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Abstract 

 

We investigate the effects of behavioral biases on asset returns using the concept of beta 

herding that measures the cross-sectional shrinkage in betas induced by investors’ sentiment 

and overconfidence about the overall market outlook. Beta herding becomes apparent when 

investors are optimistic or overconfident regarding the future direction of the market whereas 

adverse beta herding arises (the dispersion of betas increases) once a crisis appears and 

uncertainty increases. It is following adverse beta herding periods when high beta stocks 

underperform low beta stocks, and thus the low beta anomaly disappears when adverse beta 

herding is considered. These effects of beta herding on beta-sorted portfolios are different from 

those of sentiment on assets with valuation difficulties. They are quite persistent, lasting more 

than two years. 
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1. Introduction 

The classical capital asset pricing model (CAPM) suggests that cross-sectional asset 

returns are solely determined by betas. However, empirical studies show little evidence of 

positive relation between betas and returns (Fama and French, 1992), or even an inverse 

relation between betas and risk-adjusted returns (Baker, Bradley, and Wurgler, 2011; Baker, 

Bradley, and Taliaferro, 2014). Under some circumstances, the difference between betas may 

be unclear or excessively large, and thus the risk-return relations may appear differently.  

In this study, we demonstrate that this happens by changes in investors’ sentiment and 

confidence about their overall market outlook, the two well-known behavioral biases in finance 

(Lakonishok, Shleifer, and Vishny, 1994; Barberis, Schleifer, and Vishny, 1998; Daniel, 

Hirshleifer and Subrahmanyam, 1998, 2001; Baker and Wurgler, 2006; Stambaugh, Yu, and 

Yuan, 2012; Antoniou, Doukas, and Subrahmanyam, 2016). When investors are overconfident 

about signals of market outlook, their posterior prediction of the market return is affected too 

much by the signals as in Daniel, Hirshleifer and Subrahmanyam (1998, 2001) (DHS). For 

investors who use this biased market outlook to predict individual asset returns, the cross-

sectional difference in the expected returns and betas decreases because it is suppressed by 

their overconfidence about the market outlook. A comparable shrinkage in the dispersion of 

betas arises in the presence of investor sentiment. When optimistic views are prevalent in the 

market, then individual betas will be biased towards the market beta. The opposite case also 

arises: when investors are under-confident about market outlook or their sentiment is 

pessimistic, the difference between betas increases.  

This type of cross-sectional bias in betas is called “beta herding” in this study because, 

when investors’ market outlook is affected by their behavioral biases, individual betas are 



 

2 

 

biased (herd) towards the market beta regardless of their underlying equilibrium risk-return 

relationship. Beta herding, which we estimate by the cross-sectional variance of individual 

betas, measures the degree to which investors’ collective estimates of individual betas are 

biased towards unity. It represents the outcome of investors’ irrational behavior that follows 

the market buying or selling individual assets.1 When adverse beta herding arises, cross-

sectional asset pricing by beta becomes also biased as the difference between betas becomes 

excessively large.  

The empirical questions we investigate are if the difference between betas changes over 

time, whether cross-sectional asset prices are affected by beta herding, and when this bias arises. 

We quantify beta herding in the equity US market over the period from January 1967 to June 

2016. Our measure of beta herding is robust to macro factors, business cycle, and on average 

to stock market movements, but is heavily affected by the advent of crises.  

We find that the cross-sectional relation between stock returns and betas is significantly 

affected by beta herding: low beta stocks outperform high beta stocks following adverse beta 

herding. The results are consistent with the low-beta anomaly of Baker, Bradley, and Wurgler 

(2011) and Baker, Bradley, and Taliaferro (2014), because negative risk-adjusted returns of 

high-minus-low beta portfolios increase as the difference between betas increases. For example, 

the post-formation buy-and-hold risk-adjusted return of the high-minus-low decile portfolios 

                                                 
1 The term of irrational here refers to the market, as opposed to individual irrationality. We recognize that there 

will be situations in which it may be myopically rational for an individual to follow the herd and hence our use of 

irrational may seem inappropriate. However, given that such behavior may lead to inefficient asset prices and 

irrational behavior for the market as a whole, we will throughout this paper refer to herding simply as irrational. 

See Hirshleifer and Teoh (2009) and Park and Sabourian (2011) for further discussion. 
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formed on the betas from the Fama-French five-factor model is significant and negative, i.e., -

5.97% per year. However, it becomes -17.12% per year following an adverse herding state 

whereas it is not significant following other states. The post-formation beta of the high-minus-

low beta portfolio is 0.95 following adverse beta herding, whereas it is only 0.27 following 

beta herding. Considering that the post-formation buy-and-hold return of the high-minus-low 

decile portfolios is not significant, the low-beta anomaly on a risk-adjusted basis can be 

explained by the excessively large dispersion of post-formation betas following adverse beta 

herding. We also find that the effects of adverse beta herding do not disappear quickly and are 

persistent over two years. Our results with the Fama-French five-factor model also hold for 

other estimates of betas from the market model or a ten-factor model.2  

Contrary to the common belief that herding is significant when the market is in a 

stressed state (Choe, Kho, and Stulz, 1999; Kim and Wei, 2002), adverse beta herding arises 

once a crisis appears and uncertainty increases. During market crises, investors become under-

confident about the signals they use to predict the market outlook and pessimistic views prevail 

whereas beta herding becomes more apparent when investors are optimistic or overconfident 

regarding the future direction of the market.  

Our study is distinct from other studies in the literature. First, these effects of beta 

herding on cross-sectional asset returns differ from those of sentiment. Although sentiment 

explains returns of portfolios sorted on some firm characteristics (Baker and Wurgler, 2006) 

and are closely related to betas (Stambaugh, Yu, and Yuan, 2012; Antoniou, Doukas, and 

Subrahmanyam, 2016), we find that the effects of beta herding on cross-sectional asset returns 

                                                 
2 Nine firm-characteristics factors in addition to the excess market return are constructed as in the literature, the 

details of whch are explained in section 4. 
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are robust in the presence of sentiment. Conversely, beta herding does not explain the firm 

characteristic-sorted portfolio returns despite the close relationship between betas and the firm 

characteristics. These results suggest the difference in the mechanism through which beta 

herding and sentiment affect asset returns. Most studies in the literature investigate asymmetric 

effects of sentiment and overconfidence on individual assets, in particular, assets with uncertain 

valuations (e.g., Baker and Wurgler, 2006; Kumar, 2009). Antoniou, Doukas, and 

Subrahmanyam (2016) recently provide multiple arguments as to why sentiment will most 

strongly affect high beta stocks, and show that the returns of high-minus-low beta portfolios 

are negative following high sentiment periods because of the return reversals. On the other 

hand, we investigate the effects of behavioral biases on asset returns with different perspective 

in that investors’ market-wide overconfidence or sentiment about the direction of the whole 

market affects cross-sectional asset returns. In particular, adverse beta herding affects 

individual asset returns because of the excessively large dispersion of betas through investors’ 

pessimism and under-confidence, the effects of which are quite persistent.  

Second, the concept of beta herding, i.e., shrinkage in the dispersion of betas, differs 

from other herd measures proposed in the literature in several respects. We focus directly on 

deviations from the equilibrium risk-return relation rather than clustering behavior of market 

experts such as analysts or institutional investors (Lakonishok, Shleifer, and Vishny, 1992; 

Wermers, 1999; Sias, 2004; Barber, Odean, and Zhu, 2009; Choi and Sias, 2009; Hirshleifer 

and Teoh, 2009). These studies do not necessarily tell us whether asset prices themselves are 

biased due to herding. Simple cross-sectional variability of returns (Christie and Huang, 1995; 

Chang, Cheng, and Khorana, 2000), as opposed to betas, is not indicative of irrational pricing 

in the market, as it may just reflect fundamental changes in common factors or factor loadings.  
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In the next section, we introduce the concept of beta herding and consider the 

implications for asset pricing. In section 3, we apply this measure to the US equity market. 

After discussing the empirical properties of the beta herd measure and its robustness to 

fundamentals are assessed, we then analyze the effects of beta herding in cross-sectional asset 

pricing in section 4. In section 5, we investigate beta herding with respect to economic events 

and crises. Finally, we draw some conclusions in section 6. 

 

2. Overconfidence, sentiment, and beta herding 

In this section, we propose an aggregate model based on primitive micro models of 

individual behavioral bias that leads to biases in beta induced by market-wide overconfidence 

and sentiment.  

 

2.1. Cross-sectional bias in asset pricing driven by overconfidence 

We model how the predicted individual asset returns and betas are affected by investors’ 

overconfidence about the information they receive for the prediction of the market return. Let 

us assume that the excess market return follows 𝑟𝑚𝑡+1 = 𝜇𝑚 + 휀𝑚𝑡+1 , where 𝜇𝑚  is the 

unconditional market risk premium and 휀𝑚𝑡+1  is a shock, 휀𝑚𝑡+1~𝑁(0, 𝜎𝑚 𝑡+1
2 ), which is 

unobservable at time 𝑡. The signal informed investors receive for the prediction of the excess 

market return is noisy: 𝑠𝑚𝑡 = 휀𝑚𝑡+1 + 𝜖𝑚𝑡 , where 𝜖𝑚𝑡  is noise, 𝜖𝑚𝑡~𝑁(0, 𝜎𝑚𝜖𝑡
2 ),  and 

휀𝑚𝑡+1 and 𝜖𝑚𝑡 are not correlated. For these investors, the state of the world is presented by 

(𝑟𝑚𝑡, 𝑠𝑚𝑡), both of which are independent of each other. In this setting, investors’ prediction 

of 𝑟𝑚𝑡+1 is decided by their posterior about 휀𝑚𝑡+1 given 𝑠𝑚𝑡 whose variance is unknown 
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to investors. Uninformed investors (who do not receive this signal) do not affect asset prices 

as far as they are not risk-neutral (Daniel, Hirshleifer and Subrahmanyam, 1998).  

Suppose that investor overconfidence appears as overprecision in their beliefs about the 

signal as in Odean (1998), DHS (1998, 2001), Gervais and Odean (2001), and Epstein and 

Schneider (2008). Upon receiving 𝑠𝑚𝑡, informed investors predict the market return with their 

posterior expectation 𝐸𝑡
𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡) = 𝜇𝑚 + 𝑤𝑏𝑡𝑠𝑚𝑡 , where 𝑤𝑏𝑡 =

𝜎𝑚𝜀𝑡
2

𝜎𝑚𝜀𝑡
2 +𝛾𝑡𝜎𝑚𝜖𝑡

2  and the 

super- and sub-scripts b represent behavioral bias, i.e., overprecision. The parameter 𝛾𝑡 in 

𝑤𝑏𝑡 lies between 0 and 1 for overconfident investors who believe that the signal is more precise 

than it really is. On the other hand, 𝛾𝑡 is larger than 1 if investors are under-confident. If there 

is no such bias, the weight on the signal is 𝑤𝑡 =
𝜎𝑚𝜀𝑡

2

𝜎𝑚𝜀𝑡
2 +𝜎𝑚𝜖𝑡

2  with 𝛾𝑡 = 1.3  

Lemma 1: When overconfident (under-confident) investors use their posterior expectation of 

the market return 𝐸𝑡
𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡) = 𝜇𝑚 + 𝑤𝑏𝑡𝑠𝑚𝑡 to predict individual asset returns, their 

posterior expectation of an individual asset return is  

 𝐸𝑡(𝑟𝑖𝑡+1|𝐸𝑡
𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡)) = 𝛽𝑖𝑡

𝑏 (𝜇𝑚 + 𝑤𝑏𝑡𝑠𝑚𝑡)    (1) 

where 𝛽𝑖𝑡
𝑏 = 𝛾𝑡

∗𝛽𝑖𝑡, 𝛾𝑡
∗ =

𝜎𝑚𝜀𝑡
2 +𝛾𝑡𝜎𝑚𝜖𝑡

2

𝜎𝑚𝜀𝑡
2 +𝜎𝑚𝜖𝑡

2 , 𝛽𝑖𝑡 =
𝑐𝑜𝑣𝑡( 𝑚𝑡+1,𝑟𝑖𝑡+1)

𝜎𝑚𝜀𝑡
2 , and 𝑤𝑏𝑡 =

𝜎𝑚𝜀𝑡
2

𝜎𝑚𝜀𝑡
2 +𝛾𝑡𝜎𝑚𝜖𝑡

2 . 

Proof: See the Appendix. 

For overconfident (under-confident) investors who predict market return is 𝜇𝑚 +

                                                 
3 If jointly normally distributed two random variables 𝑋 and 𝑌 have their standard deviations and covariance 

represented by 𝜎𝑋
2 , 𝜎𝑌

2  and 𝜎𝑋𝑌 , respectively, the conditional expected value of 𝑋  given 𝑌  is 𝐸(𝑋|𝑌) =

𝐸(𝑋) +
𝜎𝑋𝑌

𝜎𝑌
2 {𝑌 − 𝐸(𝑌)}. See Daniel, Hirshleifer and Subrahmanyam (1998) for the detailed explanation on how 

the posterior expectation can be affected by overprecision (under-estimation) of 𝜎𝑌
2. 
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𝑤𝑏𝑡𝑠𝑚𝑡, 𝛽𝑖𝑡
𝑏s are always downward (upward) biased regardless of the sign of 𝑠𝑚𝑡 because 

1 > 𝛾𝑡
∗ > 𝑤𝑡 (𝛾𝑡

∗ > 1).4 The bias factor, 𝛾𝑡
∗, affects both returns and betas in the same way. 

