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Abstract

We develop a search theoretic model in which both money and Bitcoin can be used
as a medium of exchange, and currency choices are determined endogenously. We an-
alytically study the conditions necessary for the coexistence of money and Bitcoin in
equilibrium, and its effects on welfare. The results of our quantitative analysis show
that Bitcoin can compete meaningfully with money only when the inflation rate is suf-
ficiently high, and that welfare in an economy with both money and Bitcoin is lower
than that in a money-only economy, due to Bitcoin’s inefficient mining process. The
welfare gap between the two economies expands as the inflation rate increases. An in-
crease in Bitcoin transaction fees can increase welfare by reducing inefficient Bitcoin
transactions.
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1 Introduction

Blockchain-based cryptocurrencies (e.g., Bitcoin) became popular in 2017, when the trans-

action volume and market capitalization increased remarkably.1 This increase in public at-

tention has led to a growing body of literature on cryptocurrencies, and intensive research in

central banks.2 However, our understanding of cryptocurrencies, particularly as a medium

of exchange (henceforth, MOE), is still limited. Among others, this study attempts to an-

swer the following questions: Can a cryptocurrency, Bitcoin, coexist or compete with central

bank-issued money as an MOE? If so, how does monetary policy affect their coexistence and

competition? Further, how do this policy and Bitcoin transaction fees affect cryptocurrency-

related activities, such as the trade volume of cryptocurrency and economic welfare? Does

the coexistence of money and Bitcoin improve economic welfare?

To address the above questions, we develop a monetary search model in which the cen-

tral bank-issued fiat money (henceforth, money) and a cryptocurrency are used as an MOE.3

In particular, we incorporate technical features of Bitcoin, a representative blockchain-based

cryptocurrency, into the Lagos and Wright (2005) framework. We chose Bitcoin because it

was the first major cryptocurrency, and it is the top-ranked cryptocurrency built on blockchain

technology in terms of the market capitalization and trade volume. Furthermore, alternative

cryptocurrencies, such as Bitcoin Cash, share most of the technological elements of Bitcoin.

In reality, it is true that the term “Bitcoin” is widely used to represent a cryptocurrency,

1According to Coinlore, the market capitalization and daily trade volume of Bitcoin amount to $112 billion
and $5 billion, respectively, as of September 21, 2018. (source: https://www.coinlore.com) Moreover, the
dollar price of one Bitcoin (BTC) recorded an all-time high of $19,783.06 on December 17, 2017 (source:
https://www.blockchain.com).

2The Bank of Canada began research on cryptocurrencies as a theme in “The Bank Medium-term Research
Plan, 2016-2018.” Similarly, the Bank of England also released a report, titled “One Bank Research Agenda”
in February 2015, where research on digital currency including cryptocurrencies is included as one of the five
key themes. The Bank of Korea launched a task force for research on digital currencies in 2017. The Bank of
International Settlements evaluated and discussed cryptocurrencies and their current technology in a chapter of
its annual report, released on June 17, 2018.

3A general discussion of a monetary search model is available in Williamson and Wright (2010) and Lagos
et al. (2017), and a textbook treatment can be found in Nosal and Rocheteau (2011).
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and that the terms are oftentimes used interchangeably. Furthermore, the Lagos and Wright

(2005) framework is well suited and tractable to incorporate the distinctive technological

features of Bitcoin, and to deal endogenously with the currency choices of agents. Most im-

portantly, the use of this extended framework allows us to derive a number of new insights,

which would not be possible without explicitly modeling the unique technological features.4

Both money and Bitcoin are fiat in the model: they have no intrinsic value, as in reality.

Both can be used as an MOE in transactions, and agents are allowed to choose either money

or Bitcoin, or both, to transact in exchange for goods. However, there are differences be-

tween money and Bitcoin in terms of their usefulness in facilitating transactions. First, the

government imposes sales taxes on transactions when money is used as an MOE, whereas

there is no sales tax on transactions when Bitcoin is used as an MOE. Instead, buyers pay

transaction fees to a third party in order to buy goods using Bitcoin. These are so-called

miners in the Bitcoin system, who validate the ownership of Bitcoin spent, and record its

changes in a digital (distributed) ledger.

Second, since Bitcoin exists only in digital form, the existence of agents, such as miners,

for the validation and record-keeping of transactions is essential to Bitcoin being used as a

means of payment. Importantly, a positive mass of time is required for miners to finish vali-

dating and recording transactions, the so-called mining in the Bitcoin system. This increases

in the number of Bitcoin transactions, on average, because there is a limit to the number

of transactions that the Bitcoin system can record within a certain period due to its limited

scalability. This time required for the mining work can make sellers reluctant to deliver

their goods on the spot, unlike money, because they are exposed to a double-spending risk.

4Following the so-called Wallace (1998) Dictum, “Money should not be a primitive in monetary theory,”we
do not assume ad hoc frictions such as the “cash-in-advance constraint”: agents use only a particular currency,
money or Bitcoin, in some transactions. Instead, we explicitly model the distinctive technological features of
Bitcoin. As pointed out in Nosal and Rocheteau (2011), the cash-in-advance constraint seems particularly odd
when currencies have different fundamentals or technological features and, moreover, could eventually lead to
misleading results because money functions as a mechanism that reduces the feasible set of allocations in an
economy, not as a mechanism that overcomes frictions in transactions.
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Specifically, sellers cannot be sure whether the ownership of Bitcoin received in transactions

is completely transferred to them, because buyers can use the same Bitcoin, which has been

already spent, more than once until the mining is finished completely. If the received Bitcoin

turns out to be double spent later, the sellers ownership may never be verified, and thus the

Bitcoin cannot be used in the Bitcoin system. Consequently, sellers can be reluctant to de-

liver their goods immediately. This delayed delivery of goods limits the ability of Bitcoin to

facilitate transactions as an MOE.

Third, mining requires effort on the part of miners, which causes a welfare loss because

the effort does not produce any consumable goods. On the other hand, the government has

to pay for the money operation cost in order to facilitate the role of money as an MOE, that

is, printing new currency, transportation, and destruction of mutilated currency. More details

about the technical features of Bitcoin that we incorporate into the model are described in

Section 1.2.

In this environment, we focus on the equilibrium in which agents are indifferent in terms

of their perception of money and Bitcoin as an MOE and, thus, both money and Bitcoin

coexist as an MOE. The model suggests a threshold level of the money growth rate in order

for both money and Bitcoin to coexist in equilibrium. If the money growth rate is lower than

the threshold level, both money and Bitcoin cannot coexist, because the former is strictly

more useful (or efficient) than the latter in an exchange. However, this does not mean that

an equilibrium where Bitcoin is the only MOE cannot exist. Depending on the agents’

expectations in our model, it is always possible that only Bitcoin is used as an MOE, and

money is not valued in equilibrium independently of the money growth rate, because both

are fiat.5

To obtain further implications, we calibrate the model to the U.S. economy, and conduct
5In this respect, see Lagos and Wright (2003) and Fernndez-Villaverde and Sanches (2016). Because both

central bank-issued money and Bitcoin are intrinsically useless, they are subject to self-fulfilling prophecies,
and thus their values can eventually converge to zero owing to changes in agents’ expectations irrespective of
the economic fundamentals.
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a quantitative analysis. A key insight of our analysis is that an economy with only money

as an MOE (henceforth, money-only economy) accomplishes higher levels of economic wel-

fare than does an economy where both money and Bitcoin work as an MOE (henceforth,

coexistence economy). As explained above, when buyers purchase goods in exchange for

Bitcoin, the delivery of goods is delayed to avoid double-spending because of the time-

consuming mining process. The delayed consumption leads to a utility loss in addition to

a loss in welfare caused by the costly mining work itself. This implies that Bitcoin is not

as efficient as money as an MOE. Our quantitative analysis shows that the inefficiency of

Bitcoin can cause significant welfare losses under the current Bitcoin system. The coexis-

tence of money and Bitcoin generates a welfare loss of 0.048% of consumption, in terms of

a consumption-equivalent measure under an inflation rate of 2%.

As the inflation rate increases, the aggregate trade volume and welfare fall in both money-

only and coexistence economies because of the increased money holding cost (and thus

less real balances). This result is similar to that in a standard money search model, which

is the money-only economy. However, agents in the coexistence economy can substitute

away money using Bitcoin. Inflation decreases transactions that use money, but increases

transactions that use Bitcoin. As a result, the coexistence economy shows a lower decrease

in the aggregate quantity of traded goods than that of the money-only economy. Importantly,

however, an increase in the aggregate Bitcoin transactions leads to an increase in the average

waiting time until a new Bitcoin transaction is validated and recorded in the Bitcoin system,

due to its limited scalability. Thus, the delivery of goods purchased using Bitcoin is delayed

for a longer time, on average. This delay causes the lower effective consumption of buyers,

which takes into account a consumption delay. Consequently, welfare falls further in the

coexistence economy than in the money-only economy in response to an increase in the

inflation rate, and the welfare gap between the two economies widens. Specifically, the

welfare loss caused by the coexistence of money and Bitcoin increases from 0.018% to 8.9%
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of consumption as the inflation rate rises from zero to 100%.

Finally, we analyze the effects of Bitcoin transaction fees on economic activities and

welfare. A key result is that, as the Bitcoin transaction fees increase, welfare increases in the

coexistence economy, but decreases in an economy in which Bitcoin is used as the only MOE

(henceforth, Bitcoin-only economy). The transaction fees play a role as the Bitcoin holding

cost, as inflation does in a standard money search model. The transaction fees decrease the

Bitcoin trade volume and thus welfare in a Bitcoin-only economy. This result is consistent

with one of the main findings in Chiu and Koeppl (2017), who study the optimal design of

the Bitcoin system. Notably, however, welfare increases in response to an increase in the

transaction fees in the coexistence economy. When both money and Bitcoin are used as

an MOE, agents can substitute Bitcoin with money. The aggregate trade volume decreases

by less than it does in a Bitcoin-only economy, and the portion of transactions that use a

more efficient MOE (i.e., money) increases. Furthermore, the decrease in the Bitcoin trade

volume leads to a decline in the average waiting time for confirming Bitcoin transactions,

which makes Bitcoin more efficient as an MOE. As a result, economic welfare increases as

the transaction fees increase in the coexistence economy.

