question can be examined in terms of

either ex post outcomes or ex ante contest rules. The former concerns how contestants’

winning odds are ranked in the optimum with respect to their innate strength, while the

latter explores whether weaker contestants are necessarily favored vis-à-vis their stronger

opponents. In Section 3.4, we generalize the conventional wisdom that with two players, the

optimal contest handicaps the stronger and fully levels the playing field, i.e., p∗1 = p∗2 = 1
2
,

regardless of the contest technology h(·). In an n-player lottery contest, Franke et al. (2013)

show in a numerical example that the optimal contest is biased in favor of ex ante weaker

players—i.e., α∗i < α∗j for vi > vj, and x∗i , x
∗
j > 0, although the playing field is not fully

balanced—i.e., p∗i > p∗j for vi > vj, and x∗i , x
∗
j > 0. The conventional wisdom of leveling

the playing field, however, has yet to be inspected in broader settings. Our exercise in this

section fills the void.

4.1 Ranking of Winning Probabilities in the Optimum

In this part, we explore how the ranking of contestants’ equilibrium winning odds in

the effort-maximizing contest are related to their prize valuations. Recall the function g(·),
which is defined as the inverse of log

(
c′(x) ·h(x)/h′(x)

)
. We first obtain the following result.

Theorem 8 (Winning Probabilities in Effort-maximizing Contests) Suppose that

Assumption 1 is satisfied and the designer aims to maximize total effort. Consider a contest

with n ≥ 3. For two arbitrary active contestants i, j ∈ N with vi > vj, p
∗
i > p∗j if g(·) is a

strictly convex function.

Theorem 8 predicts a monotone relationship between contestants’ winning probabilities

in the optimum and their prize valuations: For active contestants, a larger prize valuation

ensures strictly higher equilibrium winning odds in the optimum when the function g(·) is
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convex.22 Theorem 8 thus implies that a perfectly leveled playing field is a knife-edge case,

as an artifact of bilateral competitions.

The formal proof is laid out in Appendix B, but the result, again, is straightforward in

light of the fundamental correspondence:

xi = g
(

log
(
pi(1− pi)

)
+ log(vi)

)
,∀ i ∈ N .

Obviously, xi is supermodular in (pi, vi) when g(·) is strictly convex in its arguments:

∂2xi/∂pi∂vi must be strictly positive because by Theorem 6, p∗i < 1/2 in the optimum.

To interpret this more intuitively, g(·) depicts how a contestant’s effort choice takes into

account the value of prize and the prospect for his win: One steps up his effort when he

expects a more rewarding prize (i.e., increasing vi) or when he is more confident in his win

(i.e., increasing pi) for pi < 1/2. The supermodularity implies that a brighter prospect for a

win is more likely to incentivize a contestant when he also benefits more from the prize. The

total effort can be maximized only when the assignment of p with respect to v is assortative,

i.e., assigning larger equilibrium winning probability to a contestant of larger prize valuation.

By the same logic, the assignment pattern is set to be reversed when the function turns

concave. It should be noted that g(·), in general, cannot be globally concave. To see that,

recall that the function is the inverse of log
(
c′(x) · h(x)/h′(x)

)
. For a contest technology

h(·) that satisfies Assumption 1 and a cost function c(xi) with a finite c′(xi)
∣∣
xi=0

, log
(
c′(x) ·

h(x)/h′(x)
)

approaches negative infinity in the neighborhood of zero, which precludes the

possibility of global concavity of g(·). As a result, an exhaustive and complete comparative

static of probability ranking is infeasible because the property of g(·) remains elusive in

general.

In what follows, we construct a parameterized setting to illustrate the impact of g(·) on

the monotonicity of the probability series in the optimum. To proceed, we assume a linear

effort cost function c(x) = x, and parametrize the contest technology h(·) by a variable

σ ∈ (0, 1] as follows:

hσ(x) := exp

(∫ x

1

1

ζ−1
σ (t)

dt

)
,

where ζ−1
σ (t) is the inverse function of ζσ(·) given by

ζσ(z) :=


1
2
z if 0 < z < σ,

σ − σ2

2z
if σ ≤ z ≤ 2,

σ2

8
z + (σ − 1

2
σ2) if z > 2.

22A convex g(·) is not uncommon. For instance, in a Tullock contest with h(xi) = (xi)
r and a linear effort

cost function, we can obtain that g(z) = r exp(z), which is evidently strictly convex.
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It can be verified that the above contest technology hσ(x) satisfies Assumption 1. Carrying

out the algebra, we can derive the expression of g(·), which we again index by σ, as

gσ(z) = ζσ(ez) =


1
2
ez if z < log σ,

σ − σ2

2
e−z if log σ ≤ z ≤ log 2,

σ2

8
ez +

(
σ − 1

2
σ2
)

if z > log 2.

It is straightforward to see that gσ(z) is strictly convex in z for z < log σ and z > log 2, and

is strictly concave in z for log σ ≤ z ≤ log 2.

(a) gσ(z) under different levels of σ (b) (p∗1, . . . , p
∗
10) under different levels of σ

Figure 1: gσ(z) and (p∗1, . . . , p
∗
10) under Different Levels of σ.

Suppose that n = 10 and (v1, v2, . . . , v10) = (2.9, 2.8, . . . , 2.0). With a linear effort cost

function c(x) = x and the constructed contest technology hσ(·), contestant i’s first-order

condition can now be rewritten as

pi(1− pi)vi =
hσ(xi)

h′σ(xi)
= ζ−1

σ (xi)⇒ xi = ζσ
(
pi(1− pi)vi

)
.