To see this, we calculate the return difference between individual assets and the market when 

investors are overconfident about the market outlook and when they are rational Bayesian 

optimizers. From the results in equation (1), the cross-sectional return difference between asset 

𝑖 and the market is5 

𝐸𝑡 (𝑟𝑖𝑡+1|𝐸𝑡
𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡)) − 𝐸𝑐 (𝐸𝑡 (𝑟𝑖𝑡+1|𝐸𝑡

𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡))) = 𝛾𝑡
∗(𝛽𝑖𝑡 − 1)(𝜇𝑚 + 𝑤𝑏𝑡𝑠𝑚𝑡) ,(2) 

since 𝐸𝑐(𝛽𝑖𝑡
𝑏 ) = 𝛾𝑡

∗. When investors are rational, i.e., 𝛾𝑡
∗ = 1, the difference is  

𝐸𝑡(𝑟𝑖𝑡+1|𝐸𝑡(𝑟𝑚𝑡+1|𝑠𝑚𝑡)) − 𝐸𝑐 (𝐸𝑡(𝑟𝑖𝑡+1|𝐸𝑡(𝑟𝑚𝑡+1|𝑠𝑚𝑡))) = (𝛽𝑖𝑡 − 1)(𝜇𝑚 + 𝑤𝑡𝑠𝑚𝑡).  (3) 

Therefore, the difference between these two cases is (𝛽𝑖𝑡 − 1)(𝛾𝑡
∗ − 1)𝜇𝑚  because 𝑤𝑡 =

𝛾𝑡
∗𝑤𝑏𝑡. When investors are overconfident (1 > 𝛾𝑡

∗ > 𝑤𝑡), the expected returns of high and low 

beta assets are downward and upward biased toward the market return, respectively. On the 

other hand, when investors are under-confident (𝛾𝑡
∗ > 1), expected returns are biased away 

from the expected market return.  

 This cross-sectional return difference between asset 𝑖 and the market in equation (2) 

is driven by the difference in betas between asset 𝑖 and the market:  

 𝛽𝑖𝑡
𝑏 − 𝐸𝑐(𝛽𝑖𝑡

𝑏 ) = 𝛾𝑡
∗(𝛽𝑖𝑡 − 1).    (4) 

                                                 
4 Considering the empirical results that most factors proposed in the literature have R-squared values less than 1% 

for the prediction of the market return (Goyal and Welch, 2008; Kelly and Pruitt, 2013), noise in 𝑠𝑚𝑡  should be 

much larger than the shock, and the minimum value of the bias factor in beta, 
𝜎𝑚𝜀𝑡

2

𝜎𝑚𝜀𝑡
2 +𝜎𝑚𝜖𝑡

2 , would be close to zero.  

5 The subscript c represents cross-section. 
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When investors are overconfident (1 > 𝛾𝑡
∗ > 𝑤𝑡), both low betas (𝛽𝑖𝑡 < 1) and high betas 

(𝛽𝑖𝑡 > 1) appear closer to the market beta by 𝛾𝑡
∗ times, and cross-sectional variance of 𝛽𝑖𝑡

𝑏 , 

𝑣𝑎𝑟𝑐(𝛽𝑖𝑡
𝑏 ) = (𝛾𝑡

∗)2𝑣𝑎𝑟𝑐(𝛽𝑖𝑡), decreases.  

Proposition 1: For overconfident investors who believe that their signals for market are more 

precise than they really are, individual betas are biased towards the market beta. On the other 

hand, individual betas are biased away from the market beta when investors are under-

confident about their signals for market. 

This result is consistent with the claims of Hwang and Salmon (2004): when investors are 

overconfident about signals they receive for a factor, the signals are overweighted and the 

cross-sectional dispersion of its factor loading decreases. 

 

2.2. Cross-sectional bias in asset pricing driven by market sentiment 

 The effects of sentiment on cross-sectional asset returns have been investigated by 

many previous studies. While sentiment will affect the entire return distribution, we follow the 

majority of the literature and define sentiment with reference to its effect on the mean of 

investors’ subjective returns: if it is relatively high (or low), then an optimistic (or pessimistic) 

sentiment exists.  

When a strong market-wide sentiment prevails such that a similar level of sentiment is 

observed for individual assets regardless of their equilibrium relation, unsophisticated investors 

herd to the market-wide sentiment, disregarding fundamentals.6 To model the effects of the 

                                                 
6 The studies such as Baker and Wurgler (2006), Kumar (2009), Stambaugh, Yu, and Yuan (2012), and Antoniou, 
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market-wide sentiment on cross-sectional asset returns, suppose 𝛿𝑡  denote the impact of 

sentiment on beliefs regarding the expected returns of all assets in the market. Then, the 

unsophisticated investors’ biased expectation in the presence of sentiment can be found as the 

sum of two components, one due to fundamentals and the other due to sentiment,  

   𝐸𝑡
𝑏(𝑟𝑖𝑡+1) = 𝐸𝑡(𝑟𝑖𝑡+1) + 𝛿𝑡,     (5) 

𝐸𝑡
𝑏(𝑟𝑚𝑡+1) = 𝐸𝑡(𝑟𝑚𝑡+1) + 𝛿𝑡. 

As in the previous case, rational and sophisticated investors do not affect asset prices under the 

assumption that they are not risk-neutral. Then the effects of sentiment on beta can be analyzed 

using the following equation:  

 𝛽𝑖𝑡
𝑏 =

𝐸𝑡
𝑏(𝑟𝑖𝑡+1)

𝐸𝑡
𝑏(𝑟𝑚𝑡+1)

=
𝛽𝑖𝑡+𝛿𝑡

∗

1+𝛿𝑡
∗ ,    (6) 

where 𝛽𝑖𝑡
𝑏  is the systematic risk in the presence of sentiment, and 𝛿𝑡

∗ =
𝛿𝑡

𝐸𝑡(𝑟𝑚𝑡+1)
 represents 

sentiments relative to the expected excess market return. 

There is no change in the cross-sectional return difference, i.e., 𝐸𝑡
𝑏(𝑟𝑖𝑡+1) −

𝐸𝑡
𝑏(𝑟𝑚𝑡+1) = 𝐸𝑡(𝑟𝑖𝑡+1) − 𝐸𝑡(𝑟𝑚𝑡+1), because all individual asset returns would move by the 

same value. However, the cross-sectional deviation in betas from the market beta becomes 

 𝛽𝑖𝑡
𝑏 − 𝐸𝑐(𝛽𝑖𝑡

𝑏 ) =
1

1+𝛿𝑡
∗ (𝛽𝑖𝑡 − 1),    (7) 

                                                 
Doukas, and Subrahmanyam (2016) investigate the case that individual assets respond sensitively to sentiment or 

overconfidence if these assets are difficult to value or arbitrage. This can be modelled by assuming positive 

correlation between 𝛿𝑖𝑡 and 𝛽𝑖𝑡 during high (low) sentiment periods in our framework. Then, high (low) beta 

stocks appear to outperform low (high) beta stocks, but this outperformance reverses subsequently. In our study, 

however, we investigate the effects of market-wide sentiment by assuming 𝛿𝑚𝑡
∗ = 𝛿𝑖𝑡

∗  for all individual assets. 
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since 𝐸𝑐(𝛽𝑖𝑡
𝑏 ) = 1 . Equation (7) shows that as market-wide sentiment 𝛿𝑡

∗  increases 

(optimistic sentiment), individual betas are biased towards the market beta: 1 > 𝛽𝑖𝑡
𝑏 > 𝛽𝑖𝑡 for 

assets with 𝛽𝑖𝑡 < 1  and 1 < 𝛽𝑖𝑡
𝑏 < 𝛽𝑖𝑡  for 𝛽𝑖𝑡 > 1 . Similarly, when 𝛿𝑡

∗  is negative 

(pessimistic sentiment), 1 < 𝛽𝑖𝑡 < 𝛽𝑖𝑡
𝑏  for assets with 𝛽𝑖𝑡 > 1 and 1 > 𝛽𝑖𝑡 > 𝛽𝑖𝑡

𝑏  for assets 

with 𝛽𝑖𝑡 < 1. Therefore, when asset pricing based on fundamentals is suppressed by sentiment, 

then the dispersion of individual betas shrinks or increases with optimistic or pessimistic 

sentiment, respectively, although cross-sectional return difference remains unchanged. We thus 

have the following proposition.  

Proposition 2: When a strong positive (negative) sentiment prevails such that a similar level 

of sentiment is anticipated for individual assets regardless of their equilibrium risk-return 

relation, individual betas are biased towards (away from) the market beta.  

 

2.3. Beta herding 

Although the driving forces behind investor overconfidence and sentiment are different, 

they have a common effect on betas through a biased probability distribution in expected 

returns. When this form of biased expectation exists among investors, they will follow the 

performance of the market portfolio when buying or selling assets, and thereby betas are biased 

towards the market beta. We define such shrinkage in betas as beta herding.  

Definition  Beta herding represents the cross-sectional bias in betas that herd towards the 

market beta. 

The bias in beta by investor overconfidence regarding the market outlook can be 
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analyzed together with that by market-wide sentiment. As in the above, suppose that investors 

are overconfident about the market outlook and that a strong market-wide investor sentiment 

prevails regardless of individual assets. For simplicity, assume that sentiment is not related to 

overconfidence and is additive to the posterior expectation. Then, investors’ posterior 

expectation for the prediction of the market return is:  

𝐸𝑡
𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡, 𝛿𝑡) = (𝜇𝑚 + 𝑤𝑏𝑡𝑠𝑚𝑡) + 𝛿𝑡, 

and individual asset returns conditional on this market outlook are predicted as follows: 

𝐸𝑡
𝑏 (𝑟𝑖𝑡+1|𝐸𝑡

𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡 , 𝛿𝑡)) = 𝛾𝑡
∗𝛽𝑖𝑡(𝜇𝑚 + 𝑤𝑏𝑡𝑠𝑚𝑡)  + 𝛿𝑡. 

Lemma 2: When sentiment is not related to overconfidence and is additive to the posterior 

expectation, the cross-sectional return difference between asset 𝑖 and the market is  

𝐸𝑡
𝑏 (𝑟𝑖𝑡+1|𝐸𝑡

𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡 , 𝛿𝑡)) − 𝐸𝑐 (𝐸𝑡
𝑏 (𝑟𝑖𝑡+1|𝐸𝑡

𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡, 𝛿𝑡))) 

= 𝛾𝑡
∗(𝛽𝑖𝑡 − 1)(𝜇𝑚 + 𝑤𝑏𝑡𝑠𝑚𝑡),   (8) 

and the difference in betas between individual assets and the market is  

    𝛽𝑖𝑡
𝑏 − 𝐸𝑐(𝛽𝑖𝑡

𝑏 ) =
𝛾𝑡

∗

1+𝛿𝑡
∗∗ (𝛽𝑖𝑡 − 1).    (9) 

where 𝛿𝑡
∗∗ =

𝛿𝑡

(𝜇𝑚+𝑤𝑏𝑡𝑠𝑚𝑡)
 is the market-wide investor sentiment with respect to the predicted 

market return and 𝛾𝑡
∗ =

𝜎𝑚𝜀𝑡
2 +𝛾𝑡𝜎𝑚𝜖𝑡

2

𝜎𝑚𝜀𝑡
2 +𝜎𝑚𝜖𝑡

2  represents overconfidence when 1 > 𝛾𝑡
∗. 

Proof: See the Appendix. 

The component, 𝛿𝑡
∗∗, captures the effects of the market-wide sentiment on betas in a 

similar way to equation (7): when investor’s optimism increases, the difference between 

individual betas and the market beta decreases. On the other hand, 𝛾𝑡
∗  measures the 
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overconfidence driven beta herding as in (4): betas converge to the market beta as 𝛾𝑡
∗ 

decreases. We summarize four cases in Table 1 to show how 𝛾𝑡
∗ and 𝛿𝑡

∗∗ affect beta herding. 

When 𝛿𝑡
∗∗ → ∞ or 𝛾𝑡

∗ → 0, 𝛽𝑖𝑡
𝑏 → 𝐸𝑐(𝛽𝑖𝑡

𝑏 ) for all 𝑖 and the expected excess returns on the 

individual assets will approach the market return regardless of their systematic risks. Thus, this 

case can be interpreted as ‘perfect’ beta herding. In general, when 𝛿𝑡
∗∗ > 0 or 0 < 𝛾𝑡

∗ < 1, 

beta herding exists in the market, and the size of the bias will depend on the magnitude of 𝛿𝑡
∗∗ 

or 𝛾𝑡
∗: |𝛽𝑖𝑡

𝑏 − 𝐸𝑐(𝛽𝑖𝑡
𝑏 )| < |𝛽𝑖𝑡 − 1|. When 𝛿𝑡

∗∗ < 0 or 𝛾𝑡
∗ > 1, adverse beta herding arises. In 

this case a low beta asset will be less sensitive to movements in the market portfolio whereas a 

high beta asset will be more sensitive to movements in the market portfolio: |𝛽𝑖𝑡
𝑏 − 𝐸𝑐(𝛽𝑖𝑡

𝑏 )| >

|𝛽𝑖𝑡 − 1|.  

 

2.4. A measure of beta herding 

In order to measure beta herding, we calculate the cross-sectional variance of betas that 

varies depending on 𝛾𝑡
∗ or 𝛿𝑡

∗∗. Using equation (9), we have the following relation between 

𝑉𝑎𝑟𝑐(𝛽𝑖𝑡
𝑏 ) and the two parameters that contribute to beta herding (i.e., 𝛾𝑡

∗ and 𝛿𝑡
∗∗): 

 𝑉𝑎𝑟𝑐(𝛽𝑖𝑡
𝑏 ) = (

𝛾𝑡
∗

1+𝛿𝑡
∗∗)

2

𝑉𝑎𝑟𝑐(𝛽𝑖𝑡)          (10) 

where 𝑉𝑎𝑟𝑐(. ) represents cross-sectional variance. For given 𝑉𝑎𝑟𝑐(𝛽𝑖𝑡), the dynamics of 

𝑉𝑎𝑟𝑐(𝛽𝑖𝑡
𝑏 ) reflect changes in irrational pricing due to sentiment (𝛿𝑡

∗∗) or overconfidence (𝛾𝑡
∗): 

as 𝛿𝑡
∗∗ increases or 𝛾𝑡

∗ decreases, (
𝛾𝑡

∗

1+𝛿𝑡
∗∗)

2

 decreases and beta herding intensifies.  