1.1 Related Literature

The economics literature on cryptocurrencies based on blockchain technology is limited, in

spite of its recent rapid growth. Our study can be considered part of the literature on the

coexistence and substitutability of central bank-issued money (so-called “outside” money)

and privately issued monies (“inside” money) or assets as an MOE; see Kocherlakota (1998),

Kocherlakota and Wallace (1998), Cavalcanti and Wallace (1999), Williamson (1999), Berentsen

(2006), and Lagos and Rocheteau (2008). Among recent studies, Fernndez-Villaverde and

Sanches (2016) build a Lagos and Wright (2005) framework with privately issued currencies

in order to study currency competition and its macroeconomic effects. They conclude that
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a privately issued currency that is not backed by productive capital would be driven out of

the economy. Schilling and Uhlig (2018) construct a general equilibrium model with central

bank-issued money and Bitcoin. They use the model to study cryptocurrency pricing and to

derive the necessary conditions for speculation to occur in equilibrium. Garratt and Wallace

(2017) and Athey et al. (2016) investigate the value of Bitcoin and its exchange rate with a

sovereign currency. In these studies, however, cryptocurrencies are not considered seriously

as a form of privately issued money, or the main technological features of blockchain-based

cryptocurrencies such as a mining process for new blocks are not explicitly incorporated

within the framework with central bank-issued money.6 To the best of our knowledge, our

work is the first attempt to study how central bank-issued money and a cryptocurrency co-

exist and compete within a theoretical framework that includes the distinctive technological

features of blockchain-based cryptocurrencies.

Some other recent studies have addressed questions related to the Bitcoin system as a

representative cryptocurrency system. For example, Yermack (2013) examines whether Bit-

coin is a currency that functions as a medium of exchange, a store of value, and a unit of

account, concluding that Bitcoin nearly serves as a speculative asset under the current sys-

tem. Chiu and Koeppl (2017) study the optimal structure of the Bitcoin system. According

to them, the efficiency of the system can be improved by changing its reward mechanism

for mining. Specifically, reducing transaction fees and controlling the new coin creation rate

can decrease the welfare loss from 1.41% to 0.08%. Cong et al. (2018) examine the dynamic

pricing of cryptocurrencies, or crypto-tokens, on an online platform. They focus on a user-

based externality, the so-called a network effect, on a blockchain platform on which cryp-

tocurrencies are created and used for transactions. In their analysis, the growth effect of the

tokens, caused by the externality, can increase welfare and reduce the volatility of user adop-
6Fernndez-Villaverde and Sanches (2016) consider money-like features of cryptocurrencies, in the sense that

the features are mainly related to their supply process, such as the existence of upper bounds on their supplies
and their fixed supply protocols. However, they do not incorporate technological structures of blockchain-based
cryptocurrencies.
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tion, and thus price variation. Similarly, Gandal and Halaburda (2014) study the network

effects on competition between crytopcurrencies and on their relative valuations. However,

these studies investigate an economy with a cryptocurrency only, especially Bitcoin. None of

these studies examines how a cryptocurrency competes with central bank-issued money, and

thus how monetary policy affects cryptocurrency-related activities and economic welfare in

an economy with both money and a cryptocurrency, as in our work. Chiu and Wong (2015)

take a mechanism design approach to discuss how e-money helps to implement constrained

efficient allocations. E-money is also a digital currency, but its technical background differs

from that of the blockchain-based cryptocurrencies.

In the international macroeconomics and finance literature, Routledge and Zetlin-Jones

(2018) show that blockchain distributed ledger technologies can be used to establish cur-

rency stability against another currency by removing self-fulfilling speculative attacks on the

currency in the model with bank runs of Diamond and Dybvig (1983). In addition, Gandal

et al. (2017) and Glaser et al. (2014) focus on cryptocurrency valuations and their volatility

against the U.S. dollar as a financial asset, not an MOE.

1.2 A brief introduction to cryptocurrencies

In this subsection, we describe the main features of blockchain-based cryptocurrencies, in

particular, Bitcoin, in order to understand how we incorporate these features in our model.

Among a number of technological features, we focus on the monetary characteristics of

cryptocurrencies as an MOE, rather than the blockchain technology itself.

Digitalized, or digital, currencies necessarily require trustworthy record-keepers and

electronic ledgers, where the current status or changes of ownership are recorded electron-

ically by a series of numbers—a combination of either zeros and ones. The main concern

with this feature is that the records can be easily duplicated into other digital memory de-

vices. This can cause a double-spending problem; for instance, the same digital token can
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be spent more than once. The double-spending risk is inherent in all digital currencies. The

digital currencies, before the recent emergence of cryptocurrencies, eliminated the double-

spending risk mainly by authorizing only a few legally qualified financial institutions to

record currencies’ ownership and keep it on their own digital ledgers.

Cryptocurrencies are also a kind of digital currency that exists only in the form of elec-

tronic records on digital ledgers, and are thus exposed to a double-spending risk. Unlike

other digital currencies, cryptocurrencies remove this risk by using blockchain technology.

A blockchain is a decentralized digital ledger in which anyone can record and keep the com-

plete transaction history, but only if he/she is willing to do so. As a representative example,

the Bitcoin system authorizes so-called miners to validate and record transactions or changes

in its ownership on the blockchain. Being a miner implies being connected through a node to

the Bitcoin network. A node is a program that validates new transaction records, broadcasts

blocks with the records to other nodes, and keeps the chain of blocks.7 Anyone can be-

come a miner by installing a Bitcoin-mining computer program, which enables the miner to

participate in competition for validating and recording Bitcoin transactions, and to maintain

changes in Bitcoin ownership through a node.

Specifically, miners compete with one another to be the only one to record new transac-

tions on the blockchain and, thus, earns rewards for it. As a first step, a miner makes or mines

a new block with collected pending Bitcoin transaction data by determining a cryptographic

nonce with which to compute a specific hash value using the hash function dSHA256.8 The

nonces can be found only through a trial-and-error procedure; hence, this process is called

proof of work (PoW).9

7As of September 21, 2018, 9,575 nodes were running on the Bitcoin network. Since a node can be
shared by several miners, the number of miners in the network is even greater than that of nodes. Source:
https://coin.dance/nodes/all

8See Berentsen and Schar (2018) and Sanches (2018) for technical details on the block creation process and
the Bitcoin transaction process.

9Among several verification protocols, the Bitcoin system adopts proof of work (PoW) as a verification
algorithm, which is the original one used in the first blockchain network. However, there are other algorithms,
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Once a miner finds a nonce to yield a specific hash value, the miner broadcasts the mined

block to the network as quickly as possible for verification and consensus. If more than half

of the total nodes accept it and miners on those nodes use the spread block for the next block

creation by attaching it to their own chains of existing blocks, then the miner who made

the new block becomes the only winner and receives the rewards.10 Since the number of

nodes that accept the newly created block must be more than 50% of the total in order to

win the competition, the blockchain is oftentimes called an “agreed-upon shared distributed

database.” The current Bitcoin system is programmed to take about 10 minutes, on average,

to append a new block to the blockchain, even with advances in computing technology to

calculate nonces and hash values.

PoW requires a certain amount of electronic energy and computational usage. The higher

computing power (and thus higher investment cost for the computing power) increases the

probability that a miner will compute a nonce faster than other miners will, thus winning the

competition. Then, the miner earns the corresponding reward of a newly created Bitcoin and

transaction fees. The current number of new Bitcoins awarded to a winner is 12.5 Bitcoins.11

In addition, transaction fees are paid for the mining process. The existence of transaction

fees incentivizes miners to first include transactions that pay high fees in the new blocks they

create. The current transaction fees remain low, less than 0.001 Bitcoins per transaction,

except for a few extreme cases. Bitcoin awarded as a reward for mining may not be spent for

the next 100 blocks.12

such as proof of stake and proof of capacity. See Ouattara et al. (2018) for technical details on these mecha-
nisms.

10We can think of a block as a page in a traditional paper ledger on which transaction records are written,
and the blockchain as the whole paper ledger. It is natural that new transactions cannot be recorded on the
ledger without the previously recorded page. In reality, miners are supposed to first attach the most updated
block before mining a new block.

11This reward is halved every 210,000 blocks, and Bitcoin creation is scheduled such that the total number
of Bitcoin converges to 21,000,000 units.

12Since mining one block currently takes 10 minutes, on average, successful miners are allowed to spend
the rewards in around 16.7 hours. This prevents miners from spending the rewards from a block that may be
determined later to be destroyed after blockchain forks.
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Last but not least, a size limit of 1 MB (megabyte) per block exists. This implies that a

block can contain around 2,000 transactions, at most, if the size of each transaction record

is, on average, 500 bytes. Hence, it can take more time for an individual transaction to be

recorded in the blockchain when a large number of transactions occur within a period.13

The remainder of the paper is organized as follows. In Section 2, we describe the physical

properties of the coexistence economy, incorporating the features of the blockchain-based

Bitcoin system explained above. In Section 3, we solve economic agents’ problems, and in

Section 4, we characterize the equilibrium. In Section 5, we calibrate the model and conduct

a quantitative analysis. We conclude the paper in Section 6.