Note that pi(1− pi)vi < 3/4 < 1 in the example because vi < 3 for all i ∈ N ≡ {1, . . . , 10}.
This, in turn, indicates that the region [log 1,∞) in the support of gσ(·) is irrelevant. The

variable σ can therefore measure the concavity/convexity of the gσ(·) function in the relevant

support (−∞, log 1), as Figure 1(a) depicts. In particular, gσ(·) becomes globally concave in

the relevant support as σ ↘ 0. Similarly, gσ(·) is globally convex in the relevant support as

σ ↗ 1.

The profile of the optimal equilibrium probabilities (p∗1, . . . , p
∗
10) for different values of σ

are reported as follows:
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σ p∗1 p∗2 p∗3 p∗4 p∗5 p∗6 p∗7 p∗8 p∗9 p∗10

0.1 0.0915 0.0931 0.0948 0.0966 0.0985 0.1005 0.1026 0.1049 0.1073 0.1099

0.3 0.1271 0.1293 0.1316 0.1340 0.1239 0.1082 0.0912 0.0726 0.0522 0.0299

0.5 0.1668 0.1549 0.1421 0.1283 0.1134 0.0973 0.0798 0.0607 0.0398 0.0168

In the case of σ = 0.5, p∗i > p∗j whenever vi > vj, as predicted by Theorem 8. In contrast,

with σ = 0.1, gσ(·) is globally concave in the relevant support and the ranking is entirely

reversed. This implies that the optimal contest must severely handicap stronger contestants,

such that they are less likely to win. The logic that underpins Theorem 8 can be flipped

to interpret this observation. With a concave g(·), an increase in vi reduces the marginal

impact of pi on xi. A contestant can less effectively be motivated by an improvement in the

prospect of a win when he has a higher valuation for the prize. As a result, a lower winning

probability must be assigned to a contestant with a higher prize valuation, which prevents

the marginal return of assigned winning probability from diminishing further. In the case

of σ = 0.3, which is set in the middle of the two extremes, the ranking is nonmonotone. As

Figure 1(b) illustrates, the equilibrium winning probability p∗i strictly increases with i first

and then decreases, with player 4 winning the contest with the highest probability.

4.2 Ranking of Multiplicative Biases in the Optimum

In this part, we examine the optimal contest rule—i.e., the multiplicative biases α∗—

that maximizes total effort. Again, we construct a parameterized setting, assuming a Tullock

contest with n ≥ 3, h(xi) = (xi)
r, r ∈ (0, 1], and a linear effort cost function c(xi) = xi. The

parameter r measures the marginal return of a contestant’s effort: With a larger r, a higher

effort is more likely to be translated into larger winning odds. It is straightforward to verify

that g(z) = ez. By Theorem 8, contestants’ winning odds p∗i strictly decrease with i, in that

an ex ante stronger contestant wins more often in the optimum.

The setting streamlines our analysis for two reasons. First, as stated above, the funda-

mental equilibrium correspondence under a Tullock contest setting can be simplified as

xi = rpi(1− pi)vi, ∀ i ∈ N ,

which allows for a closed-form solution to the optimal bias rule α∗ as the optimization prob-

lem yields a simple quadratic programming. Second, the total effort of the contest can be

rewritten as
∑n

i=1 xi = r
∑n

i=1 pi(1−pi)vi, which implies immediately that the optimal prob-

ability distribution p∗, or the winning probability ranking in the optimum, is independent of

the parameter r. This allows us to focus on the property of optimal contest rule and enables
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lucid comparative statics with respect to r. We first obtain the following theorem that fully

characterizes the optimum.

Theorem 9 (Effort-maximizing Contests) Assume without loss of generality that con-

testants are ordered such that v1 ≥ v2 ≥ . . . ≥ vn > 0, h(xi) = (xi)
r, with r ∈ (0, 1], and

c(xi) = xi. Suppose that the contest designer aims to maximize total effort. Then the equi-

librium winning probabilities p∗ ≡ (p∗1, . . . , p
∗
n) are given by

p∗i =


1
2

(
1− 1

vi
× κ−2∑κ

j=1
1
vj

)
if i ∈ {1, . . . , κ},

0 if i ∈ N \ {1, . . . , κ},
(12)

where κ is given by

κ := max

m = 2, . . . , n

∣∣∣∣∣ m− 2∑m
j=1

1
vj

< vm

 .

Moreover, the corresponding weights, denoted by α∗ ≡ (α∗1, . . . , α
∗
n), that induce p∗ ≡

(p∗1, . . . , p
∗
n) are given by

α∗i =


(p∗i )

1−r[
(1−p∗i )vi

]r if p∗i > 0,

0 if p∗i = 0.

Theorem 9 allows us to rank α∗ ≡ (α∗1, . . . , α
∗
n) with respect to the parameter r.

Theorem 10 (Comparative Statics of the Optimal Biases with Respect to r)

Assume without loss of generality that contestants are ordered such that v1 ≥ v2 ≥ . . . ≥
vn > 0, h(xi) = (xi)

r, with r ∈ (0, 1], and c(xi) = xi. Suppose that the contest designer aims

to maximize total effort. Then the following statements hold:

i. Suppose that contestants i and j remain active in the effort-maximizing contest (i.e.,

i, j ≤ κ). If vi > vj, then there exists a cutoff rij ∈ (0, 1) such that α∗i ≷ α∗j if r ≶ rij.

ii. Define an upper bound rmax := max{i<j≤κ}{rij} and a lower bound rmin := min{i<j≤κ}{rij}.
α∗m is decreasing in m ∈ {1, . . . , κ} when r ≤ rmin, and is increasing when r ≥ rmax.