We propose 𝑉𝑎𝑟𝑐(𝛽𝑖𝑡
𝑏 ) as a measure of beta herding, which we denote by 𝐻𝑡. As beta 

herding represents cross-sectional bias in beta, it is important to control the effects of 
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𝑉𝑎𝑟𝑐(𝛽𝑖𝑡). It is well documented that betas do change over time (Ferson and Harvey, 1991, 

1995; Jagannathan and Wang, 1996; Lewellen and Nagel, 2006; Ang and Chen, 2006). 

However, in the literature, little is known about the dynamics of the cross-sectional variance of 

betas. In this study, we control the dynamics of 𝑉𝑎𝑟𝑐(𝛽𝑖𝑡) using various variables proposed 

to explain betas and other cross-sectional return patterns. Our results, details of which will be 

explained later, show that 𝑉𝑎𝑟𝑐(𝛽𝑖𝑡
𝑏 ) is not explained by these variables.  

An obvious obstacle in calculating the beta herd measure (𝐻𝑡) is that 𝛽𝑖𝑡
𝑏  is unknown 

and needs to be estimated. Using the popular least squares (LS) estimate of 𝛽𝑖𝑡
𝑏 , i.e., �̂�𝑖𝑡

𝑏 , we 

may calculate the beta herd measure as follows:  

 𝐻𝑡
𝑂 =

1

N−1
∑N

𝑖=1 (�̂�𝑖𝑡
𝑏 − �̂�𝑖𝑡

𝑏̅̅̅̅ )
2

,           (11) 

which can be decomposed as follows:  

 𝐻𝑡
𝑂 =

1

N−1
∑N

𝑖=1 (𝛽𝑖𝑡
𝑏 − �̂�𝑖𝑡

𝑏̅̅̅̅ )2 +
1

N−1
∑N

𝑖=1 𝜂𝑖𝑡
2 ,         (12) 

using �̂�𝑖𝑡
𝑏 = 𝛽𝑖𝑡

𝑏 + 𝜂𝑖𝑡 , where 𝜂𝑖𝑡  is the estimation error. Only when 
1

N
∑N

𝑖=1 𝜂𝑖𝑡
2  (the cross-

sectional variance of estimation errors, CVEE) is constant, then the dynamics of 𝐻𝑡 can be 

captured by 𝐻𝑡
𝑂 . However, the estimation errors are heteroskedastic because of the 

heteroscedasticity of idiosyncratic errors and market returns (Campbell, Lettau, Malkiel, and 

Xu, 2001). The dynamics of 𝐻𝑡
𝑂 are not likely to arise from changes in beta herding, but 

originate from heteroskedastic behavior in the CVEE.   

Our approach to avoid this unpleasant property of 𝐻𝑡
𝑂 is to standardize �̂�𝑖𝑡

𝑏   with its 

standard error (Bring, 1994): in other words, we use the 𝑡 statistic of �̂�𝑖𝑡
𝑏 − �̂�𝑖𝑡

𝑏̅̅̅̅  instead of 

�̂�𝑖𝑡
𝑏 − �̂�𝑖𝑡

𝑏̅̅̅̅ . Our measure of beta herding is calculated as   
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 𝐻𝑡
∗ =

1

N
∑N

𝑖=1 (
�̂�𝑖𝑡

𝑏 −�̂�𝑖𝑡
𝑏̅̅ ̅̅

�̂�
�̂�𝑖𝑡

𝑏
)

2

,           (13) 

where �̂�
�̂�𝑖𝑡

𝑏  is the standard error of �̂�𝑖𝑡
𝑏 . Henceforth, we refer to 𝐻𝑡

𝑂 in expression (11) as the 

beta-based herd measure, whereas 
�̂�𝑖𝑡

𝑏 −�̂�𝑖𝑡
𝑏̅̅ ̅̅

�̂�
�̂�𝑖𝑡

𝑏
 and 𝐻𝑡

∗ in (13) are referred to as standardized-beta 

and the standardized-beta herd measure, respectively. Note that a lower value of 𝐻𝑡
∗ (𝐻𝑡

𝑂) 

indicates higher beta herding. 

 There are several benefits of using standardized-beta, 
𝛽𝑖𝑡

𝑏 −E(𝛽𝑖𝑡
𝑏 )

𝜎
𝛽𝑖𝑡

𝑏
. First, it becomes 

possible to compare the dynamics of beta herding over different periods. The standardized-beta 

has a homoscedastic distribution and thus will not be affected by any heteroskedastic behavior 

in estimation errors. When estimation error 𝜂𝑖𝑡~(0, 𝜎
𝛽𝑖𝑡

𝑏
2 ) is standardized with its own standard 

deviation, we have 
�̂�𝑖𝑡

𝑏 −�̂�𝑖𝑡
𝑏̅̅ ̅̅

𝜎
𝛽𝑖𝑡

𝑏
=

𝛽𝑖𝑡
𝑏 −�̂�𝑖𝑡

𝑏̅̅ ̅̅

𝜎
𝛽𝑖𝑡

𝑏
+ 𝜂𝑖𝑡

∗  from �̂�𝑖𝑡
𝑏 = 𝛽𝑖𝑡

𝑏 + 𝜂𝑖𝑡 , where 𝜂𝑖𝑡
∗ ~(0,1) for all i 

and t. Therefore, as the number of stocks increases, lim
N→∞

1

N
∑N

𝑖=1 (
�̂�𝑖𝑡

𝑏 −�̂�𝑖𝑡
𝑏̅̅ ̅̅

�̂�
�̂�𝑖𝑡

𝑏
)

2

=

lim
N→∞

1

N
∑N

𝑖=1 (
𝛽𝑖𝑡

𝑏 −E(𝛽𝑖𝑡
𝑏 )

𝜎
𝛽𝑖𝑡

𝑏
)

2

+ 1  is not affected by estimation error. Second, the t statistic 

provides information on the precision of the beta estimate in addition to the magnitude of the 

beta estimate. The reciprocal of estimation error in the denominator of the t statistic represents 

precision whereas the numerator of the t statistic shows how much a beta is deviated from the 

market beta. Thus, the standardized-beta should be informative in asset pricing. Third, this herd 

measure, 𝐻𝑡
∗, can be easily calculated using standard estimation programs, as it is based on the 

cross-sectional variance of the 𝑡 statistics of the estimated coefficients on the market portfolio.  
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 Alternatively, the beta-based herd measure can be used for portfolios because the 

estimation error can be minimized as the number of equities within each portfolio increases 

(Black, Jensen, and Scholes, 1972; Fama and MacBeth, 1973): for a portfolio p with equal 

weights, we have 𝑝lim�̂�𝑝𝑡
𝑏 = 𝛽𝑝𝑡

𝑏 because �̂�𝑝𝑡
𝑏 =

1

𝑁𝑝
∑ �̂�𝑖𝑡

𝑏𝑁𝑝

𝑖=1
=

1

𝑁𝑝
∑ 𝛽𝑖𝑡

𝑏𝑁𝑝

𝑖=1
+

1

𝑁𝑝
∑ 𝜂𝑖𝑡

𝑁𝑝

𝑖=1
, 

where 𝑁𝑝 is the number of stocks in the portfolio. In the empirical tests, we show that the 

beta-based herd measures calculated with portfolios are indeed similar to the standardized-beta 

herd measure calculated with individual stocks. 

 The following distributional result applies to (13).7  

Theorem 1  Let �̂�∗ = (�̂�1
∗ �̂�2

∗ . �̂�𝑁
∗ )′,  where �̂�𝑖

∗ =
�̂�𝑖𝑡

𝑏 −�̂�𝑖𝑡
𝑏̅̅ ̅̅

�̂�
�̂�𝑖𝑡

𝑏
 and �̂�

�̂�𝑖
𝑏  is the standard 

error of �̂�𝑖
𝑏 . Then with the classical LS assumptions,  

 �̂�∗

𝑁×1
~𝑁 ( 𝜷∗

𝑁×1
, 𝑽∗

𝑁×𝑁
), 

where 𝜷∗ = (𝛽1
∗ 𝛽2

∗ . 𝛽𝑁
∗ )′, 𝛽𝑖

∗ =
𝛽𝑖

𝑏−𝐸(𝛽𝑖
𝑏)

𝜎
𝛽𝑖

𝑏
, and 𝑽∗ is covariance matrix of �̂�∗. Then  

 𝐻∗ =
1

𝑁
�̂�∗′�̂�∗~

1

𝑁
[𝜒2(𝑅; 𝛽∗𝑅) + 𝑐∗],             (14) 

where 𝑅 is the rank of 𝑽∗, 𝛽∗𝑅 = ∑𝑅
𝑗=1 (𝛽𝑗

𝐴∗)2/𝜆𝑗
∗, 𝑐∗ = ∑𝑁

𝑗=𝑅+1 (𝛽𝑗
𝐴∗)2, 𝛽𝑗

𝐴∗  is the 𝑗th 

element of the vector 𝑪∗′�̂�∗, and 𝑪∗ and 𝜦∗ are the (𝑁 × 𝑁) matrices of the eigenvectors 

and eigenvalues of 𝑽∗ , respectively, i.e., 𝑽∗ = 𝑪∗𝜦∗𝑪∗′ . 𝜆𝑗
∗  is the jth eigenvalue of the 

diagonal matrix 𝜦∗. The eigenvalues are sorted in descending order.  

Proof. See the Appendix.  

                                                 
7 The notation for beta and other parameters is simplified in the theorem by omitting the subscript t. 
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Theorem 1 shows that the measure of beta herding is distributed as 1/𝑁 times the sum 

of non-central 𝜒2  distributions with degrees of freedom 𝑅  with non-centrality parameter 

𝛽∗𝑅 and a constant. Therefore, the variance of 𝐻𝑡
∗ is given by  

 𝑉𝑎𝑟[𝐻𝑡
∗] =

2

𝑁2
[𝑅 + 2𝛽∗𝑅].          (15) 

In practice, the non-centrality parameter would be replaced with its sample estimate. It is worth 

noting that this distributional result depends on the assumption that the number of observations 

used to estimate 𝛽𝑖𝑡
𝑏  is sufficiently large and �̂�𝑡

∗  is multivariate normal. With too few 

observations, the confidence level implied in the theorem above would be smaller than it would 

be asymptotically and we would thus reject the null hypothesis too frequently. 

 

3. Empirical properties of beta herding 

3.1. Estimation of beta herding  

Betas are estimated using rolling windows of 𝜏 (minimum 24) monthly observations 

and the beta herd measure and its confidence interval are updated as shown in Theorem 1.8 

Following the literature (e.g., Fama and French, 1992; Baker, Bradley, and Taliaferro, 2014), 

we set 𝜏 = 60 months to estimate standardized-betas and 𝐻𝑡
∗. Betas and standardized-betas 

are estimated in the presence of Fama-French factors, size (Small-minus-Big, SMB), book-to-

                                                 
8 Conditional models similar to those of Jagannathan and Wang (1996), Ferson and Harvey (1999), or Ang and 

Chen (2006) could be used. However, these models may be over-parameterized (Fama and French, 2006), or as 

demonstrated by Ghysels (1998), Jostova and Philipov (2005), and Lewellen and Nagel (2006), they do not 

necessarily specify beta better than simple linear models unless the true process is known. Moreover, the cost of 

using the conditional models for tens of thousands of stocks would be prohibitively high. 
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market (High-minus-Low, HML), profitability (Robust-minus-Weak profitability, RMW), and 

investment (Conservative-minus-Aggressive investment, CMA) (Fama and French, 2015). For 

robustness, we also test various other windows, i.e., 𝜏 =48 and 84 months. Other models, i.e., 

the market model and a ten-factor model, are also tested. The details of the results are reported 

later. The bottom line is that our main story does not change significantly.  

The monthly data file comes from the merged Center for Research in Security Prices 

(CRSP) – Compustat database for common stocks listed on the New York Stock Exchange 

(NYSE), American Stock Exchange (AMEX), and NASDAQ. Using rolling windows of 𝜏 

months we obtain 600 monthly beta-based and standardized-beta herding statistics (𝐻𝑡
O and 

𝐻𝑡
∗) from January 1967 to December 2016. The number of stocks starts with 940 at January 

1967 and increases to 2,800 at December 2015. The maximum number of stocks is 3,580 at 

December 1996. For excess market returns, the CRSP value weighted market portfolio returns 

and 1-month treasury bills are used.  

Heard measures are also estimated using portfolios to investigate robustness of the 

standardized-beta herd measure we estimate with individual stocks. The portfolios we use 

include the Fama-French 50 portfolios formed on firm characteristics (25 portfolios formed on 

size and book-to-market and 25 portfolios formed on operating profitability and investment), 

100 portfolios formed on size and book-to-market, and 49 industry portfolios from Kenneth 

French’s data library. Industries that include less than five firms at the time of estimation are 

omitted. 

 

3.2. Empirical properties of beta herd measures 

Table 2 reports some of the basic statistical properties of the beta-based and 
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standardized-beta herding statistics, with the market model and the Fama-French five-factor 

model. All beta herd measures are highly non-normal being positively skewed and leptokurtic.  

The beta-based measures (𝐻𝑡
𝑂) from the market model and the five-factor model (the 

first two columns in Table 2) are close to each other: the rank correlation coefficient between 

the two is 0.96. The beta-based measure is not affected in a meaningful way by the inclusion 

of the four factors. However, the last two columns of Table 2 show some difference in 𝐻𝑡
∗ 

between the market model and the five-factor model: the rank correlation coefficient between 

the two is only 0.53. The high correlation in 𝐻𝑡
𝑂 and the relatively lower correlation in 𝐻𝑡

∗ 

indicate that the standard errors of the estimated betas are affected by the additional four factors.  