2 Environment

The basic framework of the model is based on the work of Lagos and Wright (2005), with

heterogeneous agents similar to those of Lagos and Rocheteau (2005) and Rocheteau and

Wright (2005). Time, t = 0,1, ..., is discrete and continues forever. Each period is divided

into two subperiods when different economic activities occur. A goods market (henceforth,

GM) opens in the first subperiod, and a currency market (henceforth, CM) follows in the

second subperiod. There is a discount factor, β ∈ (0,1), between periods. There are three

types of agents: buyers, sellers, and miners. There is a continuum of buyers and sellers, each

with a unit mass. The number of miners is fixed at η , which is a large positive integer. Agents

13Opinion is divided among experts on the scalability of the Bitcoin network, that is, rescaling a block’s size.
See https://en.bitcoin.it/wiki/Block size limit controversy.’ Moreover, scalability problems faced by Bitcoin
are discussed by, among others, Croman et al. (2016) and Zheng et al. (2018).
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have the following quasi-linear functional forms of preferences in period t, respectively:

Buyers: U(qt ,Xt ,Ht) = u(qt)+Xt−Ht

Sellers: U(ht ,Xt ,Ht) =−c(ht)+Xt−Ht

Miners: U(et ,Xt ,Ht) =−et +Xt−Ht .

Here, qt is consumption in the GM; Xt and Ht are consumption and the labor supply, re-

spectively, in the CM; ht is the labor supply used to produce goods in the GM; and et is

the effort (or expenses) for mining in the GM. u(·) is twice continuously differentiable, with

the properties of u′′ < 0 < u′, u(0) = 0, lim
q→0

u′(q) = ∞, and lim
q→∞

u′(q) = 0. Moreover, c(·)

is twice continuously differentiable, strictly increasing, and strictly convex, with c(0) = 0.

Each agent can produce one unit of the perishable consumption good for each unit of labor

supply in each subperiod, but miners’ effort in the GM does not produce any goods.

In the first subperiod, the GM opens. Buyers and sellers trade GM goods in a Walrasian

market. Buyers want to consume, but cannot produce, while sellers can produce, but do not

wish to consume. This generates a double coincidence problem. All agents are anonymous;

that is, they are unaware of each other’s transaction history. Furthermore, they have limited

commitment; that is, they are unable to use a credit arrangement. Thus, an MOE is neces-

sary in order for transactions between buyers and sellers to occur in the GM. Two types of

currencies can be used as an MOE: money and Bitcoin. Money (M) and Bitcoin (B) are per-

fectly divisible, storable, and grow at the gross rates of γ and γb, respectively: Mt+1 = γMt

and Bt+1 = γbBt . We assume that γ > β and γb ≥ 1. GM goods can be purchased at the

(real) prices of pm,t and pb,t , in terms of CM goods in period t, with money and Bitcoin,

respectively. Given the prices of GM goods, each buyer chooses demand qb
m,t and qb

b,t , pur-

chased with money and Bitcoin, respectively, and each seller chooses supply qs
m,t and qs

b,t in

exchange for money and Bitcoin, respectively. Lastly, miners who participate in the mining
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work expend effort et to validate and record transactions where Bitcoin is used as an MOE.

In the second subperiod, the CM opens. All types of agents trade numeraire CM goods

and currencies—money and Bitcoin—in a Walrasian market. Any amount of money and

Bitcoin can be purchased at prices of φt and ψt , respectively, in terms of numeraire goods

in the CM. The money supply is controlled by the government, which is a consolidated

authority. New money is injected into (withdrawn from) sellers through lump-sum transfers

(taxes) as standard money search models.14 On the other hand, there is no authority to

control the Bitcoin supply, and the Bitcoin system is programmed to adjust the growth rate,

γb, according to its predetermined rule.

Mining work and reward scheme All Bitcoin transactions are validated and recorded in

a decentralized digital ledger, called the blockchain. A block contains a set of information

about Bitcoin transactions that were conducted between Bitcoin users in a given period, and

the blockchain is a sequence of blocks that contains a complete Bitcoin transaction history.

An issue which arises in building up a model is how to incorporate the process to update

Bitcoin transaction information on the existing blockchain, preventing the double-spending

risk inherent in all cryptocurrencies. We assume that any Bitcoin transactions in the CM

are automatically recorded to the existing blockchain without a double-spending risk, due to

public monitoring, whereas any Bitcoin transactions in the GM must be verified and recorded

by miners. In the verification and recording process, miners competitively create new blocks

by expending effort, et , in the GM. The probability of winning the competition increases in

his/her effort relative to that of other miners. In addition, we assume that the mining games

are independent across blocks. That is, miners compete for a new block in each mining game

in sequence.

14In a standard money search model, based on Lagos and Wright (2005), the government changes the money
supply with a lump-sum transfer to buyers, not to sellers. However, the identity of who receives the transfer
does not affect the main results.
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A miner who succeeds in adding his/her new block to the blockchain is compensated with

Bitcoin in the next CM. There are two sources for compensation: transaction fees and newly

created Bitcoin. First, buyers pay transaction fees to miners in order to purchase goods with

Bitcoin in the GM. We assume that the transaction fees are proportional to the total value of

a Bitcoin transaction and fixed at a certain rate of f > 0.15 Second, the miner also receives

newly created (or supplied) Bitcoin as a reward for his/her successful mining work. The

quantity of the new Bitcoin supplied in the next CM, S̃t , is determined by the growth rate,

γb: Bt = γbBt−1 = Bt−1 + S̃t (or S̃t = (γb−1)Bt−1). Since the reward cannot be negative, we

assume that γb ≥ 1, as shown above.

Confirmation lag of Bitcoin transactions and delayed consumption Bitcoin transac-

tions are not 100% secure against the double-spending risk until a transaction record is a

certain number of blocks deep. Thus, sellers may not be sure that the Bitcoin paid in trans-

actions completely belongs to them, even if buyers broadcast an electronic message that they

have handed over their Bitcoin to the sellers in the Bitcoin network. If a Bitcoin transaction

turns out to be a double-spending case later, the sellers’ ownership of the received Bitcoin is

never verified, and thus the Bitcoin cannot be used in the Bitcoin network.

In the current Bitcoin system, a transaction record tends to be considered as confirmed

among Bitcoin users only after the transaction record is at least six blocks deep: if a block

that contains a certain transaction record is followed by more than five blocks in the blockchain,

then the transaction record is almost 99.9% secured against the double-spending risk. This

risk and the confirmation lag means that sellers can be reluctant to hand over goods to buy-

ers on the spot. Specifically, we assume that sellers can commit to deliver goods but cannot

commit to the timing of delivery in the GM. This implies that if a buyer has incentives of

15In reality, buyers can determine transaction fees so that their transactions can be confirmed in the
blockchain network as soon as possible. However, we assume that f is fixed because its level has remained
stable at a low level since it was invented in 2009. More details are presented in the section on calibration later.
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double-spending, then sellers deliver goods only after the Bitcoin transaction is confirmed or

100% secured on the blockchain to avoid double spending. However, in the model, buyers

have nothing to lose from double-spending attack, and hence, buyers will commit a double

spending attack whenever it is possible.16 As a consequence, when a buyer purchases goods

with Bitcoin, a confirmation lag exists; hence, he/she has to wait before receiving goods.17

We reflect this feature in the model by introducing a discount factor, δ ∈ [0,1], to the

consumption of goods purchased using Bitcoin, qb
b,t , similar to iceberg transportation cost

models, such as Krugman (1991). This is also in line with that of Chiu and Koeppl (2017).18

Specifically, the buyer’s effective consumption of GM goods in period t, denoted as qb
t , is

given as

qb
t = qb

m,t +δqb
b,t .

Under the current Bitcoin system, the confirmation lag in a given period t depends on

two important factors: the aggregate mining effort, Λt , and the aggregate quantity of goods

traded using Bitcoin, qb,t in period t. Specifically, we let the discount factor be a function of

Λt
qb,t

and qb,t , as δ

(
Λt
qb,t

,qb,t

)
, as described below.

First, the discount factor, δ , increases in the aggregate mining effort. This is because

the pace of the mining and confirmation process increases in the aggregate mining effort.

For example, if there is no mining work, a Bitcoin transaction will never be confirmed, and

sellers would not deliver goods for perpetuity. Hence, δ would be zero in this extreme case.

16If a buyer has something to lose from double-spending attempts, such as a good reputation of his/her
digital wallet, for example, as in Kang (2019), then the buyer may not have double-spending incentives without
delivery lags (see Kang (2019) for more information).

17Under the current Bitcoin system, it takes 60 minutes, on average, for a transaction to be confirmed, that
is, before the transaction record is at least six blocks deep.

18The way of introducing the discount factor is a bit different from that of Chiu and Koeppl (2017), where
only Bitcoin exists as an MOE. They introduce δ in front of the utility function, that is, δu(q). However, there
are two types of MOE in our model, and the discount factor, δ , should not affect the consumption of goods
purchased using money, because buyers receive the goods instantly if money is used. If we introduced δ in front
of the utility function, that is, δu(q), as in Chiu and Koeppl (2017), it would affect the effective consumption
of goods purchased using money as well. To avoid this problem, we introduce δ in front of qb

b,t like iceberg
transportation cost models.
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Specifically, if nt number of blocks are created and the aggregate mining effort in period

t is Λt , then the aggregate mining effort for each block Λt
nt

affects the time for mining a

new block and hence the discount factor. However, the number of blocks increases with the

Bitcoin transaction volume.19 Thus, we assume that the discount factor, δ , is an increasing

function of Λt
qb,t

, instead of Λt
nt

, and δ (0, ·) = 0 for tractability.20

Second, the discount factor, δ , decreases in the aggregate quantity of goods traded using

Bitcoin, qb,t . A new block can contain only a certain number of transaction records, due to

its size limit of 1 MB. As the quantity of goods traded using Bitcoin rises in a given period,

more blocks need to be created and added to the existing blockchain. This means that a

particular Bitcoin transaction may be contained in a later block of the blockchain, delaying

the confirmation of the transaction. Thus, as the number of blocks increases the average

waiting time before receiving goods increases which implies a decrease in the discount factor

δ . Since the number of blocks created depends on the aggregate quantity of goods traded

using Bitcoin, qb,t , we assume that the discount factor, δ , decreases in the aggregate Bitcoin

transaction volume as
∂δ(·,qb,t)

∂qb,t
< 0 and lim

qb,t→∞
δ
(
·,qb,t

)
= 0.

