
A Triple Regime Stochastic Volatility

Model with Threshold and Leverage

Effects�

Heejoon Hany Chang Sik Kimz Eunhee Leex

August 2016

Abstract

This paper considers a new stochastic volatility model, in which both sign and

magnitude of stock return play roles in explaining a more detailed relationship between

stock return and volatility. The model allows for both threshold and leverage e¤ects and

accommodates three regimes (extreme negative return, mid-range including moderate

negative and positive returns, and large positive return) to better capture the time

varying aspect of the leverage e¤ect. Applications of the model suggest strong evidence

of time varying leverage e¤ect. The comparison of the deviance information criterion

reveals a good �t of our model.
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1 Introduction

It is well known that the relationship between return and volatility in equity markets is

asymmetric; a negative return is associated with higher volatility than a positive return. In

the literature of autoregressive conditional heteroskedasticity (ARCH)-type volatility mod-

els, various models have been proposed to accommodate this stylized fact. Examples include

Engle and Ng (1993), Glosten et al. (1993), Nelson (1991), and Pagan and Schwert (1990).

There also has been active research of stochastic volatility (SV) models addressing an asym-

metric relationship between return and volatility. SV models specify volatility as a separate

random process and therefore can have advantages over the ARCH-type models for modeling

the dynamics of return series (Kim et al. 1998). Moreover, Poon and Granger (2003) re-

ported that SV models in general outperform ARCH-type models in out-of-sample volatility

forecasting. With the rapid development in estimation methods of SV models, these models

recently become more popular than they used to be.

In the framework of SV models, one common approach to accommodate the asymmetric

relationship between return and volatility is to adopt a correlation coe¢ cient between two

innovations in lagged return and volatility process (Harvey and Shephard 1996, Yu 2004). If

the correlation is negative, a negative lagged return will be associated with higher subsequent

volatility. This asymmetry based on the correlation coe¢ cient is typically referred to as the

leverage e¤ect in the stochastic volatility literature. The other approach to explain asym-

metric relationship between return and volatility is adopting the threshold e¤ect considered

by So et al. (2002), who de�ned two regimes based on the sign of stock returns and let the

parameters in the SV model have di¤erent values in each regime. Recently, researchers tried

to accommodate both threshold and leverage e¤ects in the SV model (Smith 2009, Wu and

Zhou 20141, Xu 2010).

The leverage e¤ect was assumed to be constant. However, recent studies have found

evidence against a constant parameter for the leverage e¤ect. Empirical data have shown

that the leverage parameter characterizing the correlation between innovations to return

and innovations to variance vary with time. For example, Daouk and Ng (2011) reported

evidence of stronger leverage e¤ect when prices decreases. Using the daily United States

stock index return series from 1926 to 2010, Christensen et al. (2015) found a negative

leverage e¤ect throughout, but a signi�cant increase in magnitude during �nancial crises.

Moreover, nonparametric or semiparametric modeling for time varying leverage e¤ect has

1Wu and Zhou (2014) designated their model a triple-threshold leverage SV model, not because they
actually consider three di¤erent regimes in the model, but they allow the state dependent leverage e¤ects,
that is, two regime-speci�c correlation coe¢ cients, and each regime is still determined by only the sign of
return.
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been extensively studied. Examples are Ait-Sahalia et al. (2013), Bandi and Reno (2012),

Linton et al. (2016), Wang and Mykland (2014) and Yu(2012).

In this paper, we focus on the idea that the relationship between return and volatility

depends on the magnitude of return as well as its sign. One important common feature of

most existing SV models is that the relationship between return and volatility is determined

only by the sign of return, regardless of its magnitude. For example, in most prior studies,

both moderate negative return and extreme negative return have the same relationship with

volatility. However, it is not realistic and it is more natural to expect that investors behave

di¤erently when stock prices drop (or rise) below (or above) a certain level and, consequently,

the relationship between return and volatility would be di¤erent. We propose a new sto-

chastic volatility model, in which both sign and magnitude of return play roles in explaining

more detailed relationship between return and volatility. Speci�cally, we accommodate three

regimes in the model (extreme negative return, mid-range including moderate negative and

positive returns, and large positive return) to better capture the time varying aspect of the

leverage e¤ect instead of the usual two regimes depending only on the sign. We let the

parameter for the leverage e¤ect have a di¤erent value for each regime, expecting that the

behavior of investors would be di¤erent in each regime.

We applied our model on two stock return series from 03 January 2006 to 30 June

2015: the return series of the S&P 500 Index and the stock return of Microsoft Corporation

(MSFT). We utilized the Markov chain Monte Carlo (MCMC) method to implement a

practical Bayesian estimation approach for our model. Chib and Greenberg (1996) and Chib

(2001) have provided extensive reviews on the method. This method has been successfully

applied to estimate basic and extended stochastic volatility models (e.g. Chib et al. 2002,

Jacquier et al. 1994, Kim et al. 1998). The MCMC method is a simulation technique that

generates a sample from the target distribution. The simulation is conducted by specifying

the transition density of an irreducible aperiodic Markov chain whose limiting invariant

distribution is the target posterior distribution. Then, the Markov chain is iterated a large

number of times in a computer-generated Monte Carlo simulation and the draws generated

from the simulation can be used to summarize the posterior distribution.