The last row in Table 2 reports a significant difference between 𝐻𝑡
𝑂 and 𝐻𝑡

∗; the rank 

correlations between the two are negatively correlated, i.e., -0.15, for the five-factor model. In 

order to investigate if the difference comes from estimation errors as explained in equation (12), 

the beta-based herd measure is regressed on the standardized-beta herd measure with and 

without CVEE:  

𝐻𝑡
𝑂 = 0.402

(0.053)
− 0.031

(0.021)
𝐻𝑡

∗ + 𝑒𝑡, 

𝐻𝑡
𝑂 = −0.146

(0.019)
+ 1.193

(0.031)
𝐶𝑉𝐸𝐸𝑡 + 0.077

(0.007)
𝐻𝑡

∗ + 𝑒𝑡, 

where the numbers in the brackets are Newey-West standard errors, and 𝐶𝑉𝐸𝐸𝑡 is calculated 

by taking the cross-sectional average value of the squared standard errors of �̂�𝑖𝑡
𝑏s. The adjusted 

𝑅2 value of the regression is 0.01 and 0.95 for the first and second regressions, respectively. 

These results clearly indicate that the dynamics of 𝐻𝑡
𝑂 are driven by CVEE as in equation (12). 

Once CVEE is taken out, a strong positive relation between the two beta herd measures emerges.  
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3.3. Robustness to fundamentals and estimation errors 

An issue, as discussed at the outset, is whether the dynamics of the beta herding 

statistics are driven by either fundamentals or estimation errors. The two beta herd measures 

(𝐻𝑡
𝑂 and 𝐻𝑡

∗) are regressed on various variables frequently used to explain beta or to control 

the effects of fundamentals on behavioral biases (Ferson and Harvey, 1991, 1999; Baker an 

Wurgler, 2006). The variables are one-month Treasury bill rate (𝑇𝐵𝑡), the term spread (𝑇𝑆𝑡, 

the difference between the US ten year and one year Treasury bond rate), the credit spread (𝐶𝑆𝑡, 

the difference between Moody's Aaa and Baa rated corporate bonds), the dividend yield (𝐷𝑌𝑡, 

the dividend yield of S&P500 index), the Lettau and Ludvigson (2001) consumption-wealth 

ratio (𝐶𝐴𝑌𝑡), the monthly inflation rate (𝐶𝑃𝐼𝑡), the growth in industrial production (𝐼𝑃𝑡), the 

growth in consumption of durables, nondurables, and services (𝐶𝑜𝑛𝑠𝑡), the unemployment rate 

(𝑈𝑛𝑒𝑚𝑝𝑡), and a dummy variable for NBER recessions (𝑁𝐵𝐸𝑅𝑡).9 We also add market returns 

and market volatility to investigate whether or not our beta herd measures depend on different 

market conditions. Market volatility is calculated by summing squared daily returns as in 

Schwert (1989). A lagged beta herd statistic is included as an explanatory variable to control 

for the persistence of the measure.  

The results are reported in Table 3. Beta herd measures appear highly persistent but are 

stationary.10 In addition to the persistence of beta, the rolling windows we use to estimate betas 

                                                 
9 These data are obtained from the Federal Reserve Bank of St. Louis. 

10 The augmented Dickey-Fuller test rejects the null hypothesis of a unit root at 5% significance level. The 

persistence of the measures is not surprising since betas are well-known to be highly persistent both theoretically 

as well as empirically: for example, Gomes, Kogan, and Zhang (2003) and Ang and Chen (2006) suggest 
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also contribute to the persistence of 𝐻𝑡
∗. 

Controlling for the persistence of the measure, we find little evidence that 𝐻𝑡
∗  is 

affected by the macroeconomic variables (Panel B of Table 3). Therefore, despite the evidence 

that betas change in response to lagged macroeconomic variables (Jagannathan and Wang, 

1996; Ferson and Harvey, 1999), the cross-sectional variance of standardized-betas does not.11 

This result could be interpreted as showing that changes in economic conditions increase some 

betas while decreasing others, leaving the level of cross-sectional dispersion little changed. 

As expected, the coefficients on 𝐶𝑉𝐸𝐸𝑡 are positive and significant for the beta-based 

measure. More importantly, the thin solid and dotted lines at the bottom of Figure 1 confirm 

that the dynamics of the beta-based herd measure are dominated by the estimation error: the 

rank correlation coefficient between 𝐻𝑡
𝑂 and 𝐶𝑉𝐸𝐸𝑡 is 0.96. On the other hand, 𝐻𝑡

∗ appears 

to be negatively affected by CVEE. As 𝐻𝑡
∗ is robust to estimation error (subsection 2.4), we 

evaluate the importance of CVEE on 𝐻𝑡
∗ by calculating an orthogonalized standardized-beta 

herd measure (𝐻𝑡
∗⊥) free from CVEE, the two market variables, and the ten macroeconomic 

fundamentals using the regression results in the last row of Table 3. Figure 1 demonstrates that 

the dynamics of 𝐻𝑡
∗  and 𝐻𝑡

∗⊥  are not different from each other: the rank correlation 

coefficient between 𝐻𝑡
∗  and 𝐻𝑡

∗⊥  is 0.99. These results are consistent with the marginal 

contribution (i.e., little difference in the adjusted R-square value) of the control variables to the 

                                                 
autoregressive coefficients larger than 0.95 for monthly data.  

11 Our empirical results rule out that possibility that the standardized herd measure may be affected by a sudden 

change in the leverage during crises. According to Korteweg (2010), firms do not adjust their leverage ratios even 

if their current leverage ratios are suboptimal, and thus leverage ratios are quite stable over time.  
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model with persistence.  

Between the two market variables, market return does not explain 𝐻𝑡
∗. The impact of 

investor overconfidence or sentiment on beta herding can occur whether the market is moving 

up or down. Market volatility, on the other hand, does have a positive relation with 𝐻𝑡
∗ , 

suggesting that adverse beta herding arises when market volatility increases. We return to this 

relation later. 

The bottom line is that the dynamics of 𝐻𝑡
∗ can be interpreted as changes in behavioral 

forces driven by investor sentiment or overconfidence towards the market outlook.12 In the 

following analysis we report our results using 𝐻𝑡
∗, as we find that the results with 𝐻𝑡

∗⊥ are 

effectively the same as those with 𝐻𝑡
∗.  

 

4. The effects of beta herding on cross-sectional asset returns 

When the dispersion of standardized-betas changes dramatically over time as in Figure 

1, the cross-sectional return difference between high and low standardized-beta stocks would 

not remain constant. In this section, we scrutinize the effects of beta herding on cross-sectional 

asset returns.  

 

                                                 
12 The dynamics of the cross-sectional dispersion of standardized-betas is not driven by a small number of stocks 

whose extremely high or low betas change dramatically. When decile portfolios are formed on the standardized-

betas, both positive and negative standardized-betas move in mirror image, indicating that 𝐻𝑡
∗ is driven by the 

entire beta distribution. 
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4.1. Cross-sectional asset returns conditional on beta herding 

We first investigate if portfolios formed on standardized-betas show difference in their 

performance depending on the level of beta herding. The sample period is divided into three 

sub-periods depending on the level of 𝐻𝑡
∗ at the formation month and then the post-formation 

performance of standardized-beta portfolios for each of these herding states is compared: i.e., 

beta herding (the bottom 20% of 𝐻𝑡
∗), no beta herding (middle 60% of 𝐻𝑡

∗), and adverse beta 

herding (top 20% of 𝐻𝑡
∗). Decile portfolios are formed on standardized-betas estimated using 

the Fama-French five-factor model. For each of the decile portfolios, risk adjusted buy-and-

hold returns over 12 months from the formation are calculated using the five-factor model.  

None of the buy-and-hold returns of the high-minus-low portfolios in Table 4 is 

significant, confirming the empirical results in the literature (e.g., Fama and French, 1992). 

However, the low-beta anomaly that low beta stocks outperform high beta stocks on a risk-

adjusted basis (Baker, Bradley, and Wurgler, 2011; Baker, Bradley, and Taliaferro, 2014) still 

holds for the standardized-beta portfolios: the risk-adjusted returns of the high-minus-low beta 

portfolios are negative and significant: -5.97% and -8.7% for equally- and value-weighted 

portfolios, respectively. Even though standardized-betas are used instead of betas in the five-

factor model, the empirical results are consistent with those reported in the literature.13  

According to this inverse relation between beta and risk-adjusted return, it should be 

adverse beta herding that contributes to the negative risk-adjusted return of the high-minus-low 

                                                 
13 For the explanations of the low-beta anomaly, see lottery-like risk (Bali, Cakici, and Whitelaw, 2011), leverage 

(Frazzini and Pedersen, 2014), speculative motives to trade (Hong and Sraer, 2016), or downside risk (Schneider, 

Wagner, and Zechner, 2016).  
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beta portfolio rather than beta herding. The low-beta anomaly should increase when the 

difference between high and low betas increases if the low-beta anomaly is driven by the 

inverse relation between beta and risk-adjusted return. The results in Table 4 report that the 

negative risk-adjusted returns of the high-minus-low standardized-beta portfolios increase 

following adverse beta herding, ranging from -17.12% (equal-weights) to -12.32% (value-

weights), and are significant at 5% level. The low-beta anomaly becomes stronger following 

adverse beta herding.  

The increase in the low-beta anomaly following adverse beta herding can be explained 

by a large difference in post-formation betas. Despite the insignificant difference in the post-

formation raw returns between high and low standardized-beta sorted portfolios, the difference 

in the post-formation betas are 0.95 (equal-weights) and 0.64 (value-weights) following 

adverse beta herding, whereas they are only 0.27 (equal-weights) and 0.47 (value-weights) 

following beta herding. These differences are significant at the 5% level, and thus the difference 

in the post-formation betas changes significantly depending on the level of beta herding, 

affecting risk-adjusted returns.14  

These results indicate that the low-beta anomaly arises when the dispersion of betas 

increases excessively due to investors’ under-confidence or pessimistic views about market 

                                                 
14 The low-beta anomaly following beta herding also appears to be large. Despite the small difference in betas 

between high and low standardized-beta portfolios following beta herding, e.g., 0.27 for equally weighted 

portfolios, the risk-adjusted returns of the high-minus-low standardized-beta portfolios are large and negative, 

ranging from -8.62% (value-weights) to -4.52% (equal-weights). However, the negative risk-adjusted returns 

following beta herding are not robust for other estimates of betas and there is little evidence of return difference 

between beta-herding and adverse-beta herding (Tables 5 and 8).  
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outlook. When investors have little confidence about the signals they use for the prediction of 

market movements (a large value of 𝛾𝑡
∗) or have pessimistic views (a negative value of 𝛿𝑚𝑡

∗∗ ), 

individual betas are biased so that the difference between individual betas increases.  

 

4.2. Persistence and asymmetric responses 

The performance of the standardized-beta portfolios is further investigated for different 

forecasting horizons and for asymmetric responses to beta herding. The post-formation returns 

of the high-minus-low standardized-beta quintile portfolio are regressed on the lagged 𝐻𝑡
∗ in 

the presence of other control variables:  

𝑟𝐻𝑖𝑔ℎ,𝑡+𝑓
𝛽

− 𝑟𝐿𝑜𝑤,𝑡+𝑓
𝛽

= 𝛼 + 𝑐1𝐻𝑡
∗ + ∑ 𝑐𝑘𝑓𝑘,𝑡+𝑓

𝐾

𝑘=2
+ 휀𝑖,𝑡+𝑓 , 

𝑟𝐻𝑖𝑔ℎ,𝑡+𝑓
𝛽

− 𝑟𝐿𝑜𝑤,𝑡+𝑓
𝛽

= 𝛼 + 𝑐1
+𝐻𝑡

∗𝐼𝑡 + 𝑐1
−𝐻𝑡

∗(1 − 𝐼𝑡) + ∑ 𝑐𝑘𝑓𝑘,𝑡+𝑓

𝐾

𝑘=2
+ 휀𝑖,𝑡+𝑓, 

where the forecasting horizon is set to 𝑓=3, 9, …, 36, and 𝐼t = 1 if 𝐻𝑡
∗ >

1

𝑇
∑ 𝐻𝑡

∗𝑇
𝑡=1  and 

𝐼t = 0 otherwise. As in Jegadeesh and Titman (2001), overlapping portfolios are constructed 

to increase the power of the tests. For instance, the post-formation return of the high 

standardized-beta portfolio 𝑟𝐻𝑖𝑔ℎ,𝑡+𝑓
𝛽

 is calculated by equally weighting 𝑓 high standardized-

beta portfolios formed at 𝑡, 𝑡 + 1, ..., 𝑡 + 𝑓 − 1. Fama-French five factors are used as the 

control variables. Asymmetric responses to beta herding and adverse beta herding can be tested 

by the difference between 𝑐1
+ and 𝑐1

−.  

 The results in Table 5 confirm that beta herding matters in cross-sectional asset returns. 

The negative coefficients on 𝐻𝑡
∗  suggest that when adverse beta herding arises, i.e., 𝐻𝑡

∗ 

increases, subsequent high-minus-low standardized-beta portfolio returns decrease. For the 
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forecasting horizons from 3 months to 36 months, all coefficients on 𝐻𝑡
∗ are negative and 

some of them are significant at the 5% level. When the herd measure is divided into adverse 

beta herding and beta herding states, both coefficients 𝑐1
+ and 𝑐1

− are negative and there is 

little statistical evidence of difference between them. The results with value-weights are not 

inconsistent with those with equal-weights but are weaker than those with equal-weights, 

indicating that small stocks are affected by beta herding.  