Government expenditure and taxes Government spending in the model comprises gov-

ernment consumption, gt , and the cost of fiat money operations, gm
t .21 Government consump-

19An increase in qb,t does not necessarily imply an increase in the number of Bitcoin transactions because a
buyer may purchase a large amount of goods from one seller (in a transaction). However, it is also reasonable
to assume that an increase in qb,t means more Bitcoin transactions in the following sense. Suppose that each
period represents a year. In reality, a buyer would not purchase all goods in one transaction from one seller for
consumption of the whole year. He/She will buy and consume goods several times throughout the year. That
is, the quantity of goods consumed and the number of transactions are positively correlated. Thus, an increase
in the quantity of goods consumed in a given period would mean more transactions in a given period.

20Although the aggregate mining effort for each block, Λt
nt

, affects the confirmation time in principle, the
current Bitcoin system is programmed to be automatically adjusted such that it takes 10 minutes to mine a new
block, on average. Hence, unless Λt

nt
remains at too a low level, it does not critically affect the discount factor.

We consider this property when calibrating the model in Section 5.
21In typical monetary theories, such as Lagos and Wright (2005), government expenditure is not considered

explicitly, and lump sum taxes (or transfers) change passively with changes in money growth rate. However,
government expenditure plays an important role in an economy, and many quantitative macro models, such as
Gertler and Karadi (2011, 2013), explicitly include such expenditure. We allow for government expenditure as
in the standard quantitative macro models, but in a stylized way.
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tion, gt , includes any expenditure to produce government services such as national defense

and social security. We treat it as exogenous. The cost of the fiat money operations includes

printing new currency, transportation, destruction of mutilated currency, verification and re-

moving counterfeit money, and packaging of currency. Various factors, such as the money

holding habits of consumers, denomination system of a country, and transaction velocity for

each denomination, can affect the money operation cost in reality. Nevertheless, we sim-

ply assume that the cost of fiat money operations is proportional to the real value of money

transactions in the GM, as gm
t = θ pm,tqm,t , where qm,t is the aggregate quantity of GM goods

traded using money, and θ is a parameter that affects the aggregate money operation cost.

We also specify sources of government revenue more explicitly than the previous money

search studies do. In particular, we include sales tax as a source of government revenue,

which is imposed on transactions where money is used as an MOE in the GM at a rate

of τm. However, there is no sales tax on Bitcoin transactions. Although other taxes, such

as income taxes and capital taxes, are important sources of government revenue and affect

agents’ economic decisions, we abstract them, such that these taxes are included in the lump-

sum taxes. We assume that sellers pay the sales tax, but the identity of who pays this tax does

not affect the main results.

Taken together, the government budget constraint is given by

(1) τm pm,tqm,t + τt +(γ−1)φtMt−1 = gt +θ pm,tqm,t .

Here, (γ − 1)φtMt−1 is the seigniorage of the money supply, given a money growth rate γ .

τt is a lump-sum tax (or transfer, if negative) that is determined endogenously given other

parameters, such as τm, gt , and θ , in equilibrium.
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3 Economic Agents’ Problem

In this section, we characterize the optimal behavior of each economic agent. Due to quasi-

linearity of preferences, as in Lagos and Wright (2005), the value function for an agent at

the beginning of the CM is linear in his/her initial asset holdings. Furthermore, the optimal

decisions of agents, such as the choice of asset portfolio for the next GM, are independent of

the asset holdings. For example, let V (mt ,bt) denote the value function for a representative

buyer at the beginning of the CM in period t, where the arguments mt and bt denote money

and Bitcoin balances, respectively. Then, because of the quasi-linearity, we can express

the value function as V (mt ,bt) = φtmt +ψtbt +V (0,0), which makes the model tractable.

Furthermore, we consider the case where φt
φt+1

> β and ψt
ψt+1

> β , because an monetary equi-

librium does not exist otherwise. This implies that no agents will carry extra money and

Bitcoin into the next CM.

Miners’ problem Miners compete to verify Bitcoin transactions in the GM by changing

their own effort, et . The probability that a miner i will win the mining competition for each

block depends on the ratio of his own effort, ei,t , to the aggregate effort of all miners to mine

a block, ∑
η

j=1 e j,t . That is, the probability of miner i’s winning is given by ei,t

∑
η

j=1 e j,t
.22

By winning the competition for updating the blockchain with a new block in the GM, a

miner receives Bitcoin as a reward in the next CM. Specifically, the total rewards for success-

ful mining in period t comprise transaction fees, Ft , and newly created Bitcoin, St , both in

terms of CM goods. Both Ft and St depend on the aggregate quantity of Bitcoin transactions.

That is, Ft = f pb,tqb,t and St = rt pb,tqb,t , where rt is the ratio of newly created Bitcoin to the

aggregate quantity of Bitcoin transactions. If no transactions use Bitcoin in a given period,

that is, qb,t = 0, there is nothing to verify and, hence, Ft = St = 0. The Bitcoin transaction

fees are proportional to the total value of the Bitcoin transactions at the fixed rate of f , but

22See Chiu and Koeppl (2017) for a micro-foundation for this probability of winning.

17



rt is determined by the growth rate of Bitcoin γb and Bt−1. More precisely, when qb,t > 0,

St = rt pb,tqb,t = ψt(γb− 1)Bt−1. Since we focus on equilibria where both money and Bit-

coin are traded, that is, qb,t > 0, we use the equation, St = ψt(γb−1)Bt−1, in the following

analysis.

In the model, all winners of mining competition share the total reward for mining work,

and thus, if nt > 0 number of blocks are mined, then the reward Rt for each successfully

mined block is given as

(2) Rt =
St +Ft

nt
=

ψt(γb−1)Bt−1 + f pb,tqb,t

nt
.

Furthermore, the mining games are independent across blocks and miners compete for each

block, which implies that miners repeat the same mining game for nt times and will choose

the same strategy for each mining game. A miner i takes the choice of other miners as given

and thus the expected profit of a miner i from mining work is given as

(3) πi,t = Max
ei,t≥0

{
ψtRt

ei,t

∑ j 6=i e j,t + ei,t
− ei,t

}
nt .

where nt is the number of blocks mined in period t and miners take nt as given. Substituting

(2) into (3), the miner’s problem can be re-written as

(4) πi,t = Max
ei,t≥0

{[
ψt(γb−1)Bt−1 + f pb,tqb,t

] ei,t

∑ j 6=i e j,t + ei,t
−ntei,t

}

A miner optimally chooses the effort level, ei,t , given other miners’ effort. Thus, we

obtain

(5)
[
ψt(γb−1)Bt−1 + f pb,tqb,t

] ∑ j 6=i e j[
∑ j 6=i e j,t + ei,t

]2 = nt
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as the first-order condition, which has a standard interpretation. At the optimum, the ex-

pected marginal return from increasing the mining effort for nt number of blocks on the

left-hand side must be equal to its marginal cost of this increase on the right-hand side,

which is nt , given the linear technology for mining work.

Since all miners are homogeneous, we obtain ei,t = et . Substituting these results into (5),

we obtain

(6)
[
ψt(γb−1)Bt−1 + f pb,tqb,t

] η−1
η2et

= nt

as the Nash equilibrium condition of the mining game. Then, the expected profit from mining

work πt given in (4) and the aggregate mining effort Λt = nt∑
η

j=1 e j,t are given as

πt =

[
ψt(γb−1)Bt−1 + f pb,tqb,t

]
η2(7)

Λt =
[
ψt(γb−1)Bt−1 + f pb,tqb,t

] η−1
η

.(8)

In reality, anyone can become a miner by installing a mining program on his/her com-

puters. Thus, mining work is competitive, and so we let η → ∞ to capture this fact.23 Note,

from (7), that as η goes to infinity, the expected profit from mining work πt converges to

zero: competition dissipates the profit from mining work. In addition, the aggregate mining

effort Λt , given by (8), goes to the aggregate reward for the mining work in a given period.

The above analysis is summarized in the next lemma.

Lemma 1 As η → ∞, miner’s effort, et , for each block and the expected profit from all

mining work in the GM, πt , converge to zero, and the aggregate mining effort Λt converges

to the aggregate total reward for the mining work in a given period.
23See Buy Bitcoin World (https://www.buybitcoinworldwide.com/how-many-bitcoins-are-there). In addi-

tion, according to blockchain.info, there are 14 mining pools that individually can account for at least 1% of
the total computation power.
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Buyer’s problem As explained above, a buyer would not carry more than the amount

of money or Bitcoin needed to purchase the quantity of GM goods that he/she wants to

consume. Thus, a buyer solves the following problem in the CM in period t:

Max
qb

m,t+1,q
b
b,t+1

 −
φt

φt+1
pm,t+1qb

m,t+1−
ψt

ψt+1
pb,t+1(1+ f )qb

b,t+1

+βu
(

qb
m,t+1 +δ

(
Λt+1
qb,t+1

,qb,t+1

)
qb

b,t+1

)
 ,

where qb,t+1 is the total quantity of GM goods traded with Bitcoin in the GM in period t +1.