We report evidence that the relationship between return and volatility depends on the

magnitude of return as well as its sign. In both the S&P 500 Index and the MSFT cases,

the estimated leverage e¤ect di¤erd in each of the three regimes. In both cases, when the

stock price dropped (or rose) beyond a certain level, the leverage e¤ect either disappeared or

became much weaker. In regime 3 (with large positive return), the leverage e¤ect disappeared

in both cases. In regime 1 (with extreme negative return), the leverage e¤ect weakly appeared

for the index while it disappeared for the MSFT. Second, when stock return was moderately
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negative or positive (regime 2), the conventional leverage e¤ect appeared in both the index

and the individual �rm�s stock. In this case, the leverage e¤ect was much stronger in the

index than the individual �rm. Third, comparison of the deviance information criterion for

various SV models showed that our model �t the data well compared to various existing SV

models.

The rest of the paper is organized as follows. Section 2 introduces the model and explains

the estimation method. Sections 3 provides the main results and Section 4 concludes the

paper. Appendix contains tables and �gures.

2 The Model and Estimation Method

2.1 The Model

We denote by rt a demeaned stock return series and let � be the the vector of unknown

parameters that will be speci�ed in the next subsection. We de�ne a sequence of random

variables sjt by

s1t =

(
1 if rt < �1
0 otherwise

(Regime 1)

s2t (= 1� s1t � s3t ) =
(
1 if �1 � rt < �2
0 otherwise

(Regime 2)

s2t =

(
1 if rt � �2
0 otherwise

(Regime 3).

We let st = (s1t ; s
2
t ; s

3
t )
0 for t = 1; :::; n: The triple regime stochastic volatility model with

threshold and leverage e¤ects (TRSV model) is de�ned as:

rt =
p
htut

log ht+1 � �st = �st(log ht � �st) + "t ; "t = �vt+1

where  
ut

vt+1

����� st; �
!
� N

  
0

0

!
;

 
1 �st

�st 1

!!

4



and

�st =�1s
1
t + �2s

2
t + �3s

3
t

�st =�1s
1
t + �2s

2
t + �3s

3
t

�st =�1s
1
t + �2s

2
t + �3s

3
t :

Therefore, we may rewrite

log ht+1 � �1 = �1(log ht � �1) + "t ; cor(ut; vt+1) = �1 if rt < �1
log ht+1 � �2 = �2(log ht � �2) + "t ; cor(ut; vt+1) = �2 if �1 � rt < �2
log ht+1 � �3 = �3(log ht � �3) + "t ; cor(ut; vt+1) = �3 if rt � �2

Our TRSV model is a triple-regime model, in which each regime is determined by return.

It is important to note that both the sign of return and the magnitude of return determine

the regime in the model. When the return is negative with a large magnitude, it belongs to

regime 1. When return is moderately negative or positive, it is in regime 2. When return is

positive with a large magnitude, it belongs to regime 3. In each regime, the leverage e¤ect

represented by the correlation coe¢ cient �st takes a di¤erent value. The model also allows

for the threshold e¤ect, which means that �st and �st have di¤erent values in each regime.

The reason why we introduce a triple-regime model rather than the traditional two-

regime models is that the empirical results about the relationship between volatility and

returns for the periods of large negative return or �nancial crisis has been found to be

mixed. For example, Christensen et al. (2015) recently found that the risk�return trade-

o¤ is signi�cantly positive only during �nancial crises, and is insigni�cant during non-crisis

periods. This can be explained by the fact that a given increase in the debt/equity ratio leads

to increased risk during crisis, and a increase in risk increases the discount rate more during

�nancial crisis than during normal periods following the volatility feedback interpretation.

The authors also found that the magnitude of leverage e¤ect changes drastically during

�nancial crises using the daily U.S. stock index return series from 1926 through 2010. In this

paper, we show that time-variant leverage e¤ect can be better explained by our triple-regime

model, since the strength of the leverage e¤ect can be drastically changing for the periods

of extremely negative lagged return or �nancial crisis period.

Our model is related with recent studies on nonparametric or semiparametric modeling

for time varying leverage e¤ect (Ait-Sahalia et al. 2013, Bandi and Reno 2012, Linton

et al. 2016, Wang and Mykland 2014 and Yu 2012). Yu (2012) and Bandi and Reno

(2012) found strong evidence for time varying aspects for asymmetric relationships between
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lagged return and volatility. Linton et al. (2016) suggested a way of testing the leverage

hypothesis nonparametrically using the concept of �rst order distributional dominance; the

authors found that investors consider not just the level of volatility but the entire conditional

distribution of volatility. In fact, Bandi and Reno (2012) and Patton and Sheppard (2015)

considered the current level of volatility as the main driving force or the strength of the

time varying leverage e¤ect, whereas Yu (2012) assumed that the driving factor for the time

varying leverage was the lagged return.

Yu (2012) proposed a SV model that can allow for multiple regimes. Even if his empirical

applications support two-regime models instead of three-regime models, he also considered

a three-regime model. However, our model is di¤erent from his model in two main aspects.

First, we estimate �i in our model while it is predetermined in Yu (2012). In his three-regime

model, �1 and �2 are chosen so that each regime has a nearly equal split of observations

(34.5%, 31% and 34.5% of returns, respectively). However, it is expected that investors�

behavior would be di¤erent if stock prices dropped (or rose) below (or above) a certain level,

it would be more desirable to estimate �1 and �2 to accommodate the e¤ect of such a behavior

in the model. Second, we allow for the threshold e¤ect in the volatility level parameter �st
and volatility persistence parameter �st while it is not allowed in his model.