For r ∈ (rmin, rmax), the optimal biases α∗ are nonmonotone.

Theorem 10 indicates that the usual leveling-the-playing-field principle does not hold in

general. It first states that for a given pair of active contestants, the optimal bias rule can

favor either of them depending on the size of r. More generally, Theorem 10(ii) identifies

two cutoffs. When the contest sufficiently rewards more effort, i.e., r ≥ rmax, a larger weight

is assigned to a weaker active player, i.e., one with a lower prize valuation, in which case
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the conventional wisdom remains. In contrast, when r falls below a lower bound rmin, the

prediction is entirely reversed, and the designer further upsets the balance of the contest

in the optimum, i.e., α∗m is decreasing in m: The optimal contest favors ex ante stronger

contestants.23,24 When r falls in the intermediate range (rmin, rmax), the ranking of α∗ ≡
(α∗1, . . . , α

∗
n) is no longer monotone.

We construct a numerical example to illustrate the comparative statics. Again, suppose

that n = 10 and (v1, v2, . . . , v10) = (2.9, 2.8, . . . , 2.0). To ease comparison with respect to

r, we normalize the sum of optimal weights established by Theorem 9 to one and define

α′i ≡ α∗i /(
∑n

j=1 α
∗
j ) for all i ∈ N ≡ {1, . . . , 10}.25 The optimal bias rule for a given r can

then be identified as follows:

r α′1 α′2 α′3 α′4 α′5 α′6 α′7 α′8 α′9 α′10

1.0 0.0903 0.0922 0.0942 0.0963 0.0984 0.1007 0.1031 0.1056 0.1082 0.1110

0.9 0.0979 0.0990 0.1001 0.1010 0.1018 0.1023 0.1025 0.1019 0.0998 0.0937

0.4 0.1364 0.1316 0.1260 0.1196 0.1121 0.1032 0.0925 0.0792 0.0621 0.0374

We illustrate the three cases in Figure 2. Monotone rankings of (α′1, . . . , α
′
10) arise in

the case of both a large r (r = 1) and a small r (r = 0.4): The former exemplifies the

conventional wisdom of leveling the playing field, while the latter entirely defies that. In

the case of intermediate r (r = 0.9), contestant 7, with a prize valuation 2.3, receives the

most favoritism from the designer [see Figure 2(b)]: The optimal contest levels the playing

field for contestants 1-7, but discounts the output of the weakest three. The second panel of

Figure 2 depicts the case of nonmonotone ranking. The curve that traces α′m with respect

to contestants’ prize valuation vm is inverted U-shaped.

23 Reverse handicapping in favor of ex ante stronger contenders is not uncommon in reality. Consider, for
instance, the widely practiced industry policy that gives unfair advantage to large organizations to promote
“national champions” for domestic dominance and international preeminence; e.g., the dirigiste policy in
France from 1945 to 1947 and Korea’s industrialization programs. Alternatively, the financial fair-play
regulation (FFP) in European football (soccer) has been broadly criticized for the anticompetition role it
played to perpetuate the dominance of “big clubs”: The rule requires that European football clubs balance
their books and not spend more than the income they generate, which solidifies an incumbent “big” club’s
advantage in attracting talent, given the superior revenue it receives based on its past track record.

24Soccer is broadly viewed as the least predictable major sporting discipline. Ben-Naim, Vazquez and
Redner (2007) and Anderson and Sally (2013) provide extensive empirical evidence that soccer matches
produced “upsets”—i.e., pregame underdogs overcoming favorites—more frequently than other sports, which
alludes to a relatively more significant role played by luck in soccer matches vis-à-vis skill or effort. Our result
can thus arguably shed light on the European FFP regulation that advantages big clubs (see Footnote 23).
This stands in contrast to various measures in the NBA—e.g., the draft lottery and salary cap—that maintain
a level playing field. Anderson and Sally, among others, show that the results of basketball matches are the
most predictable based on teams’ quality (see https://knowledge.wharton.upenn.edu/article/sports-by-the-
numbers-predicting-winners-and-losers/).

25The variable α′i can be interpreted as contestant i’s winning probabilities if all contestants exert the
same amount of effort.
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(a) r = 1 (b) r = 0.9

(c) r = 0.4

Figure 2: Optimal Effort-Maximizing Weighting Rule under Different Levels of r.

The optimal bias rule subtly depends on the various environmental factors of the contest,

e.g., the parameter r. However, the comparative statics can again be interpreted in light

of the fundamental correspondence and our optimization approach. As stated above, p∗,

the winning probability distribution in the optimum, must remain constant regardless of r.

Imagine that r decreases. A higher effort—contributed by a stronger contestant—can be less

effectively converted into higher winning odds, which narrows the spread in p∗ and, in turn,

depletes contestants’ effort incentives. To counteract this effect and restore the required

distribution p∗, an ex ante stronger contestant must be handicapped less severely because

a larger αi imposed on an ex ante stronger contestant, ceteris paribus, tends to enlarge the

spread in the distribution of winning probabilities for any given effort profile.

More intuitively, recall the usual rationale for leveling the playing field: Favoritism mo-
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tivates the underdog, which in turn prevents the favorite from slacking off. This rationale

can be cast into doubt when r decreases. A smaller r diminishes all contestants’ incentives.