Buyers purchase qb
m,t+1 and qb

b,t+1 units of GM goods in exchange for money and Bitcoin at

the real prices of pm,t+1 and pb,t+1, respectively. Buyers take as given the aggregate miners’

effort, Λt+1, and the total quantity of GM goods traded using Bitcoin, qb,t+1, and, hence, the

discount factor δ

(
Λt+1
qb,t+1

,qb,t+1

)
. Note that a buyer must pay additional f pb,t+1qb

b,t+1 units

of real Bitcoin to miners as transaction fees in order to buy GM goods using Bitcoin.

Then, the first-order conditions of the buyer’s problem, assuming the interior solution,

are

φt

φt+1
pm,t+1 = βu′

(
qb

t+1

)
(9)

ψt

ψt+1
pb,t+1(1+ f ) = βδ

(
Λt+1

qb,t+1
,qb,t+1

)
u′
(

qb
t+1

)
,(10)

where qb
t+1 = qb

m,t+1 + δ

(
Λt+1
qb,t+1

,qb,t+1

)
qb

b,t+1. The left-hand sides in (9) and (10) can be

interpreted as the marginal cost of bringing one additional unit of money and Bitcoin into

the GM, whereas the right-hand sides are the present value of the marginal benefit from

increasing consumption in the GM using the additional money and Bitcoin, respectively.

Note that we can derive an indifference condition between money and Bitcoin from (9) and

(10) as follows:
ψt

ψt+1

(1+ f )

δ

(
Λt+1
qb,t+1

,qb,t+1

) pb,t+1 =
φt

φt+1
pm,t+1.
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This condition shows the relationship between the real money price, pm,t+1, and the real

Bitcoin price, pb,t+1, of GM goods at which buyers will be indifferent to the choice between

money and Bitcoin as an MOE in equilibrium.

Seller’s problem As explained in Section 2, sellers are required to pay sales tax for money

transactions, but no sales tax for Bitcoin transactions, as in reality. Because sellers do not

consume goods in the GM, sellers have no incentive to carry money and Bitcoin into the

GM, given that φt
φt+1

> β and ψt
ψt+1

> β . Thus, in the CM, sellers spend all money and Bitcoin,

which they earned in the previous GM.24 The seller’s problem in the GM in period t is written

as

Max
qs

m,t ,qs
b,t

{
−c(qs

m,t +qs
b,t)+ pm,t(1− τm)qs

m,t + pb,tqs
b,t

}
,

where τm ∈ [0,1] is the sales tax rate for money transactions. Assuming that qs
m,t and qs

b,t are

strictly positive, the first-order conditions of the seller’s problem are:

c′(qs
m,t +qs

b,t) = pm,t(1− τm)(11)

c′(qs
m,t +qs

b,t) = pb,t .(12)

In (11) and (12), the marginal cost of producing GM goods for money and Bitcoin, respec-

tively, must be equal to the marginal benefit from selling them. Here, pm,t(1−τm) represents

the real after-tax income from selling one unit of GM goods in exchange for money, and pb,t

denotes the real marginal income from selling GM goods in exchange for Bitcoin. Lastly,

dividing (11) by (12) yields an indifference condition between money and Bitcoin for sellers

as follows:

(13) pb,t = pm,t(1− τm).

24See Rocheteau and Wright (2005) for the precise and careful proof.
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As in the above buyers’ case, in equilibrium, sellers must be indifferent to the choice between

money and Bitcoin as an MOE in the GM.

4 Equilibrium

We construct stationary equilibria with the coexistence of money and Bitcoin where all real

variables are constant over time. Stationarity implies φtMt = φt+1Mt+1 and ψtBt =ψt+1Bt+1,

which means that γ = φt
φt+1

and γb =
ψt

ψt+1
. Our definition of equilibrium is standard. Given

prices, all agents behave optimally, all markets clear, and the government budget constraint

is balanced in equilibrium, as described in the next definition.

Definition 1 A steady state equilibrium is a list,
{

z,zb,qb
m,q

b
b,q

s
m,q

s
b,qm,qb, pm, pb,τ,e,Λ

}
,

where z≡ φtMt and zb ≡ ψtBt , such that:

1. Given {pm, pb, γ , γb, Λ,qb}, {qb
m,q

b
b} solves the buyer’s problem;

2. Given {pm, pb, τm}, {qs
m,q

s
b} solves the seller’s problem;

3. The mining choice {e} is a Nash equilibrium of the mining game in the GM;

4. Buyers’ demand for GM goods purchased using money and Bitcoin, respectively, must

equal the supply by sellers in the GM:

qb
m = qs

m ≡ qm,(14)

qb
b = qs

b ≡ qb;(15)

5. Currency markets for money and Bitcoin must clear in the CM:

z = γ pmqm,(16)

zb = γb [pbqb(1+ f )] ;(17)
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6. The government (a consolidated authority) budget constraint (1) is satisfied.

To characterize the equilibrium, we substitute the Bitcoin market clearing condition, (17),

into (6) to obtain

(18) Λ = [γb(1+ f )−1] pbqb,

which uniquely determines Λ, given the real value of Bitcoin transactions, pbqb. In addition,

we find the following result because [γb(1+ f )−1] is strictly positive.

Corollary 1 The aggregate mining effort, Λ, increases in the real value of Bitcoin transac-

tions, pbqb.

Next, from (9) − (12), we obtain

(19)
γb(1+ f )(1− τm)

γ
= δ

(
Λ

qb
,qb

)
.

Because δ

(
Λ

qb
,qb

)
∈ [0,1], the necessary condition for the coexistence equilibrium is γb(1+

f )(1− τm)≤ γ , which is emphasized in the following proposition.

Proposition 1 The necessary condition for the coexistence of money and Bitcoin in equilib-

rium is γb(1+ f )(1− τm)≤ γ .

Proposition 1 implies that the inflation rate, γ , must be sufficiently high for money and

Bitcoin to coexist in equilibrium, where buyers and sellers must be indifferent to the choice

between money and Bitcoin. An increase in the Bitcoin growth rate, γb, or the transaction

fee rate, f , makes Bitcoin less attractive as an MOE. In this case, the inflation rate should

increase for coexistence, making buyers and sellers indifferent between Bitcoin and money.

Similarly, as the sales tax, τm, increases, a lower γ is allowed for both money and Bitcoin to

be held in equilibrium.
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Note, however, that Proposition 1 states the necessary condition for money and Bitcoin

to coexist as an MOE in equilibrium. This does not mean that Bitcoin cannot be used as

an MOE if this necessary condition is violated. As in a standard money search model, an

equilibrium in which fiat currency is not valued is always feasible, depending on agents’

expectations. Thus, if money is not used as an MOE, and thus φt = 0 for all t, then Bitcoin can

be used as an MOE with a positive value in equilibrium, even if the condition in Proposition

1 is violated.

Now, we can express qb and, thus, Λas a function of pm, using (9), (11), (13), (14), (15),

(18), and (19) as follows:

qb = q̂b(pm)≡
γ

γ− γb(1+ f )(1− τm)

{
c′−1 (pm(1− τm))−u′−1

(
γ pm

β

)}
(20)

Λ = Λ̂(pm)≡ (1− τm) [γb(1+ f )−1] pmq̂b(pm).(21)

Then, substituting (20) and (21) into (19) yields the following equation:

(22)
γb(1+ f )(1− τm)

γ
= δ

(
Λ̂(pm)

q̂b(pm)
, q̂b(pm)

)
.

This allows us to obtain the equilibrium value of pm, given which we can obtain values for

pb, qm, qb, Λ, and τ from (1), (11), (12), (16), (20), and (21), which characterizes the whole

equilibrium.

Monetary policy and the Bitcoin transaction fee rate We close this section by examining

the effects of monetary policy and the Bitcoin transaction fee rate on trading volume by each

currency, prices, the aggregate mining effort, and trade surplus in a steady state equilibrium.

To provide more intuitive reasoning behind the mechanism through which monetary policy

and the transaction fee rate affect the model economy, we make a simplifying assumption

for a moment, based on reality. As explained in the introduction, the current Bitcoin system
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is programmed to take about 10 minutes, on average, to mine a new block. This implies

that, unless the aggregate mining effort, Λ, remains at too a low level, its change does not

critically affect the waiting time until a Bitcoin transaction is confirmed by mining work,

although it could still have minor effects. Based on this reality, we assume for a moment that

the aggregate mining effort for each block does not affect the discount factor, δ . Then, δ is a

function of qb only; thus, the equilibrium condition (22) uniquely determines the aggregate

quantity of GM goods, qb, traded using Bitcoin as follows:

(23) qb = δ
−1
(

γb(1+ f )(1− τm)

γ

)
.

We further assume that [qbδ (qb)]
′ ≥ 0.

We first study the effects of the monetary policy that determines the inflation rate, γ .

Suppose that γ increases. Then, qb rises by (23). The effects of changing γ on pm and Λ,

which are determined by (20) and (21), respectively, are unclear because the sign of the

partial derivative of the right-hand side of (20) with respect to γ is not evident. It depends on

the functional form of c(·) and u(·). Next, from (9), we obtain

(24) qm = u′−1
(

γ pm

β

)
−qbδ (qb).

Thus, if pm rises when γ increases, qm falls. On the other hand, if pm decreases when γ

increases, then qm also falls, according to (11), because qb increases with respect to γ . Taken

together, qm falls when γ increases; hence, the ratio of the quantity of GM goods traded using

Bitcoin to the aggregate GM goods production, qb
qm+qb

, rises. This is intuitive because an

increase in γ indicates an increase in the money holding cost. Money becomes less attractive

to buyers as an MOE, and thus buyers trade more GM goods using Bitcoin and fewer GM

goods using money.
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qm qb pm pb Λ

γ − + ? ? ?

f + − − − ?