Danielsson (1994) and Asai and McAleer (2006) also considered SV models that incor-

porate both the sign and magnitude of return. However, their models are based on an

EGARCH type representation and do not focus on correlation coe¢ cient between two inno-

vations. Therefore, their models do not provide the detailed features of leverage e¤ect that

depend on both the sign and magnitude of return series as our model does.

2.2 Bayesian Estimation Method

Estimating SV-type models is quite challenging since these models do not have closed form

likelihood functions due to their latent structure of the conditional variance. Therefore, max-

imum likelihood estimation can not be directly used. Several estimation methods have been

proposed in the literature including quasi-maximum likelihood method (QML) (Harvey et

al. 1994), the simulated maximum likelihood method (Danielsson 1994, Durbin and Koop-

man 1997, and Sandmann and Koopman (1998)), the e¢ cient method of moments (Gallant

and Tauchen 1996 and Andersen et al. 1999), the simulated method of moments (Du¢ e

and Singleton 1993) and the generalized method of moments (GMM; Melino and Turnbull

1990, Andersen and Sørensen 1996, and Sørensen 2000). In addition to these methods, the

Bayesian Markov chain Monte Carlo (MCMC) method has been used to estimate the pa-

rameters of SV models. Compared with other estimation methods, the Bayesian method
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is explicitly suitable and has been proven to perform well and provide relatively accurate

results. Moreover, Andersen et al. (1999) showed that MCMC is one of the most e¢ cient

method. The �rst Bayesian approach was provided by Jacquier et al (1994) where the pos-

terior distribution of the unknown parameters was sampled by MCMC method and they

also show that, in SV framework, the MCMC method is superior to both QML and GMM.

Recently, Kim et al (1998) and Chib et al (2002) developed an alternative, more e¢ cient,

MCMC algorithm for SV models.

In this study, therefore, we use the Bayesian approach to estimate our model. We

de�ne the vector of observed samples R = (r1; r2: � � � ; rn)0 with n sample size. We let

� = (�; �; �2; �; �; h1)
0 be the the vector of unknown parameters with � = (�1; �2; �3); � =

(�1; �2; �3); � = (�1; �2; �3), � = (�1; �2), and H = (h1; h2; � � � ; hn)0 and S = (s1; s2; � � � ; sn)0

and be the vectors of the latent variables. Following Yu (2005), our model can be rewritten

as

log ht+1j log ht; �; st � N(�st + �st(log ht � �st); �2)

rtj log ht+1; log ht; �; st � N(
�st
�

p
ht(log ht+1 � �st); ht(1� �2st))

By Bayes�theorem, we can construct the joint posterior distribution of the unobservables

given the data in terms of the prior distribution p(�), and the likelihood function as follows:

p(�;HjR) / p(R;Hj�)p(�) (1)

where

p(R;Hj�; S) / p(log h1j�)
n�1Y
t=1

p(rt; log ht+1j log ht; �; st)p(rnj log hn; �)

= p(log h1j�)
n�1Y
t=1

p(rtj log ht+1; �; st)p(log ht+1j log ht; �; st)p(rnj log hn; �)

p(�) =p(�1)p(�2)p(�3)p(�1)p(�2)p(�3)p(�
2)p(�1)p(�2)p(�3)p(�1)p(�2)p(log h1)

Regarding the prior distribution of �, we follow the literature, namely, all variables of

� are assumed to be independent. For parameters �, and �2, we follow exactly the prior

speci�cation of Kim et al (1998); �2 � Inverse�Gamma(2:5; 0:025), which has a mean of
0.167 and a standard deviation of 0.024. For �; Kim et al (1998) speci�ed a beta distribution

with parameters 20 and 1.5 implying a mean of 0.86 and a standard deviation of 0.11.

Regarding the parameter �, we take a slightly informative prior such as �j � N(�10; 4) for

7



all j. The correlation parameter �j for all j is assumed to be uniformly distributed with

support between �1 and 1, and hence is completely �at. Therefore, the prior distributions
with di¤erent regimes are not informative. For the threshold level parameters � , to ensure

that each regime has enough observations, we assume that the threshold has a uniform

prior, U [�1; �2], where the lower and upper bounds correspond to selected quantiles of rt. We

suggest that each regime must contain at least 10% of the sample rt and � is constrained to

satisfy, �1 < �2. When the stock return of Microsoft Corporation is used, we impose �1 < �m
and �2 > �m to speed up the convergence. �m denotes 50% quantile of the sample rt.

For the usual Bayesian procedure, we implemented a MCMC method to sample latent

variables and unknown parameters from the joint posterior density p(�;HjR) in (1). The
MCMC algorithm repeatedly samples from the posterior distributions, which generates a

Markov chain over (�;H), until converging to the equilibrium/stationary posterior distribu-

tion, p(�;HjR). For our MCMC procedure, we used the Gibbs sampler and the Metropolis-
Hastigns (MH) algorithm within the Gibbs sampler. These methods have had a widespread

in�uence on the theory and practice of Bayesian inference. For instance, Chib and Greenberg

(1995) provided a detailed account of the Metropolis-Hastings algorithm.