On the one hand, a weaker contestant would respond less sensitively in his effort choice to

the extra favoritism he receives. On the other hand, a stronger contestant tends to be less

privileged to slack off regardless: A smaller r erodes his advantage because his higher effort

is less effective for securing larger winning odds. As a result, a contest rule in favor of the

weak loses its appeal, as both the positive incentive effect for underdogs and the disciplinary

effect on the favorite tend to fade away. Handicapping strong contestants may backfire, as

it excessively suppresses their winning odds and mutes their incentives. The optimum could

turn out to favor favorites more to counteract these effects and preserve their momentum.

5 Concluding Remarks

In this paper, we develop a novel optimization approach to study the design of biased

contests. A designer is allowed to impose identity-dependent preferential treatments on het-

erogeneous contestants. A closed-form solution to the equilibrium of an n-player asymmetric

contest is, in general, unavailable, which nullifies the usual implicit programming approach.

Our approach allows us to bypass the analytical difficulty. Based on a fundamental corre-

spondence derived from the equilibrium condition, we reformulate the optimization problem

and are able to characterize the general properties of the optimal contest in a substantially

generalized setting with flexible contest technology, noncanonical objective functions, and

an arbitrary number of players. The analysis enabled by the approach generates useful

theoretical implications that contrast starkly with those obtained in the restricted settings

considered in previous studies. In particular, we demonstrate that the conventional wisdom

of leveling the playing field may not hold in general. The optimum could even require that

the contest rules favor ex ante stronger contestants vis-à-vis their weaker opponents. In ad-

dition to its technical contribution, the approach, based on the aforementioned fundamental

correspondence, sheds light on the nature of incentive provision in contests.

Our paper assumes that contestants are endowed with the same contest technology h(·)
and effort cost function c(·). Notably, many of our results do not depend on this modeling

nuance. More specifically, Theorems 2-3 and 5-7 are qualitatively unchanged when the

restrictions are relaxed. Encapsulating contestants’ heterogeneity into the difference in their

prize valuations, however, provides a convenient measure or definition of contestants’ strength

and allows for lucid comparative statics, which gives rise to Theorems 4, 8, and 10.

Our approach substantially eases the analysis of optimal contest design and can be applied

to a broad array of scenarios. Assuming a Tullock contest technology, the approach yields

a closed-form solution to the optimal contest rule for a large class of objective functions,
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which enables future research on specific issues. For instance, it can be applied to reexamine

the classical issue of comparing all-pay auctions and lottery contests when alternative design

objectives other than total effort maximization are in place. Our paper considers a static

contest, but the approach can also be applied in dynamic settings. For instance, Fu and Wu

(2019b) consider a two-stage contest in which the designer assigns individualized weights

to contestants’ second-stage effort entries based on their first-stage ranking. Finally, this

paper focuses on contests with complete information; it would be interesting to extend the

analysis to an environment with incomplete information, which should be attempted in future

research.
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Appendix A Microfoundation

We interpret the microeconomic substance of the generalized lottery contest model from

two perspectives.

Noisy Ranking Clark and Riis (1996) and Jia (2008) show that a generalized lottery

contest is underpinned by a unique noisy ranking system. Imagine that contestants are

evaluated through a set of noisy signals of their performance `is. Following the discrete

choice framework of McFadden (1973, 1974),26 the noisy signal `i is assumed to be described

by

log `i = log fi(xi) + εi,∀ i ∈ N ,

where the deterministic and strictly increasing production function fi(·) : R+ → R+ measures

the output of contestant i’s effort xi,
27 and the additive noise term εi reflects the randomness

in the production process or the imperfection of the measurement and evaluation process.

Idiosyncratic noises ε := {εi, i ∈ N} are independently and identically distributed, being

drawn from a type I extreme-value (maximum) distribution, with a cumulative distribution

function

G(εi) = e−e
−εi , εi ∈ (−∞,+∞), ∀ i ∈ N .

A contestant i prevails if he outperforms all others: This noisy-ranking tournament boils

down to a generalized lottery contest, because

Pr

(
`i > max

j 6=i
`j

)
=

fi(xi)∑n
j=1 fj(xj)

.

Isomorphism to R&D Contests Baye and Hoppe (2003) demonstrate the isomorphism

between a generalized lottery contest, the research tournament model proposed by Fullerton

and McAfee (1999), and the patent race model suggested by Loury (1979) and Dasgupta and

Stiglitz (1980). This provides a more intuitive microeconomic underpinning for the model.

To illustrate the equivalence, we focus on the research tournament model of Fullerton and

McAfee (1999). A sponsor—who is interested in an innovative technology—invites n ≥ 2

R&D firms to carry out the project. Firms develop the technology and submit their products

to the designer. The entry of the highest quality wins and its developer is awarded a prize,

such as a procurement contract. Each firm i’s valuation of the prize is given by vi > 0.

Each firm i decides on its own input xi ≥ 0 in developing the technology. The quality

26The framework of McFadden’s discrete choice model is further introduced and studied in various respects
by works collected in Manski and McFadden (1981).

27Define log fi(xi) = −∞ if fi(xi) = 0.