Table 1: Effects of the inflation rate and the transaction fee rate when δ = δ (qb)

Next, suppose the Bitcoin transaction fee rate, f , increases. Then, qb = δ−1
(

γb(1+ f )(1−τm)
γ

)
decreases, which is intuitive because buyers have to pay higher transaction fees to purchase

GM goods with Bitcoin. A seemingly unintuitive part is that the price of GM goods in terms

of real money, pm, falls as f rises, according to the equilibrium condition (20). However,

the economic mechanism behind this is as follows. As the transaction fee rate, f , rises, the

price of GM goods in terms of real Bitcoin, pb, must fall for Bitcoin to be used as an MOE

in equilibrium. Then, the price of GM goods in terms of real money, pm, also falls because

of the seller’s indifference condition (13) for money and Bitcoin. Since both qb and pm fall,

qm increases as the transaction fee rate, f , increases, according to (24). Finally, an increase

in f has a direct positive effect on the aggregate mining effort, Λ, given in (21), and also the

indirect negative effect through pm and qb. Thus, it is not evident whether Λ increases or

decreases. Table 1 summarizes the above analysis.

How do monetary policy and the Bitcoin transaction fee rate affect the trade surplus, S ,

which is defined as

(25) S = u(qm +δ

(
Λ

qb
,qb

)
qb)− c(qm +qb)

in the GM? In the money search model, the trade surplus is a major part of welfare, which

is quantitatively studied in the next section. Thus, an analysis of the trade surplus would

provide a better understanding of the mechanism through which monetary policy and trans-

action fees affect welfare in the model economy. The next proposition describes the effects

of monetary policy and transaction fees on the trade surplus.
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Proposition 2 Suppose δ

(
Λ

qb
,qb

)
= δ (qb). Then, the trade surplus decreases with γ and

increases with f .

Proof. See Appendix.

Consider the effects of the inflation rate, γ , first. An increase in γ decreases qm and

raises qb, as described in Table 1. These two opposite changes affect the total effective

consumption, qm +δ (qb)qb, and total production, qm +qb, and thus the trade surplus. First,

an increase in γ raises γ pm, although its effect on pm is not determined (see the proof of

Proposition 2 in the appendix for further details). Thus, qm+δ (qb)qb decreases in γ by (24).

Then, if qm+qb (and, thus, the production cost, c(qm+qb)) increases, then the trade surplus

definitely falls. Now, suppose that qm + qb decreases in γ , which pushes up welfare by

reducing the production cost. Given ∂qm
∂γ

< 0 and ∂qb
∂γ

> 0, ∂ [qm+δ (qb)qb]
∂γ

< ∂ [qm+qb]
∂γ

must hold

because δ (qb)≤ 1. Furthermore, note from (9) and (12) that u′(qm+δ (qb)qb)> c′(qm+qb).

Then, the positive effect of increasing γ on the trade surplus by reducing the production

cost is dominated by the negative effect of the utility loss from the reduction in effective

consumption. Taken together, the trade surplus decreases with the inflation rate γ .

Now, suppose that the transaction fee rate, f , increases, which increases qm and decreases

qb, pm, and pb, as described in Table 1. Given ∂ pb
∂ f < 0, total production qm+qb must fall by

(12). However, effective consumption, qm+δ (qb)qb, increases by (24), given ∂ pm
∂ f < 0. This

is because a decrease in qb raises δ (qb), making Bitcoin more efficient as an MOE. Thus,

the trade surplus increases in γ .

5 Quantitative Analysis

We now turn to a quantitative evaluation of the effects of monetary policy and Bitcoin trans-

action fees on economic activities and welfare in a steady state equilibrium by calibrating

our economy to the United States. We define the sum of expected utilities across agents in a
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steady state equilibrium as economic welfare. Our welfare measure is given by:

(26) W = u
(

qm +δ (
Λ

qb
,qb)qb

)
− c(qm +qb)−g−Λ−θ pmqm.

Note that we assume that government expenditure, g, does not increase consumption of

agents and thus it is the welfare cost. Alternatively, we can assume that the government pro-

vides its services in the form of CM goods which leads to the agents’ consumption. However,

the main welfare implication does not change. Finally, we subtract aggregate mining effort,

Λ, and the cash management cost, θ pmqm, as the welfare loss because they do not contribute

to the consumption of agents.25

5.1 Calibration

The functional forms are standard. The GM utility and cost functions are u(q)= (q+ε)1−α−ε1−α

1−α

and c(h) = hσ , where ε ≈ 0. The discount factor for Bitcoin transactions is δ

(
Λ

qb
,qb

)
=

Λ/qb
(δ1+Λ/qb)(1+δ2qb)

. We let the time period be a year, and set β = 0.97, where the annual real

interest rate on an illiquid bond is 3.09%. We set γ = 1.02, such that the inflation rate in

a steady state reflects the Federal Reserve System’s inflation target. The estimates of the

curvature of u(q) vary widely in the literature, but we use α = 1.5, which is within the

range discussed in previous studies. Typical monetary theory literature oftentimes assumes

a linear production technology in the GM, but in this case, the Walrasian price, pb, trivially

corresponds to the seller’s marginal production cost in the GM. Thus, we use strictly convex

25In principle, verification of a Bitcoin transaction can be done by any foreign miners outside of a country.
For example, a miner in China can verify a Bitcoin transaction in the U.S. by adding a new block with its
information to the blockchain. Specifically, if the proportion of domestic miners to all miners in the world is
ω ∈ [0,1], then ωΛ is the welfare loss from mining work in the domestic economy. However, foreign miners
outside of the country receive the reward for mining work, which is (1−ω)Λ in terms of CM goods given the
result of Lemma 1. They will spend the reward in the CM to purchase CM goods, and the labor input to produce
(1−ω)Λ units of CM goods for foreign miners does not contribute domestic consumption. Thus, (1−ω)Λ is
also welfare cost from mining work. Combined together, the welfare cost from mining work in a steady state
equilibrium is Λ.
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functions for c(h), and set σ = 2.26

Next, δ1 influences the effect of aggregate miners’ effort for each block on the discount

factor δ

(
Λ

qb
,qb

)
. In principle, Λ

qb
affects the time to finish the PoW for a new block. How-

ever, in reality, the technical structure of Bitcoin was invented such that the average time to

mine a new block is 10 minutes. This implies that the miners’ effort does not dramatically

affect the time taken to mine a new block and, consequently, the discount factor, δ

(
Λ

qb
,qb

)
,

although it still has some minor effects. Thus, we set δ1 sufficiently small, as δ1 =0.000001.

On the other hand, the aggregate quantity of goods traded using Bitcoin has a meaningful

effect on the time taken to mine a new block, and thus to confirm a particular transaction.

For example, if multiple blocks are mined at almost the same time, each block is added to the

blockchain in order, and one transaction contained in the last block will be confirmed at the

end. As the Bitcoin transaction volume increases, more blocks need to be created. Thus, the

average time to confirm a particular transaction increases. To reflect this fact, we calibrate

δ2 from the data, as described below.

We use the aggregate Bitcoin transaction data, cash management cost, federal govern-

ment expenditure, monetary base, GDP, and sales tax rates to calibrate the remaining param-

eters (see Table 2). We use data during the period 2016 to 2017, because certain data, such

as the Bitcoin growth rate, transaction volume, and fees before 2016, are unstable due to its

intrinsic technical features.27 We set f = 0.0007 to match the ratio of the transaction fees to

the Bitcoin transaction value. The average annual growth rate of the Bitcoin stock is 5.7%,

that is, γb = 1.057. We calibrate δ2 to target the ratio of the value of the Bitcoin stock in terms

of U.S. dollar to the monetary base in the United States, which is 0.00997 over the period

26However, the main implications of the model do not change with other values for σ , as long as we calibrate
the rest of our parameters appropriately.

27For example, the average growth rate of the Bitcoin supply was approximately 36.16% from 2010 to
2015. The rate decreased approximately from 100% in 2010 to 10% in 2015. In addition, the ratio of the
outstanding Bitcoin stock to its approximate limit, 21 million, was just 75% as of July 29, 2015. Source:
https://en.bitcoin.it/wiki/Controlled supply.
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from 2016 to 2017.28 The United States is not the only country that uses Bitcoin, and exact

data about the Bitcoin stock circulated within the United States are not available. However,

it is well known that “the U.S. has the highest number of Bitcoin users, the highest number

of Bitcoin ATMs and also the highest Bitcoin trading volumes globally.”29 We assume that

70% of Bitcoin is used in the United States, and choose δ2 = 8 to target ψtBt
φtMt
≈ 0.00997×0.7.

However, the main results do not depend qualitatively on this 70% assumption. We use the

average sales tax rate across all states for the period 2016 to 2017 in the United States, and

set τm = 0.065. The payment system data from the Federal Reserve System indicates that

the ratio of cash management costs to GDP for the period 2016 to 2017 in the United States

is 0.000065, and we set θ = 0.00013 to target this ratio.30 Finally, we choose g = 0.4802 to

match the ratio of federal government expenditure to GDP.

5.2 Quantitative results

We now turn to the quantitative evaluation of the effects of monetary policy and Bitcoin

transaction fees on economic activities and welfare. Figure 1 shows the steady state values

for the macroeconomic variables as a function of the money growth rate, γ , from 1 to 2, that

is, from 0% to 100% in terms of the inflation rate. Higher inflation indicates a higher money

holding cost, and thus buyers carry less money for transactions. As a result, the quantity of

GM goods traded using money decreases as inflation increases, as in the standard monetary

28In the calibration of δ2, we use the following argument. Suppose δ1 = 0. Then, we obtain qb =
1
δ2

{
γ

γb(1+ f )(1−τm)
−1
}

from (22): qb decreases with δ2. Substituting this into (20), we can verify that pm

decreases with δ2. Thus, according to (24), qm increases with δ2. Then, the ratio of the Bitcoin stock to the
money stock, which is given as ψt Bt

φt Mt
= γb(1−τm)(1+ f )qb

γqm
in a steady state equilibrium, strictly decreases with δ2.