Let ! = (�;H; S) and !�ht denotes ! excluding ht. The Gibbs sampler, employed to

generate a Markov chain whose stationary distribution is the joint posterior distribution (1),

works as follows in the �rst step. Given the initialization (�0; H0), we draw from each of the

following distributions:

1. (a) Sample h1 from p(log h1j!�h1 ; rt) _ p(r1; log h2j log h2; �; s1)p(log h1)2.
(b) Sample ht from p(log ht j !�ht ; rt) _ p(rt; log ht+1j log ht; �; st)p(rt�1; log htj log ht�1; �; st�1)
for t = 2; :::; n� 1,
(c) Sample hn from p(log hn j !�hn ; rt) _ p(rnj log hn; �; sn)p(rn�1; log hnj log hn�1; �; sn�1)
2. Sample (�1; �2; �3) from p(�0; �1; �2jw��; R) /

Q
t p(rtjloght+1; ���; st)p(�1; �2; �3)

3. Sample � from p(�jw��; R) /
Q
t p(rt; loght+1jloght; ���; st)p(�)

4. Sample �j from p(�j; jw��j ; R) /
Q
t p(rt; loght+1jloght; ���j ; st)p(�j) j = 1; 2; 3

5. Sample �j from p(�j; jw��j ; R) /
Q
t p(rt; loght+1jloght; ���j ; st)p(�j) j = 1; 2; 3

6. Sample �i from p(�ijw��i ; R) /
Q
t p(rt; loght+1jloght; ���i ; st)p(�i) i = 1; 2

7. Sample st, t = 1; :::; n.

8. Go to 1.

The random walk chain MH algorithm is applied to sample the parameters � and a com-

mon and convenient choice of density for the increment random variable is the normal. The

2p(log h1) � N(��;
��2

1� ��2
) where ��; ��2 and ��2 are obtained from the results of SV model with leverage e¤ect

(SVL).
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scale parameter for increment random variable determines the precise form of the candidate

generating density. A suitable value of the scale parameter with good convergence properties

can be selected by having an acceptance probability of 20% to 60%.

The most di¢ cult part of this Gibbs sampler is to sample ht from p(ht j !�ht ; rt). For
sampling ht, we use the grid-based chain suggested by Tierney (1994). Ritter and Tanner

(1992) proposed the griddy Gibbs sampler for Gibbs sampling in problems where the condi-

tional distributions cannot be sampled directly. This method was also described in Tierney

(1994). Using this algorithm in its pure form may require quite a �ne grid and thus a very

large number of posterior density evaluations are necessarily required to control the error in

the approximation. To deal with this problem, Tierney (1994) proposed this algorithm in

a Metropolis chain to ensure the equilibrium distribution is exactly the target distribution

even a coarse grid.

3 Main Results

3.1 Data and Benchmark Models

We considered two daily stock return series from 03 January 2006 to 30 June 2015. One is

the S&P 500 Index return series and the other is the MSFT. The sample size was 2,388 in

each case. Figure 1 shows the graphs of both return series. Each return series is demeaned

by subtracting its sample mean.

For each return series, we estimate the following �ve models. We let

rt =
p
htut; ut � N(0; 1):

1. basic SV model (SV0):

log ht+1 � � = �(log ht � �) + �vt+1;

where vt � N(0; 1):

2. SV model with leverage e¤ect (SVL):

log ht+1 � � = �(log ht � �) + �vt+1;

where cor(ut; vt+1) = �.
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3. SV model with threshold e¤ect (SVT):

loght+1 � �st = �st(loght � �st) + �vt+1

where

st =

(
0 if rt < 0

1 if rt � 0
: (2)

4. SV model with threshold and (constant) leverage e¤ects (SVTL):

loght+1 � �st = �st(loght � �st) + �vt+1;

where cor(ut; vt+1) = � and st is de�ned as in (2).

5. Triple regime SV model with threshold and leverage e¤ects (TRSV) de�ned in Section

2.

The basic SV model does not allow for any asymmetric relationship between return and

volatility. The SVL model introduced by Harvey and Shephard (1996) allows for the leverage

e¤ect by incorporating the correlation between lagged return and volatility. So et al. (2002)

proposed the SVT model, which accommodates the threshold e¤ect in the model. In the

SVT model, each regime is determined by the sign of lagged return. Smith (2009) introduced

the SVTL model by combining these two models. It should be noted that the correlation

coe¢ cient � in the SVTL model is constant and does not depend on any one regime. While

these three models (SVL, SVT and SVTL) explain the asymmetric relationship between

return and volatility, it is only the sign of lagged return that determines the asymmetric

relationship in these models. On the other hand, our TRSV model incorporates both sign

and magnitude of lagged return in determining each regime. As explained in Section 2, the

TRSV model allows three regimes depending on sign and magnitude of lagged return.

All of these SV models are estimated using the Bayesian method described in Section 2.2.

Regarding the prior distribution for the benchmark SV models, we use the same distributions

as the TRSV model, which are speci�ed in Section 2.2.

3.2 Results for the S&P 500 Index

We �rst consider the S&P 500 Index return series. For the basic SV model, after burn-

in period of 30,000 iterations and a follow-up period of 70,000, we collected every 10th

iteration. For SVL model, total 200,000 iterations were drawn. We chose a burn-period
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of 11,000 iterations and stored every 10th iteration. For the rest models, we iterated total

300,000 and stored every 20th iteration because posterior correlations among the parameters

are rather higher and convergence of Gibbs samplers is quite slow. In SVT and SVTLmodels,

�rst 20,000 samples and 10,000 samples were discarded, respectively. For TRSV model, the

results were reported after burn-in period of 170,000.