When beta herding is considered, the low-beta anomaly disappears because of the 

negative coefficients on 𝐻𝑡
∗. The results in Table 5 show that without considering beta herding, 

risk-adjusted returns of high-minus-low standardized-beta portfolios are negative and 

significant as in Baker, Bradley, and Wurgler (2011) and Baker, Bradley, and Taliaferro (2014). 

However, when beta herding is considered, the risk-adjusted high-minus-low standardized-beta 

portfolio return becomes positive but not significant. These results together with the -17.12% 

of risk-adjusted returns following adverse beta herding (Table 4) indicate that the low-beta 

anomaly arises due to the excessively large dispersion of betas.  

The effects of beta herding on beta sorted portfolio returns appear quite persistent. For 

example, the coefficients are large when 𝐻𝑡
∗ is lagged by 12 to 30 months, and are significant 

for the 30 month lagged herd measure for the equally weighted portfolios in panel A of Table 

5. The persistence reflects the difficulty that investors face when they estimate the true betas. 

Even with more information, the effects of adverse herding on asset returns do not disappear 

because betas in practice are at best estimates with large estimation errors (Damodaran, 2012).  

 

4.3. The Effects of beta herding and sentiment on cross-sectional asset returns 

Our model suggests that beta herding increases with sentiment. Using Baker and 
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Wurgler (2006) sentiment index (BW), we find that the correlation coefficient between 𝐻𝑡
∗ 

and the BW sentiment index is negative and significant, i.e., -0.38. Therefore, as predicted in 

Lemma 2, beta herding increases with sentiment.  

However, the negative correlation between 𝐻𝑡
∗ and the BW sentiment index suggests 

that our study on the effects of investor overconfidence and sentiment about the market outlook 

are different from those that associate overconfidence and sentiment with assets with uncertain 

valuations (e.g., Baker and Wurgler, 2006; Kumar, 2009). According to Antoniou, Doukas, 

and Subrahmanyam (2016), high beta stocks are more likely to be affected by investor 

optimism than low beta stocks are, and the inverse relationship between risk and return 

following optimism reflects the subsequent return reversals. If the effects of beta herding echo 

those of sentiment, then returns of high-minus-low standardized-beta portfolios should have 

positive coefficients on the lagged 𝐻𝑡
∗ because of the negative correlation between sentiment 

and 𝐻𝑡
∗.  

We investigate this by regressing the post-formation returns of the high-minus-low 

standardized-beta quintile portfolio on the lagged 𝐻𝑡
∗ and BW sentiment index in the presence 

of other control variables:  

𝑟𝐻𝑖𝑔ℎ,𝑡+𝑓
𝛽

− 𝑟𝐿𝑜𝑤,𝑡+𝑓
𝛽

= 𝛼 + 𝑐1𝐻𝑡
∗ + 𝑐2𝑆𝑡

∗ + ∑ 𝑐k𝑓𝑘,𝑡+𝑓
𝐾
𝑘=3 + 휀𝑖,𝑡+𝑓, 

where the forecasting horizon is set to 𝑓=3, 12, …, 36, and 𝑆𝑡
∗ is the Baker and Wurgler 

sentiment index. Fama-French five-factors and ten-factors are used as control variables.15 

                                                 
15 The nine factors in addition to the excess market return include six annually rebalanced portfolios formed on 

annual accounting variables and three monthly rebalanced portfolios formed on quarterly accounting variables or 

monthly market information. Six annually rebalanced portfolios include accruals (Sloan, 1996); asset growth 



 

27 

 

Table 6 shows that the effects of beta herding becomes more clear than those in Table 

5. Most coefficients on 𝐻𝑡
∗ are negative and significant at the 5% level, supporting that the 

low-beta anomaly increases with investors’ under-confidence and pessimism about the entire 

market. We also find that the coefficients on the lagged sentiment index is negative too. As in 

Antoniou, Doukas, and Subrahmanyam (2016), if unsophisticated investors’ optimism 

increases returns of high beta stocks than those of low beta stocks, high beta stocks 

underperform low beta stocks following investors’ optimism because of the return reversals. 

These results, however, disappear when portfolios are value-weighted. 

The negative correlation between sentiment and 𝐻𝑡
∗  and the robustness of the 

coefficients on the lagged 𝐻𝑡
∗ in Table 6 show that the effects of beta herding on asset returns 

differ from those of sentiment. In our model, sentiment and overconfidence are not assumed to 

vary at the cross-sectional level, but instead cross-sectional effects arise indirectly through the 

effects of investors’ sentiment and overconfidence about the entire market outlook. On the 

                                                 
(Cooper, Gulen, and Schill, 2008); book-to-market ratio (Rosenberg, Reid, and Lanstein, 1985; Fama and French, 

1992, 1993); gross profitability (Novy-Marx, 2010); net operating assets (Hirshleifer, Hou, Teoh, and Zhang, 

2004); and net stocks issues (Fama and French, 2008). The three monthly rebalanced portfolios are size (Banz, 

1980; Fama and French, 1992, 1993); momentum (Jegadeesh and Titman, 1993, 2001); and earnings surprises 

(Chan, Jegadeesh, and Lakonishok, 1996). Ten equally weighted portfolios are formed for each trading strategy, 

and then a hedge portfolio is obtained by the difference between the highest and the lowest decile portfolios. 

Detailed explanations can be obtained from the authors upon request. We have also considered various other 

factors suggested in the literature (Harvey, Liu, and Zhu, 2014), but these are highly correlated with the ten factors 

we use in this study (correlation coefficients are larger than 0.7) or are not significant for the explanation of asset 

returns in our sample. the nine our factors may appear small. 
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other hand, Antoniou, Doukas, and Subrahmanyam (2016) take the view that sentiment or 

overconfidence has asymmetric effects on assets with uncertain valuations (e.g., Baker and 

Wurgler, 2006; Kumar, 2009). Our results show that these two effects co-exist in the market: 

both market-wide sentiment and overconfidence directly or indirectly affects cross-sectional 

asset returns. These, however, have the opposite consequences. 

 

4.4. Beta herding and firm characteristics 

If beta is closely correlated with other firm characteristics, then the performance of 

portfolios formed on standardized-betas may be affected by firm characteristics or the 

performance of portfolio formed on firm characteristics may be affected by beta herding. In 

panel B of Table 6 (and also panel B of Table 8), we have already showed that high-minus-low 

standardized-beta portfolio returns negatively depend on lagged 𝐻𝑡
∗  after controlling nine 

other firm characteristic factors. Therefore, firm characteristics do not subsume the conditional 

effects of beta herding on the performance of standardized-beta sorted portfolios. In this 

subsection, we investigate the effects of beta herding on the portfolios formed on the firm 

characteristics. 

Table 7 shows that firm characteristics are strongly correlated with the standardized-

betas.16 The standardized-betas increase with betas, suggesting that the information contained 

in betas is not undermined by the standardization. High standardized-beta stocks are less likely 

to pay dividends, have less tangible assets, but are more likely to rely on external finance, and 

show higher sales growth and idiosyncratic volatility. They also show higher profits and past 

                                                 
16 The firm characteristics are calculated as in Baker and Wurgler (2006), Amihud (2002), and Ang et. al. (2006).  
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returns, and are liquid. However, they are neither small nor distressed (i.e., high book-to-

market). Contrary to the results of Fama and French (1992) who demonstrate that high beta 

stocks tend to be smaller than low beta stocks, high standardized-beta stocks are larger than 

low standardized-beta stocks.17  

The performance of portfolios formed on these firm characteristics is investigated by 

regressing high-minus-low portfolio returns ( 𝑟𝐻𝑖𝑔ℎ,𝑡+𝑓 − 𝑟𝐿𝑜𝑤,𝑡+𝑓 ) formed on firm 

characteristics on the lagged beta herd measure and sentiment as in Baker and Wurgler (2006). 

The results (not reported) show that beta herding does not predict the performance of the firm 

characteristics-sorted portfolios although the relation between standardized-beta and firm 

characteristics is strong. Some effects of sentiment on the performance of these firm 

characteristics disappear in the presence of the Fama-French five factors, because the two 

additional factors, i.e., profitability and investment, explain returns of the portfolios formed on 

these firm characteristics.18 Therefore, the effects of beta herding on cross-sectional asset 

returns are distinct from those of sentiment, despite the close connection between sentiment 

and beta herding.  

 

                                                 
17 This discrepancy can be explained by two distinct differences in the calculation of betas. First, in this study we 

calculate betas in the presence of SML, HML, RAW, and CMA. Therefore our betas are less likely to be related 

to size or distress. Second, by comparing the sizes of the decile portfolios formed on estimated betas and 

standardized-betas (not reported), we find that small stocks whose estimated betas are high tend to have larger 

standard errors and thus, the standardized-betas become smaller. 

18 The coefficients on the BW sentiment measure are similar to those reported by Baker and Wurgler (2006) 

when Fama-French three factors and momentum. 
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4.5. Robustness of the results to other estimates of betas or estimation windows 

The first test focuses on the robustness with respect to other asset pricing models. Our 

main results in Tables 4 and 5 may be limited because the Fama-French five-factor model is 

arbitrary although it can explain cross-sectional stock returns in practice (Fama and French, 

2015). According to the CAPM, beta is the only risk that should be priced. The beta we estimate 

using the Fama-French five-factor model is equivalent to the estimate of the CAPM beta only 

when other four factors are orthogonal to the excess market return. If asset returns are explained 

by multi-factor models as in Merton (1973) and Ross (1976) and the excess market return is 

just one of the factors, then the sensitivity of asset returns with respect to the excess market 

return should be measured in the presence of these other factors because betas are closely 

related to many firm characteristics that have been known to predict cross-sectional asset 

returns (Fama and French, 1993; Kogan and Papanikolaou, 2013; Harvey, Liu and Zhu, 2016). 

Theory, however, does not directly tell us how many factors are required for asset returns or 

what these factors are. We use the nine empirical factors in subsection 4.3 (Table 6) in addition 

to the excess market return.  

The results in Table 8 are not different from those in Tables 5 and 6. Most coefficients 

on the lagged beta herd measure are negative and some are significant, in particular when the 

forecasting horizon increases. The results with value-weighted portfolios (not reported) are 

weaker than those with equally weighted portfolios but are not in consistent with those with 

the Fama-French five-factor model in Table 5. Therefore, as in Baker, Bradley, and Taliaferro 

(2014), negative risk-adjusted returns increase with adverse beta herding regardless of the 

market model, five- or ten-factor models. Once again, the low-beta anomaly in the market 

model disappears when beta herding is included as an explanatory variable. Therefore, the large 
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negative risk-adjusted returns of high-minus-low beta portfolios are created by unusually large 

cross-sectional dispersion of betas through investors’ under-confidence or pessimistic view 

about the direction of the entire market. 

As a second robustness test, we investigate if our results are robust when standardized-

betas and beta herd measure are estimated using different estimation windows. The results with 

two different windows (not reported), 84 and 48 months, are similar to those with 60 months 

window (Table 5): most coefficients on the lagged herd measure are negative.19  

  

5. Beta herding and economic events 

With thousands of stocks, the confidence region calculated by equation (15) is so tight 

that we observe many significant but small changes in herding activity. Rather than focusing 

on all of these minor changes in beta herding, we identify periods of high and low 𝐻𝑡
∗ as well 

as major turning points and connect those to economic events anecdotally, which provides 

insight into what we might expect from the herd measure. 

 

5.1. Beta herding and economic events 

There were several periods when 𝐻𝑡
∗ was significantly lower than other periods: 1) 

late 1968-1969, 2) 1974-1975 (a few years following the first Oil Shock in 1973), 3) 1981-

1982 (a few years following the second Oil Shock in 1979), 4) 1985-1987 (a few years before 

the 1987 Crash), 5) 1996-1998 (bull period before the Russian Crisis in 1998), 6) 1999-2002 

(the boom and bust period around 2000), and 7) 2007-2008 (just before the 2008 credit crisis). 

Among these periods of high herding activity, the market was bullish only in periods 2), 4), 5) 

                                                 
19 The details of the results can be obtained upon request from the authors. 
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and 7), but was bearish in the other high beta herding periods. This result is consistent with the 

weak statistical evidence linking market movements and beta herding found in Table 3. 

We further investigate whether or not changes in business cycle are linked to the 

dynamics of beta herding. Seven change points from expansion to recession and from recession 

to expansion since 1962 are identified from the National Bureau of Economic Research 

(NBER). Herd measures are then aligned for the change events and the average values of herd 

measure are calculated. Figure 2A shows that for both cases there is no significant change in 

beta herding due to the business cycle. We also perform the same procedure for the period from 

1932 (the herd measure is calculated with CRSP data and reported in Figure 3), but the results 

are similar. Business cycles do not appear to affect the dynamics of beta herding. This is 

consistent with the results reported in Table 3 where none of the macroeconomic variables 

including the NBER recession dummy can explain beta herding. 

However, some economic events do appear to change the direction of herding. For 

example, we identify eleven such events and plot 𝐻𝑡
∗ before and after these events in Figure 

2B. Following the two oil shocks in the 1970s beta herding began to increase. After the 1979 

Oil Shock, the sharp interest rate rise in 1980 increased beta herding further. Strong herding 

existed during the early 1980s’ bear market, which ended in 1982 when interest rates began to 

fall and the market became bullish. On the other hand, after the two events, the 1987 Crash and 

the 1998 Russian Crisis, both of which occurred during high beta herding periods, herding 

decreased. Note that neither of these events changed the direction of the business cycle. Years 

such as 1985, 1992 and 2013 were bullish when investor’s optimistic view prevails.    

There was a dramatic change in beta herding at the end of the 2000s. Herding began to 

increase from the end of 2005 and was accelerated by the ‘Quant Meltdown’ in 2007, which 
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refers to the unprecedented losses experienced by quantitative long/short equity hedge funds 

during August 2007. Khandani and Lo (2011) suggest that a ‘coordinated’ deleveraging of 

similarly constructed portfolios is to be blamed for the meltdown. The coordination of 

arbitrageurs would increase market-wide herding, as arbitrage trading would be seriously 

limited during these periods. The increased herding suddenly disappeared in the summer of 

2008 at the onset of the credit crisis.  