In sum, when δ1 ≈ 0, δ2 has a monotone negative relationship with the ratio of the Bitcoin stock to the money
stock.

29In this regard, a number of reports are available online. For example, see ‘https://news.bitcoin.
com/worlds-top-10-bitcoin-friendly-countries/’, and ‘https://blogs.thomsonreuters.com/answerson/world-
cryptocurrencies-country/’.

30Cash management cost includes printing new currency, transportation, destruction of mutilated currency,
and Federal Reserve expenses for cash operations.
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Parameters and definition Values Identified Data Model

β Discount factor 0.97 Set directly - -

γ Money growth rate 1.02 ” - -

α Curvature of u(q) 1.5 ” - -

σ Curvature of c(h) 2 ” - -

δ1 Coefficient on Λ

qb
in δ

(
Λ

qb
,qb

)
0.000001 ” - -

f Bitcoin transaction fee rate 0.0007 Transaction fees/trade volume 0.0007 0.0007

γb Bitcoin growth rate 1.057 Bitcoin growth rate 1.057 1.057

δ2 Coefficient on qbin δ (ME,qb) 8 Bitcoin stock/monetary base 0.007 0.007

τm Sales tax rate 0.065 Sales tax rates in the U.S. 0.065 0.065

θ Marginal cash management cost 0.00013 Cash management cost/GDP 0.00007 0.00007

g Government expenditure 0.4802 Federal gov. expenditure/GDP 0.2234 0.2235

Table 2: Calibration

theory. Instead, more GM goods are traded using Bitcoin because of the substitution effect

caused by the increase in the relative holding cost of money. In particular, the ratio of the

quantity of GM goods traded using Bitcoin to the aggregate GM goods production, qb
qm+qb

,

rises from around 0.38% to 21.8%. The increase in Bitcoin transactions leads to an increase

in the aggregate transaction fees and, thus, the aggregate mining effort, Λ, increases. The

real money price of GM goods, pm, falls due to a decrease in demand for goods traded using

money. This compensates for the increase in the money holding cost. The real Bitcoin price

of GM goods, pb, also decreases, because sellers supply more GM goods for Bitcoin. In

equilibrium, pb = pm(1−τm). An increase in γ has two counteracting effects on government

revenue, and thus on the lump-sum tax, τ . On the one hand, since the real value of money

transactions, pmqm, falls, the government net revenue from operating money, (τm−θ)pmqm,

decreases. On the other hand, as γ rises, the government seigniorage revenue from issuing

money increases. The latter effect dominates the former one, and hence the lump-sum tax,

τ , falls to balance the government budget.

In the last row of Figure 1, we compare the aggregate trade volume, effective consump-
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Figure 1: Money growth rate, γ , and aggregate variables

tion, and welfare between an equilibrium where money and Bitcoin coexist (coexistence

equilibrium) and an equilibrium where only money is traded as an MOE (money-only equi-

librium).31 As shown in the first graph, when inflation increases, the aggregate trade volume

of goods in the GM decreases in both cases, because of the increased money holding cost.

However, the total trade volume of goods is higher in the coexistence equilibrium than it is

in the money-only equilibrium, and the gap between them expands as the inflation rate in-

creases. This is because buyers in the coexistence equilibrium can choose Bitcoin instead of

money as an MOE in transactions, that is, they can pay using Bitcoin for GM goods. Thus,

the size of the decrease in the quantity of goods traded in the GM is lower in the coexistence

equilibrium than it is in the money-only equilibrium, when inflation rises.

Strikingly, however, overall welfare is lower in the coexistence economy than it is in the

money-only economy, as shown in the third graph.32 The coexistence of money and Bitcoin

31In an equilibrium where money is the only MOE, the aggregate production and consumption of GM goods
are given by qm because qb = 0. In this case, we have the same equilibrium results as in Rocheteau and Wright
(2005). See Appendix A for the mathematical details about the equilibrium with money only.

32For the welfare analysis, we set ω = 0.5, but the main qualitative result is robust for all ω ∈ [0,1].
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generates a welfare loss of 0.067% of consumption, in terms of a consumption equivalent

measure under an inflation rate of 2%. Moreover, the welfare gap between the two economies

expands as inflation increases. Specifically, the welfare loss caused by the coexistence of

money and Bitcoin increases from 0.028% to 9.2% of consumption as the inflation rate rises

from zero to 100%. The economic mechanism behind this is as follows. The number of

Bitcoin transactions that can be contained in a newly created block is restricted by the size

limit of each block. As the quantity of goods traded with Bitcoin increases, more blocks

need to be created. This implies that it takes longer time on average until a new Bitcoin

transaction is validated and recorded in the blockchain; thus buyers have to wait longer

time before receiving goods in the GM. This increase in waiting time leads to a decrease

in the discount factor δ

(
Λ

qb
,qb

)
and, consequently, a decrease in the effective consumption,

qm + δ

(
Λ

qb
,qb

)
qb, and welfare, as shown in the second and third graphs in the last row of

Figure 1. Note that each buyer maximizes his/her utility by trading more Bitcoin and less

money in the GM in response to an increase in inflation. However, buyers do not internalize

the negative externality that an increase in Bitcoin transactions causes greater congestion

in the confirmation of Bitcoin transactions in the GM and, thus, a decrease in the discount

factor, δ

(
Λ

qb
,qb

)
. In sum, buyers substitute money with Bitcoin, which is less efficient as

an MOE. Hence, welfare decreases further in the coexistence economy than it does in the

money-only economy as inflation rises.

We now study how an increase in the transaction fee rate, f , affects economic activities

and welfare. In a steady-state equilibrium, an increase in f has the same effect as an increase

in γb, in that f decreases demand for Bitcoin as an MOE by increasing the transaction cost

that agents pay for Bitcoin transactions. We focus on the effects of changing f from zero to

0.5. As presented in Proposition 1, if the transaction fee rate is high, then the money growth

rate, γ , must be sufficiently high for money and Bitcoin to coexist. Thus, we set γ = 1.5 in

the following analysis. However, the main implication does not depend qualitatively on this
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Figure 2: Bitcoin transaction fee, f , and aggregate variables

value of γ . If γ is small, then the upper-bound of f should be sufficiently low; otherwise,

there is no meaningful change.

Figure 2 shows the effects of the Bitcoin transaction fee rate on aggregate economic

activities and welfare. As the transaction fee rate increases, buyers use more money as an

MOE, and thus the quantity of goods purchased using Bitcoin (money) decreases (increases),

as shown in the first row of Figure 2. A decrease in demand for Bitcoin pulls down the real

Bitcoin price of GM goods, pb, pushing buyers to use Bitcoin as an MOE in equilibrium. In

addition, the equilibrium condition pb = pm(1− τm) implies that the real money price, pm,

falls because sellers supply more goods for money. The aggregate mining effort, Λ, exhibits

a hump shape, as shown in the second row of Figure 2. When the level of the transaction fee

rate, f , is low, an increase in f raises the real value of the aggregate transaction fees, F =

f pbqb, although the real value of the Bitcoin trade volume, pbqb, decreases in equilibrium.

The higher real value of F increases mining competition, leading to a higher Λ. However,

once f is sufficiently high, the real value of F decreases because the negative effect of a
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decrease in the real value of the Bitcoin trade volume, pbqb, dominates the positive effect

of an increase in f on F . Hence, the aggregate mining effort, Λ, decreases. Next, the effect

of an increase in qm dominates that of a decrease in pm, and thus the real value of money

transactions, pmqm, increases. This raises government net revenue from operating money,

(τm−θ)pmqm, and seigniorage by increasing the real value of money stock, z = γ pmqm. As

a result, the lump-sum tax τ , which balances the government budget, falls.

The last row of Figure 2 shows the effects of the transaction fee rate on the aggregate trade

volume of goods, effective consumption, and welfare. Although an increase in qm partially

substitutes for a decrease in qb, the aggregate trade volume of GM goods, qm+qb, decreases

as the transaction fee rate, f , increases. However, as each individual agent uses more money,

which is a more efficient MOE, to maximize his/her utility, the portion of more efficient

transactions in the overall economy increases. Furthermore, as the Bitcoin transactions, qb,

decrease, the average waiting time for the confirmation of a Bitcoin transaction decreases:

that is, δ

(
Λ

qb
,qb

)
increases. This implies that Bitcoin becomes more efficient as an MOE.

Consequently, effective consumption, qm + δ

(
Λ

qb
,qb

)
qb, increases, and social welfare also

increases.

Now, we study the effect of the transaction fee rate, f , in the economy where Bitcoin is

the only MOE (or the Bitcoin-only economy), which is similar to other cryptocurrency liter-

ature, such as Chiu and Koeppl (2017).33 This allows us to compare and better understand

the effects of the transaction fee rate, f , on economic activities and welfare in the coexis-

tence and Bitcoin-only economies. Figure 3 describes the effects of f in the Bitcoin-only

economy. An increase in f means an increase in the transaction cost in the GM, and thus

the buyers’ demand for GM goods decreases. The trade volume of GM goods, qb, decreases,

and the price, pb, falls as an equilibrium outcome. The aggregate mining effort increases be-

33In an equilibrium where Bitcoin is the only MOE, the aggregate production and consumption of GM goods
are represented by qb because qm = 0. See Appendix B for the mathematical details about an equilibrium with
only Bitcoin.
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Figure 3: The effects of marginal Bitcoin transaction fee, f , in a economy where Bitcoin is
the only medium of exchange

cause f increases the aggregate reward to miners. A key difference from the previous result

in the coexistence economy is that welfare decreases as the transaction fee rate increases,

which is similar to the policy implication presented in Chiu and Koeppl (2017). This is be-

cause the transaction fee rate has the same effect as that of the money holding cost, such as

inflation, in a standard money search model, thereby reducing the trade volume in the GM

inefficiently. Specifically, although a decrease in qb and an increase in Λraise δ

(
Λ

qb
,qb

)
,

the size of the decrease in qb is greater than the size of the increase in δ

(
Λ

qb
,qb

)
. Hence,

the effective buyer’s consumption, δ

(
Λ

qb
,qb

)
qb, falls. Furthermore, an increase in the costly

aggregate mining effort, Λ, has a direct negative effect on welfare. Consequently, the higher

transaction fee rate results in lower social welfare.