Table 1 provides the estimation result of the basic SV model. It reports the posterior

mean, posterior standard deviations, 5% quantile and 95% quantile of all the parameters.

The convergence diagnostics by Geweke (1992) is also provided in the table. The autoregres-

sive coe¢ cient � represents volatility persistence and it is estimated to be very close to unity

(�̂ = 0:984). This is not surprising because the sample period contains the �nancial crisis

in 2008. During the crisis period, volatility is much higher than the rest period and such a

persistency makes the logarithm of volatility be estimated to be a near unit root process.

Table 2 presents the estimation result of the SVL model. The model includes the corre-

lation coe¢ cient � that exhibits the relationship between return and future volatility. It is

estimated to be �0:775, which indicates that return and volatility has a negative relationship
and the relationship is relatively strong. The negative value of �̂ con�rms what is already

known in the literature. Examples include Harvey and Shephard (1996) and Yu (2004). The

autoregressive coe¢ cient � is estimated to be 0:971, which is a little lower but still similar

to that in the basic SV model.

Table 3 reports the estimation result of the SVT model. In this model, the parameters

� and � take di¤erent values depending on whether return is negative or not. The level of

volatility is represented by the value of �: When return is negative, �0 is estimated to be

�5:200: When return is non-negative, �1 is estimated to be �13:904: This implies that the
level of volatility is much higher when return is negative. While �̂0 and �̂1 are estimated to

be quite di¤erent from each other, the volatility persistence parameter � is estimated to be

similar in both regimes (�̂0 = 0:965 and �̂1 = 0:971).

Table 4 provides the estimation result of the SVTL model. Compared to the SVT model,

the model now includes a (constant) correlation coe¢ cient �. The correlation coe¢ cient � is

estimated to be �0:735, which is similar to that in the SVL model. Compared to the SVT
model in Table 3, the estimates of �0 and �1 are similar while the estimates of �0 and �1
are quite di¤erent. This shows that incorporating the leverage e¤ect does not substantially

change the volatility persistence estimates while it a¤ect substantially the volatility level

estimates. Compared to the SVT model, in particular the di¤erence between �̂0 and �̂1
becomes much smaller.

The estimation result of our TRSV model is provided in Table 5. The convergence

diagnostics by Geweke (1992) in Table 5 show that the Markov chains converged well. Figures
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2-4 give the trace of the MCMC iterates after burn-in period, the autocorrelations of the

draw sequences and the estimated posterior densities of all parameters. From the trace and

the autocorrelation plots, we observed the high speed of convergence. The autocorrelations

of the iterates decayed very quickly in all parameters. Figure 5 provides the plot of the

posterior mean of MCMC iterates for ht:

First, for our TRSV model, the parameter �1 is estimated to be �0:0103, which is the 0:14
quantile of the demeaned return series. When return is lower than its 14 percent quantile, it

belongs to regime 1. The parameter �2 is estimated to be 0:0111; which is the 0:88 quantile

of the return series. Hence, when return is between its 14 percent quantile and 88 percent

quantile, it belongs to regime 2. When return is larger than its 88 percent quantile, it is

in regime 3. Therefore, regime 1 contains 14% extreme negative returns, regime 2 includes

74% moderate negative/positive returns and regime 3 has 12% extreme positive returns.

Second, it is interesting to compare the estimates of the correlation coe¢ cient �. Depend-

ing on each regime, � is estimated to be quite di¤erent. In regime 2, it is estimated to be

�0:787, which is somewhat similar to the values in SVL and SVTL models. This shows that
when return is moderately negative or positive, the conventional leverage e¤ect is exhibited

and its magnitude is as strong as the two-regime models. However, in regime 1, it is esti-

mated to be �0:118. When there is an extreme negative return, the leverage e¤ect is much
weaker even if it exists signi�cantly. This may be due to a wait-and-see investing strategy by

investors during turmoil periods. When stock price drops beyond a certain level, investors

become cautious (more risk averse) and might choose a wait-and-see investing strategy. This

would lead to the weaker leverage e¤ect. In regime 3, � is estimated to be close to zero

(�̂3 = �0:003) and it is insigni�cant. When investors observe that stock price rises beyond a
certain level, they become optimistic (risk seeking) and might choose a more active investing

strategy. As a result, there might be more trading that could increase volatility. Hence, this

e¤ect may neutralize the conventional leverage e¤ect. As discussed in Section 2, this is why

3 regimes are introduced to di¤erentiate the time varying leverage e¤ects that are dependent

upon the sign and magnitude of lagged returns.

Three �gures of the third row in Figure 4 show the estimated posterior densities of �1; �2;

and �3. They clearly indicate that the leverage e¤ect is di¤erent for each regime. The

posterior densities of �1 and �2 are centered at negative values that are di¤erent from each

other. The estimated posterior density of �3 is centred at zero.

Third, the volatility level parameter � is estimated to be the highest in regime 1 and to be

the lowest in regime 3. When return has a extreme negative value, volatility is the highest.