 

5.2. Adverse beta herding during crises 

Our evidence does not support the view that beta herding through investor 

overconfidence or sentiment occurs when financial markets are in stress (or in crisis). In so far 

as individual asset returns move following their systematic risks, the market-wide negative 

returns are rational. Only when individual asset returns move in one direction excessively, thus 

violating the equilibrium relation with the market returns, can we call it irrational. Figure 1 

shows that it is the estimation error that leads to sharp decreases in 𝐻𝑡
∗.20  

                                                 
20 The large shifts in the estimation errors explain why many empirical studies on herding in advanced markets 

have found little concrete evidence of herd behavior. However, in the South Korean case, Kim and Wei (2002) 

and Choe, Kho, and Stulz (1999) study herd behavior around the Asian Crisis in 1997 and find some evidence 

during the Crisis. These studies use the measure developed by Lakonishok, Shleifer, and Vishny (1992), which 

focuses on a subset of market participants. Therefore, we cannot conclude that their results are inconsistent with 

ours as our measure considers beta herding in the whole market, rather than a subset of participants. Chang, Cheng 

and Khorana (2000), using a variant of the method developed by Christie and Huang (1995), suggest the presence 

of herding in emerging markets such as South Korea and Taiwan, but failed to find such evidence in the US, Hong 

Kong and Japanese markets. Other studies suggest evidence of herding in industries or in international markets 
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Adverse beta herding occurs when investors are under-confident about the stability and 

outlook of the future stock market. This would also explain how sentiment contributes to 

adverse beta herding in crises. During the crises in 1987, 1998, and 2008, investors became 

pessimistic and lost confidence in their views, resulting in adverse beta herding. Our model 

and empirical results support that investors’ pessimism and loss of confidence increases 

adverse beta herding which create the low-beta anomaly.  

 

5.3. Beta herding in portfolios and before 1967 

The dynamics of the beta-based herd measure (𝐻𝑡
O) calculated with the three portfolios 

(Fama-French portfolios formed on size, book-to-market, investment, and profitability, and 49 

industry portfolios) are compared with those of 𝐻𝑡
∗ calculated with individual stocks (CRSP 

data) in Figure 3 for the period from January 1932 to December 2016. To increase robustness 

of our results we use Fama-French 25 portfolios formed on size and book-to-market together 

with their 25 portfolios formed on operating profitability and investment. The patterns prior to 

1967 support our previous argument that beta herding is created by a clear homogeneity of 

view in the direction in which the market is likely to move. 

They all move in similar ways. When the individual stocks show high levels of beta 

herding, these portfolios also show high levels of beta herding. The relation between individual 

stocks and the 49 industry portfolios is particularly strong with a correlation coefficient of 0.68. 

In addition, the correlation coefficients between 𝐻𝑡
∗ calculated with individual stocks and 𝐻𝑡

O 

with the two firm characteristic based portfolios also range from 0.4 to 0.5.  

                                                 
(Choi and Sias, 2009) 
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The results with portfolios also support the standardized-beta herd measure. Since 𝐻𝑡
O 

calculated with portfolios is less likely to be affected by estimation error than that calculated 

with individual stocks, the correlation between 𝐻𝑡
∗ and 𝐻𝑡

O should be high when they are 

calculated with portfolios. Consistent with the expectation, the rank correlation between these 

two measures of the 49 industry portfolios is 0.44 that is much higher than -0.15 in Table 2 we 

obtain with individual stocks. 

 

6. Conclusions 

Beta herding, as we propose, measures the cross-sectional dispersion in betas. When 

high betas are downward-biased and low betas are upward-biased, asset returns are more likely 

to track market movements. The existence of beta herding and adverse beta herding indicates 

that individual assets are mispriced, when equilibrium beliefs are suppressed. Our measure 

captures the impact of herding on asset prices rather than herding by individuals or a small 

group of investors, and thus is different from herd measures proposed by Lakonishok, Shleifer, 

and Vishny (1992), Wermers (1999), and Park and Sabourian (2011). 

We have applied our measure to the US stock market and found that beta herding 

disappeared during crises such as the 1987 Crash, the 1998 Russian Crisis, and the 2008 Credit 

Crisis. Contrary to a common belief that beta herding is significant when the market is under 

pressure, we find that beta herding becomes more apparent when investors feel overconfident 

regarding the future direction of the market. Once a crisis appears, beta herding weakens 

substantially.  

One important question is whether beta herding predicts cross-sectional asset returns. 



 

36 

 

Fama and French (1992, 1993) show that beta is not priced. However, as predicted by the low-

beta anomaly of Baker, Bradley, and Taliaferro (2014), beta does matter conditionally on beta 

herding: high beta stocks show lower returns than low beta stocks after adverse beta herding. 

Therefore, the anomaly disappears when beta herding is considered.   
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Appendix  

 
Proof of Lemma 1  

Under the assumption that 𝑟𝑖𝑡+1 and 𝐸𝑡
𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡) follow a jointly normal distribution, 

the conditional expectation of 𝑟𝑖𝑡+1 given 𝐸𝑡
𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡) is  

 𝐸𝑡 (𝑟𝑖𝑡+1|𝐸𝑡
𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡)) =

𝑐𝑜𝑣𝑡(𝐸𝑡
𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡),𝑟𝑖𝑡+1)

𝑣𝑎𝑟(𝐸𝑡
𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡))

𝐸𝑡
𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡) 

=
𝑐𝑜𝑣𝑡(𝑠𝑚𝑡, 𝑟𝑖𝑡+1)

𝑤𝑏𝑡𝑣𝑎𝑟(𝑠𝑚𝑡)
(𝜇𝑚 + 𝑤𝑏𝑡𝑠𝑚𝑡) 

   =
𝑐𝑜𝑣𝑡( 𝑚𝑡+1,𝑟𝑖𝑡+1)

𝑤𝑏𝑡(𝜎𝑚𝜀𝑡
2 +𝜎𝑚𝜖𝑡

2 )
(𝜇𝑚 + 𝑤𝑏𝑡𝑠𝑚𝑡), 

from which the result in equation (1) can be obtained.      QED. 

 

Proof of Lemma 2  

Beta of asset 𝑖 is 

𝛽𝑖𝑡
𝑏 =

𝐸𝑡
𝑏(𝑟𝑖𝑡+1|𝐸𝑡

𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡, 𝛿𝑚𝑡))

𝐸𝑡
𝑏(𝑟𝑚𝑡+1|𝑠𝑚𝑡 , 𝛿𝑚𝑡)

=
𝛾𝑡

∗𝛽𝑖𝑡(𝜇𝑚+𝑤𝑏𝑡𝑠𝑚𝑡) +𝛿𝑚𝑡

(𝜇𝑚+𝑤𝑏𝑡𝑠𝑚𝑡)+𝛿𝑚𝑡
=

𝛾𝑡
∗𝛽𝑖𝑡+𝛿𝑚𝑡

∗∗

1+𝛿𝑚𝑡
∗∗ ,   

where 𝛿𝑚𝑡
∗∗ =

𝛿𝑚𝑡

(𝜇𝑚+𝑤𝑏𝑡𝑠𝑚𝑡)
. The result in equation (9) can be obtained using 𝐸𝑐(𝛽𝑖𝑡

𝑏 ) =

𝛾𝑡
∗+𝛿𝑚𝑡

∗∗

1+𝛿𝑚𝑡
∗∗ .            QED. 

 

Proof of Theorem 1 

With the assumption of �̂�𝑖𝑡
𝑏 ~𝑁(𝛽𝑖𝑡

𝑏 , 𝜎
𝛽𝑖𝑡

𝑏 ) and 𝜏 observations, we obtain the following non-

central 𝑡 distribution with the degrees of freedom 𝜏 − 𝐾 − 1:  

 
�̂�𝑖𝑡

𝑏 −�̂�𝑖𝑡
𝑏̅̅ ̅̅

�̂�
�̂�𝑖𝑡

𝑏
~𝑡(𝜏 − 𝐾 − 1; 𝛿𝑖𝑡

∗ ),       

where 𝛿𝑖𝑡
∗  is a non-centrality parameter, i.e., 𝛿𝑖𝑡

∗ = (𝛽𝑖𝑡
𝑏 − E(𝛽𝑖𝑡

𝑏 ))/𝜎
𝛽𝑖𝑡

𝑏 .  Let 𝐵𝑖𝑡
∗ ≡ (�̂�𝑖𝑡

𝑏 −

1)/�̂�
�̂�𝑖𝑡

𝑏 , and thus 𝐵𝑖𝑡
∗ ~𝑁(𝛿𝑖𝑡

∗ , 1). Let 𝐁𝑡
∗ = (𝐵1𝑡

∗ 𝐵2𝑡
∗ . 𝐵𝑁𝑡

∗ )′. Then with the classical 

LS assumption, for a large 𝜏 − 𝐾 − 1,  

 𝐁𝑡
∗

𝑁×𝑁
~𝑁 ( 𝛅𝑡

∗

𝑁×1
, 𝐕𝑡

∗

𝑁×𝑁
), 

where 𝛅𝑡
∗ = (𝛿1𝑡

∗ 𝛿2𝑡
∗ . 𝛿𝑁𝑡

∗ )′, and 𝐕𝑡
∗ is covariance matrix of 𝐁𝑡

∗. 
In general, we may not assume that the matrix 𝐕𝑡

∗ is fully ranked, since a large number 

of equities could mean 𝜏 − 𝐾 − 1 < 𝑁, suggesting the (𝑁 × 𝑁) variance-covariance matrix 

𝐕𝑡
∗ being singular. Let 𝐙 = 𝐂′𝐁𝑡

∗, where 𝐂 is the (𝑁 × 𝑁) matrix of the eigenvectors of the 

symmetric matrix of 𝐕𝑡
∗ , i.e., 𝐕𝑡

∗ = 𝐂𝚲𝐂′  and 𝚲  is the (𝑁 × 𝑁 ) diagonal matrix of the 

eigenvalues. Note that the eigenvalues are sorted in descending order and the eigenvectors are 

also sorted in accordance to the sorted eigenvalues. Then using 𝐂′𝐂 = 𝐈 and  

 𝐸(𝐙) = 𝐂′𝐸(𝐁𝑡
∗) = 𝐂′𝛅𝑡

∗ 
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 𝑉𝑎𝑟(𝐙) = 𝐸[(𝐂′𝐁𝑡
∗ − 𝐂′𝛅𝑡

∗)(𝐂′𝐁𝑡
∗ − 𝐂′𝛅𝑡

∗)′] 
 = 𝐂′𝐕𝑡

∗𝐂 

 = 𝚲, 
we have 𝐙~(𝛅𝑡

∗𝐴, 𝚲), where 𝛅𝑡
∗𝐴 = 𝐂′𝛅𝑡

∗. When the rank (𝑅) of the matrix 𝐕 is less than 𝑁, 

i.e., 𝑅 ≤ 𝑁, the first 𝑅 variables in the vector 𝐙 are normally distributed, 𝑧𝑖~𝑁(𝛿𝑖𝑡
∗𝐴, 𝜆𝑖), 

where 𝑧𝑖 is the 𝑖th variable of 𝐙, 𝛿𝑖𝑡
∗𝐴 is the 𝑖th element of vector 𝛅𝑡

∗𝐴, and 𝜆𝑖 is the 𝑖th 

eigenvalue of the diagonal matrix 𝚲. On the other hand, the remaining 𝑁 − 𝑅 variables of 𝑧𝑖, 

𝑖 = 𝑅 + 1, . . . , 𝑁, are just constants since 𝜆𝑖 = 0 for 𝑖 = 𝑅 + 1, . . . , 𝑁. Thus we have  

 𝐁𝑡
∗′𝐁𝑡

∗ = (𝐂𝐙)′𝐂𝐙 

 = 𝐙′𝐂′𝐂𝐙 

 = 𝐙′𝐙 

 = ∑𝑅
𝑖=1 𝑧𝑖

2 + ∑𝑁
𝑖=𝑅+1 𝑧𝑖

2. 
 Since 𝑧𝑖~𝑁(𝛿𝑖𝑡

∗𝐴, 𝜆𝑖)  is independent (orthogonal) of 𝑧𝑗  for all 𝑖 ≠ 𝑗  for 𝑖, 𝑗 ≤ 𝑅, 
the first component is  

 ∑𝑅
𝑖=1 𝑧𝑖

2~𝜒2(𝑅; 𝛿𝑘
𝑅), 

where 𝛿𝑘
𝑅 is the non-centrality parameter, i.e., 𝛿𝑘

𝑅 = ∑𝑅
𝑖=1 (𝛿𝑖𝑡

∗𝐴)2/𝜆𝑖. The second component 

is a constant, i.e., 𝑐 ≡ ∑𝑁
𝑖=𝑅+1 𝑧𝑖

2 = ∑𝑁
𝑖=𝑅+1 (𝛿𝑖𝑡

∗𝐴)2. Thus  

 𝐁𝑡
∗′𝐁𝑡

∗~𝜒2(𝑅; 𝛿𝑘
𝑅) + 𝑐. 

Therefore, our herd measure follows  

 ℎ𝑘𝑡 =
1

𝑁𝑡
𝐁𝑡

∗′𝐁𝑡
∗~

1

𝑁𝑡
[𝜒2(𝑅; 𝛿𝑘

𝑅) + 𝑐].     QED. 