33



qi of firm i’s product is randomly drawn from a distribution with cumulative distribution

function
[
Γ(qi)

]fi(xi). The function Γ(·) is a continuous cumulative distribution function on

a support
[
q, q
]
, with q > q. By Fullerton and McAfee (1999) and Baye and Hoppe (2003),

the term fi(xi)—which increases with xi—can intuitively be interpreted as the number of

research ideas generated in developing the product and indicates the firm’s research capacity:

Each research idea allows the firm to produce a prototype, with its quality being drawn from

the distribution function Γ(·). A firm simply presents its best prototype to the sponsor as

its entry, and the quality of its entry thus follows the distribution function
[
Γ(qi)

]fi(xi): The

more ideas a firm generates, the more likely a higher qi can be realized, and the more likely

the firm can leapfrog its competitors. As pointed out by Baye and Hoppe (2003) and Fu and

Lu (2012), a firm i wins the prize with a probability

Pr

(
qi > max

j 6=i
qj

)
=

fi(xi)∑n
j=1 fj(xj)

.

A similar equivalence can be established between a generalized lottery contest model and

the “first past the post” patent race model of Loury (1979) and Dasgupta and Stiglitz (1980),

in which a firm secures a rent if it makes a scientific discovery earlier than its competitors. Fu

and Lu (2012) further reveal the underlying statistical linkage between these R&D contests

and the generalized lottery contest model (1).
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Appendix B Proofs

Proof of Theorem 1

Proof. Note that xi = 0 is a strictly dominant strategy for contestant i if fi(·) is a constant.

Therefore, it suffices to prove the theorem for the case in which fi(·) satisfies f ′i(xi) > 0,

f ′′i (xi) ≤ 0 and fi(0) ≥ 0 for all i ∈ N .

For notational convenience, define yi := fi(xi), δi := fi(0), f̃i(xi) := fi(xi) − δi, and

λi(yi) := c
(
f̃−1
i (yi − δi)

)
/vi. It follows immediately that c(xi) = λi(yi) · vi. Moreover, we

have that λ′i > 0 and λ′′i ≥ 0. The expected payoff of contestant i ∈ N choosing yi ≥ δi is

equal to [
yi∑n
j=1 yj

− λi(yi)

]
· vi.

It remains to show that there exists a unique equilibrium y∗ ≡ (y∗1, . . . , y
∗
n) that satisfies

y∗i ≥ δi for all i ∈ N . Let s :=
∑n

j=1 yj and δ :=
∑n

j=1 δj. It is clear that s ≥ δ. The

first-order condition of the above expected utility with respect to yi yields the following:

s− yi
s2
− λ′i(yi) ≤ 0, with equality if yi > δi.

Fixing s, let us define yi(s) as the following:

yi(s) :=

δi if s2λ′i(δi)− s+ δi ≥ 0,

The unique solution to s− yi = s2λ′i(yi) otherwise.
(A1)

It is straightforward to verify that yi(s) is well defined and continuous in s ∈ [δi,∞]. More-

over, we must have that yi(s) ∈ (δi, s) if s2λ′i(δi)− s+ δi < 0.

Suppose that there exists an interval of s such that yi(s) > δi. It follows immediately

from the implicit function theorem that

y′i(s) =
1− 2sλ′i(yi)

1 + s2λ′′i (yi)
=

2yi(s)− s[
1 + s2λ′′i (yi)

]
s
, (A2)

where the second equality follows from s−yi = s2λ′i(yi). Therefore, yi(s) is strictly decreasing

in this interval if 2yi < s and strictly increasing otherwise. By Equation (A1), the latter

case occurs if and only if

s− 1

2
s > s2λ′i

(
s

2

)
⇔ 2sλ′i

(
s

2

)
< 1.
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Note that 2sλ′i
(
s
2

)
is strictly increasing in s, which implies that there exists at most one

solution to 2sλ′i
(
s
2

)
= 1. Denote the solution by ŝi whenever it exists.

Next, we denote the two different real number solutions of s2λ′i(δi)− s+ δi = 0 by s†i and

s††i respectively, with s†i < s††i , whenever they exist. The above analysis, together with the

fact that the expression s2λ′i(δi)− s+ δi in Equation (A1) is quadratic in s, implies that the

function yi(s) must fall into one of the following four cases:

Case I: There exist no different real number solutions of s2λ′i(δi)−s+δi = 0 for s ∈ [δ,∞].

Then we must have that s2λ′i(δi)−s+δi ≥ 0 for all s ≥ δ, which in turn implies that yi(s) = δi

for all s ≥ δ by Equation (A1). To slightly abuse the notation, we let s††i := δ for this case.

Case II: s†i ≤ δ ≤ s††i and yi(δ) ≤ 1
2
δ. Then yi(s) is strictly decreasing in s for s ∈ [δ, s††i ],

and yi(s) = δi for s ∈ [s††i ,∞].

Case III: s†i ≤ δ ≤ s††i and yi(δ) >
1
2
δ. It can be verified that δ < ŝi < s††i . Therefore,

yi(s) is strictly increasing in s for s ∈ [δ, ŝi]; is strictly decreasing in s for s ∈ [ŝi, s
††
i ]; and

yi(s) = δi for s ∈ [s††i ,∞].

Case IV: δ < s†i < s††i . It can be verified that s†i < ŝi < s††i . Moreover, yi(s) is strictly

increasing in s for s ∈ [s†i , ŝi]; is strictly decreasing in s for s ∈ [ŝi, s
††
i ]; and yi(s) = δi for

s ∈ [δ, s†i ] ∪ [s††i ,∞].

The four cases are depicted in Figure 3 graphically. For Case I and Case II, we define

si := δ; for Case III and Case IV, we define si := ŝi ≥ δ. It is straightforward to verify

that yi(s) >
1
2
s holds if s < si for all four cases. Without loss of generality, we order the

contestants such that

s1 ≥ s2 ≥ . . . ≥ sn ≥ δ.