When return is all positive, volatility is the lowest. The volatility persistence coe¢ cient � is

estimated to be similar for each regime. �̂1; �̂2 and �̂3 are 0:953; 0:964 and 0:959, respectively.
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For comparison of SV models, we used the deviance information criterion (DIC) proposed

by Spiegelhalter et al. (2002). Berg et al. (2004) demonstrated that model selection can be

more easily done by the DIC. It combines a Bayesian measure of �t with a measure of model

complexity and can be expressed as

DIC = �D+PD = D(��) + 2PD;

where �D, a Bayesian measure of model �t, is de�ned as the posterior expectation of the

deviance, PD is a measure of complexity (penalty term for increasing model complexity) de-

�ned as the di¤erence between the posterior expectation of the deviance �D and the deviance

evaluated at the posterior mean of the parameters D(��). Thus, �D(= D(��)+PD), a Bayesian

measure of model �t, already contains a penalty term for model complexity. Therefore, the

DIC can be divided into a pure measure of �t D(��) plus a measure of complexity 2PD. See

Berg et al (2004) for detailed explanation. Table 6 provides the comparison results by DIC.

Our TRSV model shows a reasonably good �t compared to other SV models. Our model

exhibits the best �t in terms of D(��); but is heavily penalized by its large number of pa-

rameters. While the SVL model achieves the smallest value of DIC, the di¤erence between

SVL and our model is negligible.

3.3 Result for Microsoft

We now consider the stock return series of Microsoft Corporation. For SV, SVT and SVTL

models, we had 200,000 iterations and �rst 20,000 samples for SV and SVT models were

discarded as a burn-in period. We discarded the �rst 60,000 iterations in SVL model as a

burn-in period. For the SVL and TRSV models, a total of 250,000 and 300,000 iterations

were drawn, respectively, and �rst 40,000 and 100,000 samples were discarded as a burn-in

period. We collected every 20th iteration for all models.

Table 7 provides the estimation result of the basic SV model. The autoregressive coe¢ -

cient � is estimated to be 0:942; which is lower than that in the S&P 500 Index case. The

volatility persistence of the individual �rm turns out to be lower than the stock index.

Table 8 presents the estimation result of the SVL model. The correlation coe¢ cient �

is estimated to be �0:254. As in the stock index case, return and volatility has a negative
relationship. However, the leverage e¤ect is much weaker compared to that in the stock

index. The autoregressive coe¢ cient � is estimated to be 0:935, which is similar to that in

the basic SV model.

Table 9 reports the estimation result of the SVT model. When stock return is negative,

the volatility level parameter �0 is estimated to be �8:005: When stock return is non-
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negative, �1 is estimated to be �9:787: This implies that the level of volatility is much
higher when return is negative. The volatility persistence parameter �0 and �1 are estimated

to be 0:925 and 0:954; respectively. It is interesting to note that the volatility persistence is

estimated to be higher when stock return is non-negative.

Table 10 provides the estimation result of the SVTLmodel. The correlation coe¢ cient � is

estimated to be �0:297, which is similar to that in the SVL model. The volatility persistence
parameter �0 and �1 are estimated to be 0:930 and 0:945:While the di¤erence between �̂0 and

�̂1 is not substantial, as in the SVT model, it indicates that volatility persistence is higher

when stock return is non-negative. Compared to the SVT model, it is also interesting to

note that the volatility level parameter � is estimated to be higher when stock return is non-

negative. When the model incorporates both threshold and leverage e¤ects, the volatility

level parameter is estimated to be higher when stock return is non-negative.

The estimation result of our triple regime SV model is provided in Table 11. The conver-

gence diagnostics by Geweke (1992) in Table 11 show that the Markov chains converged well.

Figures 6-8 give the trace of the MCMC iterates after burn-in period, the autocorrelations of

the draw sequences and the estimated posterior densities of all parameters. As in the S&P

500 case, we observed the high speed of convergence. The autocorrelations of the iterates

decayed very quickly. Figure 9 provides the plot of the posterior mean of MCMC iterates

for ht:

First, for our TRSV model, the parameter �1 is estimated to be �0:0082, which is the 0:25
quantile of the demeaned return series. When return is lower than its 25 percent quantile, it

belongs to regime 1. The parameter �2 is estimated to be 0:0139; which is 0:85 quantile of the

return series. Hence, when return is between its 25 percent quantile and 85 percent quantile,

it belongs to regime 2. When return is larger than its 85 percent quantile, it is in regime 3.

Therefore, regime 1 contains 25% extreme negative returns, regime 2 includes 60% moderate

negative/positive returns and regime 3 has 15% extreme positive returns. Compared to the

S&P 500 Index case where regimes 1, 2 and 3 contain 14%, 74%, and 12% of return series,

respectively, now regime 1 includes more return series while regime 2 contains less return

series in the MSFT.

Second, in regime 2, the correlation coe¢ cient � is estimated to be �0:401, which is
lower than the estimates in SVL and SVTL models. This indicates that when return is

moderately negative or positive the leverage e¤ect is stronger compared to that in the two-

regime models. However, in both regime 1 and regime 2, it is estimated to be close to zero

and also insigni�cant. When there is a large negative or positive return, the conventional

leverage e¤ect disappears. Therefore, if this feature in both regime 1 (25%) and regime 3

(15%) is ignored and only two regimes are allowed in SV models, the leverage e¤ect appears
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to be weaker as in the SVL and SVTL models. Especially, when there is a large negative

lagged return, we can interpret the weak leverage e¤ect as follows. A large negative return

leads to increased debt/equity ratio and investors will expect increased future return since

blue chip stocks like Microsoft have less risk compared to other stocks during the periods

of �nancial crisis. Investors expect that the stock price for MSFT will bounce, and current

price is too low considering all the �nancial aspects of the Microsoft including debt/equity

ratio.