 

 



 

42 

 

 

Table 1  Beta herding, cross-sectional bias in beta, sentiment, and expected returns 
 

 
Perfect  

beta herding 
Beta herding 

No 

beta herding 
Adverse beta herding 

Overconfidenc and 

sentiment 
𝛿𝑚𝑡

∗∗ → ∞, or 

𝛾𝑡
∗ →0 

𝛿𝑚𝑡
∗∗ > 0, or 

0 < 𝛾𝑡
∗ < 1 

𝛿𝑚𝑡
∗∗ = 0, or 

𝛾𝑡
∗ = 1 

𝛿𝑚𝑡
∗∗ < 0, or 

𝛾𝑡
∗ > 1 

𝛽𝑖𝑡
𝑏  1 

𝛽𝑖𝑡 < 𝛽𝑖𝑡
𝑏 < 1, 𝑓𝑜𝑟 𝛽𝑖𝑡 < 1

1 < 𝛽𝑖𝑡
𝑏 < 𝛽𝑖𝑡, 𝑓𝑜𝑟 𝛽𝑖𝑡 > 1

 𝛽𝑖𝑡 
𝛽𝑖𝑡

𝑏 < 𝛽𝑖𝑡 < 1, 𝑓𝑜𝑟 𝛽𝑖𝑡 < 1

1 < 𝛽𝑖𝑡 < 𝛽𝑖𝑡
𝑏 , 𝑓𝑜𝑟 𝛽𝑖𝑡 > 1

 

𝐸𝑡
𝑏(𝑟𝑖𝑡+1) 𝐸𝑡

𝑏(𝑟𝑚𝑡+1) 
𝐸𝑡(𝑟𝑖𝑡) < 𝐸𝑡

𝑏(𝑟𝑖𝑡), 𝑓𝑜𝑟 𝛽𝑖𝑡 < 1 

𝐸𝑡
𝑏(𝑟𝑖𝑡) < 𝐸𝑡(𝑟𝑖𝑡), 𝑓𝑜𝑟 𝛽𝑖𝑡 > 1

 𝐸𝑡(𝑟𝑖𝑡) 
𝐸𝑡

𝑏(𝑟𝑖𝑡) < 𝐸𝑡(𝑟𝑖𝑡), 𝑓𝑜𝑟 𝛽𝑖𝑡 < 1

𝐸𝑡(𝑟𝑖𝑡) < 𝐸𝑡
𝑏(𝑟𝑖𝑡), 𝑓𝑜𝑟 𝛽𝑖𝑡 > 1

 

Bias in 

expected excess returns and 

betas 

   
 

The figure summarizes four cases that describe the effects of investor overconfidence and sentiment on cross-sectional asset prices. Thick solid lines represent the market, 

the upper and lower thin solid lines represent high and low beta stocks, respectively, and the upper and lower dotted lines represent biases in high and low beta stocks, 

respectively.  
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Table 2  Properties of Beta Herd Measure  
We use the monthly data file from the merged Center for Research in Security Prices (CRSP) - Compustat 

database for common stocks listed on the New York Stock Exchange (NYSE), American Stock Exchange 

(AMEX), and NASDAQ. Using monthly observations from January 1962 to December 2016 and rolling windows 

of 60 months, we obtain 600 monthly herd measures from January 1967 to December 2016. Every month betas 

are estimated in the market model or the Fama-French five-factor model. The beta-based herd measure is 

calculated with the cross-sectional variance of least square estimates of betas, and the standardized herd measure 

is calculated with the cross-sectional variance of t statistics of betas that are calculated with the Newey-West 

heteroskedastic adjusted standard errors. We use stocks whose prices are higher than $1 (non-penny stocks) at the 

estimation month and whose past 60 (minimum 24) monthly observations are available. We omit stocks whose 

turnovers (trading volume divided by shares outstanding) belong to the bottom 1% or whose volatilities (standard 

deviations of returns) are excessively volatile or little volatility at all (top and bottom 1%) during the past 60 

months. To minimize any adverse effects from a small number of extreme beta estimates on our analysis, we use 

a statistical trimming process where the top and bottom 1% of beta estimates and standardized-beta estimates are 

omitted in our calculation of the beta herd measure. The bold numbers represent significance at the 5% level. 

  Beta-Based Herd Measure Standardized Herd Measure 

  

Market Model 

(A) 

Fama-French 

Five-factor 

Model (B) 

Market Model 

(C) 

Fama-French 

Five-factor 

Model (B) 

Mean 0.360 0.327 4.673 2.405 

Standard Deviation 0.195 0.152 1.566 0.533 

Skewness 1.497 0.689 0.878 0.355 

Excess Kurtosis 4.496 2.279 3.681 2.319 

Jarque-Bera Statistics 280.05  60.38  88.61  24.19  

Spearman Rank 

Correlations between A and 

B, and C and D 
0.963 0.527 

Spearman Rank Correlation 

between Cross-sectional 

Standard Deviations of 

Betas and t-Statistics 

Between A and 

C 

Between B and 

D 
    

0.317 -0.146     
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Table 3  Regression of Beta Herding in Individual Stocks on Various Variables 
The beta-based and standardized herd measures are calculated by rolling windows of 60 (minimum 24) months using the Fama-French five-factor model to obtain 600 

monthly observations from January 1967 to December 2016. These measures are then regressed on various explanatory variables. Rm and Vm represent excess market 

return and market volatility respectively. DY and RF represent the dividend yield and the 1 month Treasury bill rate, whereas TS and CS show the term spread (difference 

between 10 years Treasury Bond and 1 year Treasury Bill rate) and the credit spread (difference between Moody's Aaa and Baa rated bond yields) respectively. CAY, CPI, 

IP, Cons, Unemp, and NBER represents the Lettau and Ludvigson (2001) consumption-wealth ratio, the monthly inflation rate, the growth in industrial production, the 

growth in consumption of durables, nondurables, and services, the unemployment rate, and a dummy variable for NBER recessions. These data are obtained from the Federal 

Reserve Bank of St. Louis. CVEE (the cross-sectional average of estimation errors) is calculated by taking the cross-sectional average value of the squared standard errors 

of estimated betas. The numbers in brackets are the Newey-West heteroskedastic adjusted standard errors. The bold numbers represent significance at the 5% level. 

 

Constant 

Lagged 

Herd 

Measure 

CVEE Rm Vm TB CS TS DY NBER Unemp CPI IP Cons CAY adj R2 

A. Beta-Based Herd Measure 

0.0026 0.9925              0.986 

(0.0014) (0.0051)               

0.0052 0.9059 0.1060             0.986 

(0.0019) (0.0231) (0.0268)              

0.0069 0.9161 0.0976 0.0008 -0.0009           0.988 

(0.0029) (0.0199) (0.0240) (0.0003) (0.0008)            

-0.0019 0.8469 0.1763   -0.0012 0.0001 0.0001 0.0004 -0.0054 0.0020 0.0037 -0.0022 0.0021 -0.0006 0.988 

(0.0061) (0.0403) (0.0458)   (0.0008) (0.0035) (0.0019) (0.0014) (0.0032) (0.0012) (0.0037) (0.0014) (0.0012) (0.0004)  

0.0094 0.8601 0.1555 0.0006 -0.0014 -0.0016 0.0043 -0.0009 -0.0008 -0.0010 0.0014 0.0040 -0.0013 0.0012 0.0001 0.988 

(0.0067) (0.0353) (0.0383) (0.0002) (0.0009) (0.0008) (0.0040) (0.0019) (0.0015) (0.0036) (0.0010) (0.0041) (0.0013) (0.0012) (0.0004)  

B. Standardized-Beta Herd Measure 

0.0462 0.9809              0.962 

(0.0211) (0.0090)               

0.0837 0.9736 -0.0830             0.962 

(0.0274) (0.0098) (0.0328)              

0.0419 0.9738 -0.1058 0.0009 0.0115           0.964 

(0.0237) (0.0090) (0.0341) (0.0013) (0.0028)            

0.2459 0.9452 -0.2565   -0.0083 0.0333 -0.0072 -0.0133 0.0009 0.0005 0.0124 0.0116 -0.0148 0.0063 0.964 

(0.0605) (0.0127) (0.0661)   (0.0037) (0.0191) (0.0076) (0.0096) (0.0176) (0.0050) (0.0150) (0.0100) (0.0092) (0.0028)  

0.1381 0.9517 -0.1976 0.0010 0.0120 -0.0042 -0.0016 0.0027 -0.0032 -0.0230 0.0014 0.0150 0.0082 -0.0108 0.0016 0.966 

(0.0576) (0.0119) (0.0636) (0.0013) (0.0035) (0.0036) (0.0217) (0.0079) (0.0101) (0.0163) (0.0047) (0.0160) (0.0086) (0.0082) (0.0028)  
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Table 4  Buy-and-hold returns over 12 months from the portfolio formation conditioning on herding states 
From January 1967 to December 2015, every month we form decile portfolios on standardized-betas using NYSE breakpoints, and calculate the equally weighted and value 

weighted buy-and-hold return for the following 12 months after the formation. The sample period is divided into three herding states, i.e., adverse herding, no herding, and 

herding, identified by the top 20%, middle 60%, and bottom 20% of the standardized-beta herd measure, respectively. The Fama-French five factors are used for the pre- 

and port-formation betas and beta herd measure. The numbers in the brackets represent Newey-West robust standard errors, and bold numbers show significance at the 5% 

level. 

 

 

A. Equally weighted buy-and-hold returns of decile portfolios formed on standardized-betas (Five-factor model) 

    Low  2 3 4 5 6 7 8 9 High  
High-

Low 

Unconditional 

Performance 

Raw 

Returns 

12.040  12.990  14.102  13.860  13.671  13.604  13.165  13.062  12.664  11.998  -0.042  

(2.144) (2.435) (2.591) (2.762) (2.836) (2.880) (2.935) (3.007) (3.045) (3.188) (2.229) 

Alphas 
2.328  2.122  1.644  1.480  1.212  1.067  0.430  0.347  -1.431  -3.641  -5.969  

(1.174) (0.721) (0.607) (0.670) (0.732) (0.666) (0.726) (1.005) (1.142) (1.428) (2.356) 

Betas 
0.841  1.006  1.126  1.158  1.197  1.201  1.267  1.274  1.315  1.415  0.574  

(0.063) (0.047) (0.035) (0.042) (0.040) (0.045) (0.045) (0.059) (0.059) (0.088) (0.140) 

Adverse Herding 

(Top 20%) 

Raw 

Returns 

12.482  12.375  12.047  11.654  11.146  11.572  10.620  10.792  8.948  8.054  -4.429  

(4.154) (4.816) (5.144) (5.195) (5.655) (5.357) (5.538) (5.658) (5.637) (5.921) (3.694) 

Alphas 
10.364  7.405  4.959  3.276  1.548  3.277  1.809  -0.420  -5.212  -6.758  -17.122  
(2.181) (0.636) (0.746) (0.650) (0.682) (1.088) (1.550) (2.496) (2.512) (2.783) (4.768) 

Betas 
0.480  0.739  0.907  0.986  1.104  1.028  1.070  1.206  1.344  1.427  0.948  

(0.098) (0.035) (0.045) (0.035) (0.046) (0.053) (0.073) (0.107) (0.104) (0.133) (0.218) 

No Herding 

(Middle 60%) 

Raw 

Returns 

12.108  14.079  15.357  15.498  15.499  15.364  15.380  15.466  14.840  14.519  2.411  

(2.458) (2.869) (3.089) (3.442) (3.486) (3.584) (3.673) (3.762) (3.787) (4.129) (2.973) 

Alphas 
0.642  1.869  1.963  2.153  2.243  1.334  1.604  1.766  0.823  -1.169  -1.811  

(1.230) (0.850) (0.674) (0.987) (1.036) (0.984) (1.118) (1.122) (1.498) (1.850) (2.696) 

Betas 
0.857  1.042  1.179  1.232  1.269  1.303  1.353  1.370  1.406  1.524  0.667  

(0.078) (0.061) (0.048) (0.065) (0.057) (0.056) (0.060) (0.079) (0.084) (0.134) (0.200) 

 Herding (Bottom 

20%) 

Raw 

Returns 

11.444  10.289  12.185  10.933  10.458  10.159  8.820  7.908  9.471  7.979  -3.465  

(5.582) (5.807) (6.198) (6.155) (6.386) (6.582) (6.909) (6.503) (6.605) (6.298) (3.108) 

Alphas 
3.920  2.318  2.610  4.207  3.153  3.433  1.901  1.754  -0.392  -0.603  -4.522  

(2.151) (1.432) (0.989) (1.422) (1.339) (1.363) (1.676) (1.657) (2.211) (2.639) (4.233) 

Betas 
0.898  1.042  1.125  1.061  1.130  1.037  1.139  1.100  1.207  1.165  0.268  

(0.082) (0.046) (0.041) (0.060) (0.053) (0.056) (0.053) (0.067) (0.097) (0.118) (0.191) 
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B. Value weighted buy-and-hold returns of decile portfolios formed on standardized-betas (Five-factor model) 

    Low  2 3 4 5 6 7 8 9 High  High-Low 

Unconditional 

Performance 

Raw Returns 
6.334  8.153  8.244  6.588  6.819  7.745  7.260  6.867  6.529  7.549  1.215  

(2.102) (2.121) (2.208) (2.136) (2.234) (2.320) (2.333) (2.293) (2.471) (2.743) (2.224) 

Alphas 
3.374  3.970  1.648  -0.085  0.750  0.616  -1.019  -2.936  -3.285  -5.323  -8.697  

(1.274) (0.838) (0.708) (0.683) (0.576) (0.588) (0.753) (0.864) (1.208) (1.005) (2.088) 

Betas 
0.731  0.835  1.009  0.988  0.991  1.060  1.111  1.154  1.197  1.335  0.604  

(0.055) (0.035) (0.023) (0.040) (0.030) (0.034) (0.032) (0.037) (0.052) (0.076) (0.110) 

Adverse Herding (Top 

20%) 

Raw Returns 
11.721  12.791  10.649  9.410  9.137  11.358  10.798  8.202  9.472  6.897  -4.823  