Define Y (s) :=
∑n

i=1 yi(s) − s. It remains to show that Y (s) = 0 has a unique positive

solution. First, note that no solution exists for s < s2, because

Y (s) :=
n∑
i=1

yi(s)− s ≥ y1(s) + y2(s)− s > 1

2
s+

1

2
s− s = 0, for s < s2.

Next, we claim that Y (s) is strictly decreasing in s for s ≥ s2. Clearly, Y (s) is strictly

decreasing in s for s ≥ s1. Moreover, for s ∈ [s2, s1], Y (s) can be rewritten as

Y (s) =
n∑
i=2

yi(s)︸ ︷︷ ︸
first term

+
[
y1(s)− s

]︸ ︷︷ ︸
second term

.
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(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 3: yi(s).

Because s ≥ s2 ≥ . . . ≥ sn, the first term is weakly decreasing in s. Taking the derivative of

the second term with respect to s yields

y′1(s)− 1 =
2y1(s)− s[

1 + s2λ′′1
(
y1(s)

)]
s
− 1 ≤ 2y1(s)− s

s
− 1 =

2

s

[
y1(s)− s

]
< 0,

where the first equality follows from Equation (A2); the first inequality follows from λ′′i ≥ 0

and y1(s) ≥ s
2
, and the second inequality follows from yi(s) < s [see Eq uation (A1)].

Therefore, the second term is strictly decreasing in s, which in turn implies that Y (s) is

strictly decreasing for s ∈ [s2,∞].

It is straightforward to see that for all four cases, we have that yi(s) = δi for s ≥ s††i . Let
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s†† := s2 +
∑n

i=1 s
††
i +

∑n
i=1 δi. It is clear that s†† ≥ s2. Moreover, we have that

Y (s††) =
n∑
i=1

yi(s
††)− s†† =

n∑
i=1

δi −

s2 +
n∑
i=1

s††i +
n∑
i=1

δi

 = −s2 −
n∑
i=1

s††i ≤ 0.

Therefore, there exists a unique positive solution to Y (s) = 0 for s ∈ [s2, s
††]. This completes

the proof.

Proof of Theorem 2

Proof. The analysis for the case x∗t > 0 is provided in the main text, and it suffices to prove

the theorem for the case x∗t = 0. Because β∗t > 0, we must have p∗t > 0. If p∗t = 1, then we

must have x∗ = 0. Clearly, the equilibrium outcome (i.e., x∗ and p∗) can be replicated by

the following contest rule with zero headstarts:

(αi, βi) :=

{
(1, 0) for i = t,

(0, 0) for i 6= t.

Therefore, it remains to focus on the case in which p∗t ∈ (0, 1). Denote by x†† the unique

solution to the following equation:

p∗t (1− p∗t )vt = c′(x††) · h(x††)

h′(x††)
.

Note that the left-hand side of the above equation is strictly positive. Therefore, x†† >

0 = x∗t . Consider the following contest rule with weights α̂ ≡ (α̂1, . . . , α̂n) and headstarts

β̂ ≡ (β̂1, . . . , β̂n) such that

(
α̂i, β̂i

)
:=


(
α∗t h(x∗t )+β∗t

h(x††)
, 0
)

for i = t,

(α∗i , β
∗
i ) for i 6= t.

Denote the equilibrium effort profile and winning probabilities under the alternative contest

rule (α̂, β̂) by x̂∗ ≡ (x̂∗1, . . . , x̂
∗
n) and p̂∗ ≡ (p̂∗1, . . . , p̂

∗
n), respectively. It can be verified that

x̂∗i =

{
x†† for i = t,

x∗i for i 6= t.

Moreover, we have that p̂∗i = p∗i for all i ∈ N because α̂t · h(x††) + β̂t = α∗t · h(x∗t ) + β∗t
by construction. Therefore, the contest designer’s payoff under (α̂, β̂) is weakly higher than

that under (α∗,β∗) by Assumption 2. This completes the proof.
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Proof of Theorem 3

Proof. Part (i) of the lemma is trivial, and it remains to show part (ii). It is clear that xi = 0

is a strictly dominant strategy if αi = 0. For (pi, pj) > (0, 0), we must have (xi, xj) > (0, 0).

Therefore, the following first-order conditions must be satisfied by Equation (9):

xi = g
(

log(pi
(
1− pi)

)
+ log(vi)

)
,

xj = g
(

log(pj
(
1− pj)

)
+ log(vj)

)
.

Note that Equation (1) implies that

pi
pj

=

αi·h(xi)∑n
k=1 αk·h(xk)

αj ·h(xj)∑n
k=1 αk·h(xk)

=
αi · h(xi)

αj · h(xj)
.

Combining the above conditions, we can obtain that

αi
αj

=
pi/h(xi)

pj/h(xj)
=

pi

h

(
g
(

log(pi(1−pi))+log(vi)
))

pj

h

(
g
(

log(pj(1−pj))+log(vj)
)) .

The last equation clearly holds for the set of weights specified in Equation (11). This

completes the proof.

Proof of Theorem 4

Proof. With slight abuse of notation, let us define x(pk, vk) := g
(

log(pk
(
1− pk)

)
+ log(vk)

)
.