Third, the volatility level parameter � is estimated to be the highest in regime 2 and to

be the lowest in regime 3. When the return is all positive (regime 3), volatility is the lowest.

The volatility persistence coe¢ cient � is estimated to be the largest in regime 1 (�̂1; �̂2 and

�̂3 are 0:979; 0:944 and 0:945, respectively).

Table 12 shows that our TRSV model achieves the lowest DIC, which implies that our

TRSV model �t the data best. The DIC of our TRSV model is -13,690, which is substantially

lower compared to other SV models. The second best model in terms of DIC is the SVL

model and its DIC is -13,618. The SVTL model has a similar DIC as the SVL model

4 Conclusion

The paper investigates a new stochastic volatility model that accommodates three regimes

and both threshold and leverage e¤ects. We �nd evidence that the relationship between

stock return and volatility depends on the magnitude of return as well as its sign. In both

the S&P 500 Index and MSFT, the results show that the leverage e¤ect is estimated to be

di¤erent in each three regime. In both cases, when stock price drops (or rises) beyond a

certain level, the conventional leverage e¤ect either disappear or becomes much weaker. In

regime 3 (large positive return), the leverage e¤ect disappeared in both cases. In regime

1 (large negative return), the leverage e¤ect weakly appeared for the index (�̂ = �0:118),
while it disappeared for the MSFT. In regime 2 (moderate negative or positive return), the

conventional leverage e¤ect appeared in both cases. Comparing the leverage e¤ects between

the index and the MSFT cases, the individual �rm showed much weaker leverage e¤ect than

the index. In regime 2, the correlation coe¢ cient � was estimated to be -0.787 and -0.401

for the index and the MSFT, respectively. Compared to existing SV models, our model �ts

the data well, supporting the idea of allowing three regimes in our model.

The paper provides empirical evidences that the conventional leverage e¤ect either dis-

appears or becomes much weaker when stock return is largely positive or negative. We con-

jecture that it is because investors behave di¤erently when stock prices show rapid changes.

It would be desirable to further investigate the reason why the leverage e¤ect either disap-
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pears or becomes weaker when stock return is largely positive or negative. Moreover, there

has been active research on multivariate stochastic volatility models (Omori and Ishihara

2012) and it will be interesting to investigate a multivariate stochastic volatility model that

accommodates three regimes. We leave these for future works.
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A Tables and Figures

Table 1. Estimation results of the basic SV model for S&P 500

Posterior Convergence
Parameters Mean Std errors 5% 95% Diagnostics

� -9.3851 0.2652 -9.8277 -8.9485 -0.3970
� 0.9838 0.0047 0.9754 0.9910 -0.6349
� 0.0377 0.0078 0.0271 0.0527 0.3635

Note: Values in the �fth and the sixth columns are the 5th and the 95th quantile, respectively.
The last column in the table indicates the convergence diagnostic by Geweke (1992).

Table 2. Estimation results of the SVL model for S&P 500

Posterior Convergence
Parameters Mean Std errors 5% 95% Diagnostics

� -9.3354 0.1252 -9.5392 -9.1273 1.4670
� 0.9711 0.0044 0.9637 0.9781 0.8821
� -0.7747 0.0355 -0.8277 -0.7106 -0.7078
� 0.0660 0.0091 0.0512 0.0813 -0.2663

Note: Same as Table 1.

Table 3. Estimation results of the SVT model for S&P 500

Posterior Convergence
Parameters Mean Std errors 5% 95% Diagnostics

�0 -5.1997 0.9065 -6.5174 -3.5536 0.4153
�1 -13.9036 0.9300 -15.5326 -12.4276 -0.5469
�0 0.9651 0.0078 0.9514 0.9768 0.1171
�1 0.9711 0.0064 0.9595 0.9803 0.3598
� 0.0429 0.0086 0.0306 0.0576 -0.3977

Note: Same as Table 1.
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Table 4. Estimation results of the SVTL model for S&P 500

Posterior Convergence
Parameters Mean Std errors 5% 95% Diagnostics

�0 -8.9003 0.7228 -10.0175 -7.6882 -1.1850
�1 -9.8412 0.8283 -11.2518 -8.5689 -0.0277
�0 0.9655 0.0128 0.9437 0.9859 -1.1710
�1 0.9739 0.0107 0.9554 0.9907 1.3250
� -0.7349 0.0482 -0.8076 -0.6522 0.3766
� 0.0638 0.0121 0.0465 0.0871 0.2109

Note: Same as Table 1.