Last but not least, there exists an economic mechanism through which an increase in the

transaction fee rate, f , has the opposite effect on welfare in the coexistence and Bitcoin-

only economies. Unlike in the Bitcoin-only economy, buyers in the coexistence economy

can substitute Bitcoin with money. This substitution causes two positive effects. First, the
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aggregate trade volume of goods in the GM decreases by less than it does in the Bitcoin-

only economy. Specifically, as the transaction fee rate rises from zero to 0.5, the aggregate

trading volume in the Bitcoin-only economy decreases by 18.2%, but the trading volume in

the coexistence economy decreases by just 2.1%. In addition, the portion of transactions in

which a more efficient MOE is used increases. Unless the cash management cost, θ , is unre-

alistically high, money is a more efficient MOE than Bitcoin because of the discount factor,

δ

(
Λ

qb
,qb

)
. Furthermore, as the quantity of goods traded with Bitcoin, qb, decreases, the

discount factor, δ

(
Λ

qb
,qb

)
, increases. That is, Bitcoin becomes more efficient as an MOE,

which implies that even Bitcoin transactions become more efficient as well. Consequently,

unlike in the Bitcoin-only economy, an increase in the transaction fee rate improves welfare

in the coexistence economy.

6 Conclusion

In this paper, we study whether the central bank-issued money and a cryptocurrency (Bit-

coin) compete as an MOE, and how monetary policy and one of the main features of the

current Bitcoin system (i.e., transaction fees) affect economic activities and welfare. Our

quantitative analysis demonstrates that Bitcoin can compete meaningfully with money only

when the inflation rate is sufficiently high, considering the current Bitcoin system. Strik-

ingly, economic welfare in the money-only economy is higher than that in the coexistence

economy. The lower welfare in the coexistence economy is primarily attributed to inefficient

mining processes and delayed settlements in the current Bitcoin system.

Furthermore, as inflation rises, the welfare gap between the coexistence economy and the

money-only economy expands. Specifically, as the inflation rate increases, money is substi-

tuted for Bitcoin, which increases Bitcoin transactions. An increase in Bitcoin transactions

raises the time for validation and recording Bitcoin transactions due to the restriction on the
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number of transactions that each block can contain. This, in turn, aggravates the delivery

lags of goods when Bitcoin is used as an MOE. Thus effective consumption and welfare

decrease further in the coexistence economy.

In addition, welfare increases in the transaction fee rate in the coexistence economy

because an increase in the transaction fee rate leads to an increase in money transactions,

which is more efficient as an MOE. However, it also leads to fewer Bitcoin transactions,

which improves the efficiency of Bitcoin. On the other hand, in the Bitcoin-only economy,

economic welfare can be maximized by minimizing the transaction fees which reduce the

trade volume of goods.

Lastly, the competition between money and blockchain technology-based cryptocurren-

cies still requires extensive research, because the technological structure of cryptocurrencies

differs from that of existing digitalized currencies, which are built on centralized ledgers.

Obviously, current cyptocurrencies are worse than a well-operated central bank money as

an MOE. However, as Fernandez-Villaverde (2018) argues that further research will im-

prove the current monetary system. Among others, it would be interesting to examine how a

blockchain-based cyrptocurrency in an economy with money should be designed to improve

economic welfare, and moreover how the current money system can adapt to technological

progress, including blockchain technology. For instance, introducing an alternative mining

protocol, such as Proof of Stake, would improve the efficiency of cryptocurrencies as an

MOE, and eventually welfare. As shown in Chiu and Koeppl (2017), the mining protocol

of PoW in the present Bitcoin system is one of the main causes for Bitcoin’s inefficiency,

compared with money, which would cause significant welfare losses when Bitcoin is widely

used as an MOE. This research on cryptocurrencies will help to devise an optimal structure

for the Central Bank Digital Currency, which can be newly issued in the near future.34

34As a representative example, Bordo and Levin (2017) study the optimal design of Central Bank Digital
Currency, and also its relevant key features . In addition, recent studies on the Central Bank Digital Currency
related macroeconomic issues include Andolfatto (2019), Chiu et al. (2019), and Keister and Sanches (2019).
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Appendix A: Omitted proof

Proof of Proposition 2. We first study the effects of changing the transaction fee rate f on

the trade surplus which is given in (25). Suppose that the transaction fee rate f rises. Then,

δ (qb) rises by (23). In addition, pm falls, as described in Table 1, which implies an increase

in qm + δ (qb)qb by (24). However, the cost c(qm + qb) given by (12) decreases because pb

falls as f rises, as described in Table 1. Thus, the trade surplus increases with the transaction

fee rate f .

We now study the effects of the inflation rate γ on the trade surplus. By taking derivative

of the trade surplus with respect to γ , we obtain

(27)
∂S

∂γ
= u′(qm +δ (qb)qb)

∂ [qm +δ (qb)qb]

∂γ
− c′(qm +qb)

∂ [qm +qb]

∂γ
.

Note, from (24), that if γ pm increases, qm + δ (qb)qb decreases. To see the effects of γ on

γ pm, we substitute (19) into (20), obtaining

(28) qb[1−δ (qb)]+u′−1
(

γ pm

β

)
= c′−1(pm(1− τm)).

Now, suppose γ pm decreases as γ rises, which requires that pm must decrease as γ increases.

As γ increases, qb increases, as described in Table 1, which pushes down δ (qb) given by (23).

Thus, qb[1− δ (qb)] rises with γ . Furthermore, given the assumption that γ pm decreases as

γ rises, the left-hand side of (28) increases as γ increases. However, the right-hand side of

(28) increases with pm, so it decreases with γ , and hence we obtain a contradiction. Thus,

γ pm increases as γ rises, and thus, the effective consumption, qm + δ (qb)qb, given by (24),

decreases with γ , that is, ∂ [qm+δ (qb)qb]
∂γ

< 0.

Note that as γ increases, qm falls and qb rises (see Table 1). Thus, given δ (qb) ≤ 1, it
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must be that ∂ [qm+δ (qb)qb]
∂γ

< ∂ [qm+qb]
∂γ

. Then, substituting (9) and (11) into (27), we obtain

∂S

∂γ
<

{
γ pm

β
− pm(1− τm)

}
∂ [qm +δ (qb)qb]

∂γ
< 0.

Thus, the trade surplus decreases with γ .

Appendix B: Money-only economy

In this appendix, we study an economy in which money is the only MOE, which is basi-

cally the same as the work of Rocheteau and Wright (2005) with competitive pricing in the

decentralized market. In the CM, a buyer solves

Max
qb

m

{
−γ pmqb

m +βu
(

qb
m

)}
,

which gives

(29) γ pm = βu′
(

qb
m

)

as the first-order condition.

Next, a seller spends all money and Bitcoin in the CM that she earned in the previous

GM. In the GM, the seller’s problem is given by

Max
qs

m
{−c(qs

m)+(1− τm)pmqs
m} ,

and we obtain

(30) c′(qs
m) = (1− τm)pm
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as the first-order condition.

The market clearing conditions are

qb
m = qs

m = qm(31)

z = γ pmqm,(32)

where z≡ φtMt .

Then, from (29) and (30), we obtain

(33)
γc′(qm)

1− τm
= βu′(qm),

which determines qm, given γ and τm. Then, from (1), (29), and (31) – (33), we obtain the

equilibrium market price pm and the lump-sum tax τ , characterizing the overall equilibrium.

Appendix C: Bitcoin-only economy

In this appendix, we study an economy in which Bitcoin is the only MOE, which implies

that there is no money transaction (qm = 0), compared with the coexistence economy. Since

there are no variables related to money in the miner’s problem, the miner’s problem and their

optimal choices do not change. However, there are minor changes in other agents’ problems

because qm = 0 in this economy.

First, a buyer must decide only on how much Bitcoin balances to bring into the GM, and

the quantity of GM goods to purchase, qb
b. Then, in the steady state, the buyer’s problem is

Max
qb

b

{
−γb pb(1+ f )qb

b +βu
(

δ

(
Λ

qb
,qb

)
qb

b

)}
,
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which yields

(34) γb pb(1+ f ) = βδ

(
Λ

qb
,qb

)
u′
(

δ

(
Λ

qb
,qb

)
qb

b

)

as the first-order condition.

Next, since the government imposes a sales tax only on money transactions in the GM, a

seller in the Bitcoin-only economy does not pay sales tax. In addition, the seller decides the

supply of GM goods, qs
b, in exchange for Bitcoin. Thus, the seller’s problem is

Max
qs

b

{−c(qs
b)+ pbqs

b} ,

which gives us

(35) c′(qs
b) = pb

as the first-order condition.

The market clearing conditions are

qb
b = qs

b = qb,(36)

zb = γb pbqb(1+ f ),(37)

where zb = ψtBt .

Then, from (5), (18), and (35) − (37), we can express Λas a function of qb, which is

given by,

(38) Λ = Λ̂b (qb) = [γb(1+ f )−1]c′(qb)qb.

47



Then, substituting (35) − (37), and (38) into (34), we obtain

γbc′(qb)(1+ f ) = βδ

(
Λ̂b (qb)

qb
,qb

)
u′
(

δ

(
Λ̂b (qb)

qb
,qb

)
qb

)
,

which gives the equilibrium value of qb. Then, we can obtain the values for pb and Λfrom

(35) and (38), and τ = g by (1).
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