Then the equilibrium effort xk in Equation (9) can be written as x(pk, vk) for all k ∈
N . Define x(p,v) :=

(
x(p1, v1), . . . , x(pn, vn)

)
. It follows immediately that τ

(
x(p,v)

)
=

x
(
τ(p), τ(v)

)
. Moreover, Equation (9) implies that x(0, v) = 0 for all v > 0.

Suppose, to the contrary, that there exists some contestant j ∈ N with vj < vi such that

p∗i = 0 < p∗j . Then we can obtain

Λ
(
x(p∗,v),p∗,v

)
≤ Λ

(
x(p∗,v),p∗, τij(v)

)
= Λ

(
τij
(
x(p∗,v)

)
, τij(p

∗),v
)

= Λ
(
x
(
τij(p

∗), τij(v)
)
, τij(p

∗),v
)

< Λ
(
x
(
τij(p

∗),v
)
, τij(p

∗),v
)
.
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The first inequality follows from x(p∗i , vi) = 0 and part (ii) of Assumption 3; the first equality

follows from part (i) of Assumption 3 and the fact that τij
(
τij(v)

)
= v; the second equality

follows from τij
(
x(p∗,v)

)
= x

(
τij(p

∗), τij(v)
)
; and the last strict inequality follows from

x(p∗i , vi) = x(p∗i , vj) = 0, x(p∗j , vj) < x(p∗j , vi), the postulated p∗j > 0, and part (iii) of

Assumption 3. Therefore, the contest designer’s payoff under the optimal vector of winning

probabilities p∗ is strictly lower than that under τij(p
∗), which is a contradiction. This

completes the proof.

Proof of Theorem 5

Proof. See the main text.

Proof of Theorem 6

Proof. We first prove part (i) of the theorem. Suppose, to the contrary, that only two

players remain active in the optimal contest. It is clear that p∗1 = p∗2 = 1
2

in the optimum.

Consider the following profile of equilibrium winning probabilities p = (1
2
, 1

2
− ε, ε, 0, . . . , 0).

It can be verified that the total effort under p is equal to

Λ(x,p,v) = g

(
log(

1

4
) + log(v1)

)
+g

(
log(

1

4
− ε2) + log(v2)

)
+g
((

log(ε(1− ε)
)

+ log(v3)
)
.

Simple algebra shows that ∂Λ/∂ε > 0 when ε is sufficiently small. Therefore, at least three

players will remain active in the optimum.

Next, we prove part (ii). Suppose, to the contrary, that p∗i ≥ 1
2

for some i ∈ N . If

p∗i >
1
2
, then the contest designer can assign probability 1−p∗i to contestant i and probability

p∗j +(2p∗i −1) to an arbitrary contestant j 6= i. Because at least three players remain active in

the optimum, we must have p∗i +p
∗
j < 1. This in turn implies that |p∗j+(2p∗i−1)− 1

2
| < |p∗j− 1

2
|,

and thus contestant j’s effort strictly increases. Furthermore, it follows from Equation (9)

that contestant i’s effort remains the same. Therefore, the total effort strictly increases after

the adjustment. If p∗i = 1
2
, then there exists an active player j ∈ N such that pj ∈ (0, 1

2
),

because at least three players remain active in the optimum. In such a scenario, the designer

can increase the total effort by reducing p∗i by a sufficiently small amount and increasing p∗j
by the same amount. This completes the proof.

Proof of Theorem 7

Proof. It is useful to first prove the following intermediate result.
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Lemma A1 Consider a contest with three players who are indexed by i, j, and k. Suppose

that the contest designer aims to maximize the expected winner’s effort. Then setting pi =

pj = pk = 1
3

is suboptimal.

Proof. Without loss of generality, we assume that vi ≥ vj ≥ vk. The difference between the

expected winner’s effort under (pi, pj, pk) = (1
2
, 1

2
, 0) and that under (pi, pj, pk) = (1

3
, 1

3
, 1

3
)

can be derived as1

2
g

(
log

(
1

4

)
+ log(vi)

)
+

1

2
g

(
log

(
1

4

)
+ log(vj)

)
−

1

3
g

(
log

(
2

9

)
+ log(vi)

)
+

1

3
g

(
log

(
2

9

)
+ log(vj)

)
+

1

3
g

(
log

(
2

9

)
+ log(vk)

)
>

1

6

g(log

(
2

9

)
+ log(vi)

)
− g

(
log

(
2

9

)
+ log(vj)

)
≥ 0,

where the strict inequality follows from 1
4
> 2

9
, vj ≥ vk, and the monotonicity of g(·).

Therefore, setting pi = pj = pk = 1
3

is suboptimal. This completes the proof.

Now we can prove the theorem. Suppose, to the contrary, that three or more players

remain active in the optimal contest. Then there exist i, j, k ∈ N such that p∗∗i ≥ p∗∗j > 0

and p∗∗i ≥ p∗∗k > 0. Lemma A1 implies that min{2p∗∗j + p∗∗k , p
∗∗
j + 2p∗∗k } < 1. Without loss of

generality, we assume that vj ≥ vk.

Suppose that the contest designer assigns probability p∗∗jk := p∗∗j + p∗∗k to player j and 0

to player k, and does not change the equilibrium winning probability of all other players.