Table 5. Estimation results of the TRSV model for S&P 500

Posterior Convergence
Parameters Mean Std errors 5% 95% Diagnostics

�1 -4.8548 0.9552 -6.2907 -3.2648 -0.3030
�2 -9.1412 0.5346 -9.7198 -7.9391 -1.0340
�3 -14.7316 1.4485 -17.3304 -12.6117 0.9524
�1 0.9526 0.0149 0.9267 0.9752 0.5759
�2 0.9642 0.0107 0.9461 0.9823 -0.3281
�3 0.9588 0.0099 0.9412 0.9732 -0.2021
�1 -0.1183 0.0586 -0.2041 -0.0130 -0.3657
�2 -0.7867 0.0586 -0.8688 -0.6789 1.7930
�3 -0.0029 0.0526 -0.0903 0.0816 0.0091
�1 -0.0103 0.0021 -0.0129 -0.0065 -1.1610
�2 0.0111 0.0010 0.0091 0.0121 0.0070
� 0.0706 0.0122 0.0495 0.0919 -1.6930

Note: Same as Table 1.
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Table 6. Comparison results of SV models for S&P 500

Models DIC �D D(�) PD

SV0 -15541.8 -15663.0 -15784.2 121.2
SVL -15611.6 -15718.0 -15824.3 106.3
SVT -15592.5 -15720.6 -15848.7 128.1
SVTL -15609.6 -15722.8 -15836.1 113.3
TRSV -15606.6 -15731.6 -15856.6 125.0

Note: DIC is the deviance information criterion. �D is the posterior expectation of the de-
viance. D(��) is the deviance evaluated at the posterior mean of the parameters. PD is a
measure of complexity de�ned as the di¤erence between �D and D(��).

Table 7. Estimation results of the basic SV model for MSFT

Posterior Convergence
Parameters Mean Std errors 5% 95% Diagnostics

� -8.5958 0.1196 -8.7869 -8.4016 -0.5096
� 0.9423 0.0124 0.9205 0.9616 -1.3150
� 0.0941 0.0193 0.0651 0.1306 0.9173

Note: Same as Table 1.

Table 8. Estimation results of the SVL model for MSFT

Posterior Convergence
Parameters Mean Std errors 5% 95% Diagnostics

� -8.5971 0.1094 -8.7733 -8.4162 1.0870
� 0.9350 0.0123 0.9143 0.9544 0.8534
� -0.2538 0.0584 -0.3456 -0.1558 -0.4792
� 0.1085 0.0194 0.0782 0.1408 -0.6357

Note: Same as Table 1.
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Table 9. Estimation results of the SVT model for MSFT

Posterior Convergence
Parameters Mean Std errors 5% 95% Diagnostics

�0 -8.0054 0.3541 -8.4981 -7.4000 -0.0803
�1 -9.7865 0.8813 -11.4150 -8.7482 0.6480
�0 0.9246 0.0224 0.8882 0.9615 1.2020
�1 0.9542 0.0216 0.9150 0.9851 0.0400
� 0.0986 0.0167 0.0734 0.1287 -0.7250

Note: Same as Table 1.

Table 10. Estimation results of the SVTL model for MSFT

Posterior Convergence
Parameters Mean Std errors 5% 95% Diagnostics

�0 -9.0454 0.5608 -10.1259 -8.3228 -0.0984
�1 -8.0954 0.6430 -9.1198 -7.0244 -0.4398
�0 0.9298 0.0249 0.8889 0.9699 0.2518
�1 0.9452 0.0242 0.9039 0.9835 -1.1010
� -0.2970 0.0942 -0.4526 -0.1462 0.3662
� 0.1084 0.0202 0.0764 0.1469 0.4348

Note: Same as Table 1.
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Table 11. Estimation results of the TRSV model for MSFT

Posterior Convergence
Parameters Mean Std errors 5% 95% Diagnostics

�1 -9.8687 1.8444 -12.7187 -7.2345 -0.8808
�2 -7.1248 0.8178 -8.1636 -5.5307 1.0620
�3 -12.7589 1.2759 -14.9801 -10.7404 -1.6170
�1 0.9790 0.0149 0.9496 0.9964 1.3380
�2 0.9444 0.0180 0.9128 0.9726 0.6361
�3 0.9448 0.0154 0.9168 0.9669 0.9998
�1 -0.0353 0.0521 -0.1164 0.0507 -0.0494
�2 -0.4009 0.1637 -0.6517 -0.1002 0.5930
�3 -0.0007 0.0419 -0.0696 0.0685 1.7330
�1 -0.0082 0.0027 -0.0131 -0.0051 -0.1677
�2 0.0139 0.0017 0.0113 0.0170 0.8141
� 0.1207 0.0207 0.0895 0.1583 0.0053

Note: Same as Table 1.

Table 12. Comparison results of SV models for MSFT

Models DIC �D D(�) PD

SV0 -13599.1 -13755.8 -13912.6 156.7
SVL -13617.8 -13777.4 -13936.9 159.5
SVT -13608.2 -13767.7 -13927.1 159.5
SVTL -13615.4 -13775.0 -13934.5 159.6
TRSV -13690.2 -13855.1 -14020.0 164.9

Note: Same as Table 6.
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Figure 1. Plots of stock return series: S&P 500 Index and MSFT
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Figure 2. Plots of the 10,000 MCMC iterates obtained from the TRSV model �tting of

S&P 500
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Figure 3. Autocorrelation of the MCMC iterates for the TRSV model �tting of S&P 500
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Figure 4. Estimated posterior densities for the TRSV model �tting of S&P 500
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Figure 5. Estimated ht for the TRSV model �tting of S&P 500
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Figure 6. Plots of the 10,000 MCMC iterates obtained from the TRSV model �tting of

MSFT

27



Figure 7. Autocorrelation of the MCMC iterates for the TRSV model �tting of MSFT
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Figure 8. Estimated posterior densities for the TRSV model �tting of MSFT
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Figure 9. Estimated ht for the TRSV model �tting of MSFT
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