Then the difference between the expected winner’s effort under the new profile of winning
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probabilities and that under p∗∗ ≡ (p∗∗1 , . . . , p
∗∗
n ) can be derived as

(p∗∗j + p∗∗k )g

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
−

[
p∗∗j g

(
log
(
p∗∗j (1− p∗∗j )

)
+ log(vj)

)
+ p∗∗k g

(
log
(
p∗∗k (1− p∗∗k )

)
+ log(vk)

)]

= p∗∗j

[
g

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
− g

(
log
(
p∗∗j (1− p∗∗j )

)
+ log(vj)

)]

+ p∗∗k

[
g

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
− g

(
log
(
p∗∗k (1− p∗∗k )

)
+ log(vk)

)]
≥ 0,

where the inequality follows from min{2p∗∗j + p∗∗k , p
∗∗
j + 2p∗∗k } < 1, vj ≥ vk, and the mono-

tonicity of g(·). A contradiction. Therefore, only two contestants would remain active in the

optimal contest. Moreover, they must be the two ex ante strongest players by Theorem 4.

It remains to show that the ex ante stronger player always wins with a strictly higher

probability than the underdog. Suppose, to the contrary, that v1 > v2 and 0 < p∗∗1 ≤ p∗∗2 ,

with p∗∗1 + p∗∗2 = 1. We consider the following two cases:

Case I: p∗∗1 < p∗∗2 . Then the designer can increase the expected winner’s effort by assigning

probability p∗∗1 to player 2 and p∗∗2 to player 1. This would lead to a change in the expected

winner’s effort that amounts to[
p∗∗1 g

(
log (p∗∗1 p

∗∗
2 ) + log(v2)

)
+ p∗∗2 g

(
log (p∗∗1 p

∗∗
2 ) + log(v1)

)]
−
[
p∗∗1 g

(
log (p∗∗1 p

∗∗
2 ) + log(v1)

)
+ p∗∗2 g

(
log (p∗∗1 p

∗∗
2 ) + log(v2)

)]
= (p∗∗2 − p∗∗1 )

[
g
(
log (p∗∗1 p

∗∗
2 ) + log(v1)

)
− g

(
log (p∗∗1 p

∗∗
2 ) + log(v2)

)]
> 0,

which is a contradiction.

Case II: p∗∗1 = p∗∗2 = 1
2
. Let the designer assign winning probability 1

2
+ ε to player 1 and

1
2
− ε to player 2. The adjustment leads to a change in the expected winner’s effort that
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amounts to

Ξ(ε) :=

(1

2
+ ε

)
g

(
log

(
1

4
− ε2

)
+ log(v1)

)
+

(
1

2
− ε
)
g

(
log

(
1

4
− ε2

)
+ log(v2)

)
− 1

2

g(log

(
1

4

)
+ log(v1)

)
+ g

(
log

(
1

4

)
+ log(v2)

) .
It is straightforward to verify that Ξ(0) = 0 and Ξ′(0) = g

(
log
(
v1
4

))
− g

(
log
(
v2
4

))
> 0.

Therefore, Ξ(ε) > 0 for sufficiently small ε > 0, which is again a contradiction. This

completes the proof.

Proof of Theorem 8

Proof. Recall that Theorem 6 states that p∗i , p
∗
j <

1
2
, ∀ i, j ∈ N . Suppose, to the contrary,

that vi > vj and p∗i ≤ p∗j . We consider the following two cases:

Case I: p∗i < p∗j . Let the contest designer assign probability p∗j to player i and p∗i to player

j, and not change the equilibrium winning probability of all other players. Define Ωk1k2 :=

log(p∗k1

(
1− p∗k1)

)
+ log(vk2) for k1, k2 ∈ {i, j}. It can be verified that Ωii,Ωjj ∈ (Ωij,Ωji)

and Ωii + Ωjj = Ωij + Ωji. Furthermore, the difference between the total effort under the

alternative profile of winning probabilities and that under p∗ ≡ (p∗1, . . . , p
∗
n) is equal to[

g
(
Ωij

)
+ g

(
Ωji

)]
−
[
g (Ωii) + g

(
Ωjj

)]
> 0,

where the strict inequality follows from Ωii,Ωjj ∈ (Ωij,Ωji), Ωii + Ωjj = Ωij + Ωji, and the

strict convexity of g(·). A contradiction.

Case II: p∗i = p∗j . Let the contest designer assign probability p∗i + ε to player i and p∗j − ε
to player j, and not change the equilibrium winning probability of all other players. It can

be verified that such adjustment generates strictly more total effort to the designer for a

sufficiently small ε > 0. This completes the proof.

Proof of Theorem 10

Proof. Part (ii) of the theorem follows directly from part (i), and it suffices to prove part (i).

With slight abuse of notation, we add r into αi and αj to emphasize the fact that the optimal

43



weights α∗ ≡ (α∗1, . . . , α
∗
n) depend on the bidding efficiency r. Note that p∗ ≡ (p∗1, . . . , p

∗
n)

and κ are independent of r by Theorem 9. Moreover, we have that

T (r) := log

(
α∗i (r)

α∗j (r)

)
= (1− r) log

(
p∗i
p∗j

)
− r log

(
1− p∗i
1− p∗j

)
− r log

(
vi
vj

)
.

Clearly, T (r) is linear in r, and T (r) ≷ 0 is equivalent to α∗i (r) ≷ α∗j (r). Note that

lim
r↘0
T (r) = log

(
p∗i
p∗j

)
> 0,

and

T (1) = − log

(
1− p∗i
1− p∗j

× vi
vj

)
= − log

vi + κ−2∑κ
s=1

1
vs

vj + κ−2∑κ
s=1

1
vs

 < 0,

where the second equality follows from Equation (12). Therefore, there exists a unique cutoff

rij ∈ (0, 1) such that α∗i (r) ≷ α∗j (r) if r ≶ rij. This completes the proof.
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