(2.296) (2.830) (3.354) (3.295) (3.920) (3.810) (4.118) (3.257) (3.322) (4.618) (3.263) 

Alphas 
5.394  2.746  -0.165  -0.454  -0.771  3.379  1.319  -6.156  -5.275  -6.923  -12.317  

(1.645) (1.322) (1.436) (1.683) (0.723) (0.971) (1.158) (1.555) (1.439) (1.318) (2.126) 

Betas 
0.623  0.940  1.043  1.036  1.079  0.979  1.090  1.257  1.286  1.266  0.643  

(0.105) (0.054) (0.072) (0.074) (0.071) (0.067) (0.066) (0.062) (0.121) (0.079) (0.153) 

No Herding (Middle 

60%) 

Raw Returns 
6.719  7.835  8.023  7.082  7.731  8.354  8.143  8.250  8.696  9.432  2.713  

(2.298) (1.984) (2.299) (2.196) (2.255) (2.407) (2.723) (2.774) (2.942) (3.522) (2.754) 

Alphas 
1.538  2.979  1.911  0.583  1.105  0.990  -0.444  -1.483  -2.670  -3.092  -4.629  

(1.782) (1.529) (0.922) (1.080) (0.648) (0.650) (0.987) (0.930) (1.416) (1.626) (3.072) 

Betas 
0.765  0.805  0.969  0.950  0.982  1.038  1.152  1.196  1.284  1.423  0.658  

(0.068) (0.048) (0.032) (0.039) (0.035) (0.033) (0.032) (0.028) (0.053) (0.107) (0.155) 

 Herding (Bottom 

20%) 

Raw Returns 
0.407  4.986  6.773  2.612  2.044  2.724  1.490  1.559  -2.542  2.513  2.105  

(6.700) (7.682) (7.770) (7.178) (7.578) (7.547) (6.456) (5.964) (6.310) (6.280) (4.425) 

Alphas 
3.131  5.335  5.731  0.237  1.823  1.363  -1.387  -5.204  -7.539  -5.484  -8.615  

(2.251) (2.236) (1.654) (1.508) (1.212) (1.577) (1.593) (1.431) (1.737) (1.980) (3.580) 

Betas 
0.687  0.919  0.999  1.072  0.971  1.039  1.002  1.114  1.074  1.153  0.467  

(0.068) (0.063) (0.058) (0.068) (0.027) (0.078) (0.043) (0.059) (0.048) (0.068) (0.121) 
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Table 5  The effects of beta herding on standardozed beta-sorted portfolios  
For the sample period from January 1967 to December 2016, every month we form quintile portfolios sorted on 

standardized-betas using non-penny stocks (>$1) and NYSE breakpoints. The post-formation returns of the high-minus-

low standardized-beta quintile portfolio is regressed on lagged beta herding in the presence of other control variables:  

𝑟𝐻𝑖𝑔ℎ,𝑡+𝑓
𝛽

− 𝑟𝐿𝑜𝑤,𝑡+𝑓
𝛽

= 𝛼 + 𝑐1𝐻𝑡
∗ + ∑ 𝑐k𝑓𝑘,𝑡+𝑓

𝐾
𝑘=2 + 휀𝑖,𝑡+𝑓, 

𝑟𝐻𝑖𝑔ℎ,𝑡+𝑓
𝛽

− 𝑟𝐿𝑜𝑤,𝑡+𝑓
𝛽

= 𝛼 + 𝑐𝑡
+𝐻𝑡

∗𝐼t + 𝑐𝑡
−𝐻𝑡

∗(1 − 𝐼t) + ∑ 𝑐k𝑓𝑘,𝑡+𝑓
𝐾

𝑘=2
+ 휀𝑖,𝑡+𝑓, 

where the forecasting horizon is set to 𝑓=3, 6, 9, 12, 15, 18, and 24, which are represented by 3M, 9M, … and 24M, 

respectively, and 𝐼t = 1 if 𝐻𝑡
∗ >

1

𝑇
∑ 𝐻𝑡

∗𝑇
𝑡=1  and 𝐼t = 0 otherwise. Adverse herding represents heard measure larger 

than the average level of herd measure over the sample period whereas herding represents heard measure less than the 

average level of herd measure over the sample period. Overlapping portfolios are constructed to increase the power of the 

tests as in Jegadeesh and Titman (2001). The control variables include EMR, SMB, HML, RMW, and CMA represent 

the excess market return, size, book-to-market, operating profitability, and investment factor returns from Kenneth 

French's data library, respectively. The numbers in the brackets represent Newey-West robust standard errors, and bold 

numbers show significance at the 5% level. 

 

Average 

Returns 
Constant 

Herd 

Measure 

(𝐻𝑡
∗) 

Adverse 

Herding 

(𝐻𝑡
∗𝐼t) 

Herding 

(𝐻𝑡
∗(1 −
𝐼t)) 

EMR SMB HML RAW CMA Adj R2 

A. Equally-Weighted Portfolio Returns (Five-factor model) 

3M 
0.049  -0.291        0.525  0.171  0.008  0.018  0.062  0.57  

(0.146) (0.102)    (0.040) (0.053) (0.082) (0.077) (0.106)  

9M 
0.029  -0.301     0.498  0.185  0.014  0.038  0.046  0.57  

(0.139) (0.095)    (0.038) (0.052) (0.080) (0.066) (0.093)  

12M 
0.013  -0.316     0.486  0.186  0.004  0.049  0.063  0.58  

(0.135) (0.092)    (0.036) (0.050) (0.075) (0.063) (0.089)  

15M 
0.001  -0.322     0.474  0.187  -0.002  0.051  0.071  0.58  

(0.132) (0.089)    (0.034) (0.048) (0.070) (0.060) (0.084)  

18M 
-0.004  -0.318     0.462  0.187  -0.008  0.046  0.072  0.58  

(0.129) (0.087)    (0.033) (0.046) (0.067) (0.056) (0.080)  

24M 
0.001  -0.300     0.447  0.178  -0.015  0.047  0.071  0.58  

(0.125) (0.085)    (0.031) (0.045) (0.063) (0.053) (0.076)  

3M 
0.049  0.009  -0.123      0.526  0.171  0.007  0.017  0.061  0.57  

(0.146) (0.526) (0.209)   (0.040) (0.053) (0.082) (0.077) (0.105)  

9M 
0.029  0.317  -0.254    0.498  0.183  0.015  0.036  0.041  0.57  

(0.139) (0.580) (0.229)   (0.038) (0.051) (0.080) (0.066) (0.093)  

12M 
0.013  0.479  -0.328    0.486  0.185  0.006  0.048  0.053  0.58  

(0.135) (0.545) (0.217)   (0.035) (0.049) (0.074) (0.063) (0.089)  

15M 
0.001  0.745  -0.442    0.474  0.186  0.001  0.052  0.055  0.58  

(0.132) (0.534) (0.217)   (0.034) (0.048) (0.070) (0.059) (0.085)  

18M 
-0.004  0.628  -0.392    0.461  0.186  -0.005  0.047  0.056  0.58  

(0.129) (0.492) (0.202)   (0.032) (0.046) (0.067) (0.056) (0.081)  

24M 
0.001  0.510  -0.338    0.447  0.177  -0.011  0.044  0.057  0.58  

(0.125) (0.424) (0.176)   (0.031) (0.045) (0.064) (0.052) (0.076)  

30M 
0.022  0.600  -0.362    0.435  0.169  -0.022  0.034  0.055  0.58  

(0.122) (0.402) (0.168)   (0.030) (0.044) (0.062) (0.048) (0.073)  

36M 
0.039  0.314  -0.231    0.423  0.169  -0.032  0.025  0.056  0.59  

(0.119) (0.384) (0.161)     (0.030) (0.043) (0.061) (0.046) (0.072)   

3M 
0.049  -0.013    -0.116  -0.112  0.526  0.171  0.007  0.017  0.061  0.57  

(0.146) (0.975)  (0.339) (0.466) (0.040) (0.053) (0.082) (0.078) (0.105)  

9M 
0.029  1.321   -0.580  -0.775  0.500  0.186  0.017  0.039  0.040  0.57  

(0.139) (1.040)  (0.369) (0.487) (0.038) (0.051) (0.080) (0.066) (0.093)  

12M 
0.013  1.621   -0.700  -0.922  0.486  0.187  0.014  0.049  0.047  0.58  

(0.135) (0.968)  (0.344) (0.452) (0.035) (0.050) (0.076) (0.062) (0.090)  

15M 
0.001  1.212   -0.594  -0.685  0.473  0.188  0.001  0.054  0.055  0.58  

(0.132) (0.911)  (0.330) (0.428) (0.034) (0.048) (0.070) (0.060) (0.085)  

18M 
-0.004  1.291   -0.609  -0.739  0.462  0.186  -0.003  0.048  0.056  0.58  

(0.129) (0.878)  (0.320) (0.421) (0.033) (0.046) (0.068) (0.056) (0.081)  

24M 
0.001  1.149   -0.548  -0.673  0.449  0.177  -0.008  0.045  0.055  0.58  

(0.125) (0.824)   (0.293) (0.410) (0.031) (0.044) (0.063) (0.052) (0.076)   
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Average 

Returns 
Constant 

Herd 

Measure 

(𝐻𝑡
∗) 

Adverse 

Herding 

(𝐻𝑡
∗𝐼t) 

Herding 

(𝐻𝑡
∗(1 −
𝐼t)) 

EMR SMB HML RAW CMA Adj R2 

B. Value-Weighted Portfolio Returns (Five-factor model) 

3M 
-0.021  -0.539        0.431  0.217  0.159  0.277  0.326  0.30  

(0.160) (0.154)    (0.046) (0.058) (0.103) (0.094) (0.136)  

9M 
0.000  -0.505     0.394  0.245  0.205  0.288  0.269  0.30  

(0.154) (0.147)    (0.044) (0.055) (0.099) (0.078) (0.125)  

12M 
-0.003  -0.505     0.382  0.246  0.210  0.284  0.272  0.30  

(0.151) (0.144)    (0.043) (0.054) (0.093) (0.076) (0.119)  

15M 
0.002  -0.493     0.373  0.245  0.218  0.274  0.268  0.30  

(0.149) (0.141)    (0.043) (0.053) (0.089) (0.074) (0.116)  

18M 
0.015  -0.470     0.360  0.245  0.220  0.261  0.266  0.29  

(0.147) (0.138)    (0.042) (0.052) (0.087) (0.073) (0.114)  

24M 
0.056  -0.407     0.336  0.244  0.220  0.245  0.254  0.29  

(0.142) (0.133)    (0.041) (0.050) (0.086) (0.069) (0.113)  

3M 
-0.021  -1.346  0.330      0.430  0.217  0.163  0.280  0.330  0.30  

(0.160) (0.750) (0.290)   (0.046) (0.057) (0.102) (0.094) (0.136)  

9M 
0.000  -0.777  0.112    0.394  0.246  0.204  0.289  0.271  0.30  

(0.154) (0.795) (0.308)   (0.044) (0.055) (0.099) (0.078) (0.125)  

12M 
-0.003  -0.534  0.012    0.382  0.246  0.210  0.284  0.272  0.30  

(0.151) (0.779) (0.303)   (0.043) (0.054) (0.093) (0.076) (0.120)  

15M 
0.002  -0.096  -0.164    0.373  0.245  0.219  0.274  0.262  0.30  

(0.149) (0.747) (0.298)   (0.043) (0.053) (0.088) (0.075) (0.117)  

18M 
0.015  -0.383  -0.036    0.360  0.245  0.221  0.262  0.265  0.29  

(0.147) (0.734) (0.294)   (0.042) (0.053) (0.087) (0.073) (0.115)  

24M 
0.056  0.049  -0.190    0.336  0.243  0.222  0.243  0.247  0.29  

(0.142) (0.667) (0.270)   (0.041) (0.050) (0.086) (0.070) (0.113)  

30M 
0.097  0.040  -0.159    0.315  0.241  0.205  0.226  0.236  0.28  

(0.136) (0.617) (0.253)   (0.040) (0.047) (0.084) (0.065) (0.112)  

36M 
0.108  -0.437  0.058    0.297  0.247  0.193  0.208  0.211  0.28  

(0.130) (0.549) (0.224)     (0.040) (0.044) (0.079) (0.061) (0.108)   

3M 
-0.021  -1.583    0.405  0.451  0.431  0.217  0.162  0.281  0.331  0.30  

(0.160) (1.332)  (0.459) (0.619) (0.046) (0.057) (0.102) (0.094) (0.136)  

9M 
0.000  0.369   -0.260  -0.482  0.395  0.250  0.208  0.293  0.271  0.30  

(0.154) (1.371)  (0.481) (0.640) (0.044) (0.055) (0.099) (0.078) (0.125)  

12M 
-0.003  0.775   -0.414  -0.668  0.382  0.248  0.220  0.284  0.266  0.30  

(0.151) (1.324)  (0.470) (0.620) (0.043) (0.054) (0.093) (0.075) (0.120)  

15M 
0.002  0.204   -0.262  -0.321  0.372  0.246  0.219  0.276  0.262  0.30  

(0.149) (1.410)  (0.493) (0.665) (0.043) (0.053) (0.089) (0.075) (0.117)  

18M 
0.015  -0.651   0.052  0.104  0.360  0.245  0.220  0.261  0.264  0.29  

(0.147) (1.378)  (0.492) (0.663) (0.042) (0.053) (0.088) (0.073) (0.115)  

24M 
0.056  0.216   -0.245  -0.278  0.337  0.243  0.223  0.243  0.246  0.29  

(0.142) (1.314)   (0.461) (0.637) (0.041) (0.050) (0.086) (0.070) (0.113)   
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Table 6  The effects of beta herding and sentiment on standardozed beta-

sorted portfolios 
For the sample period from January 1967 to December 2016, using past 60 monthly returns, every month we form 

quintile portfolios sorted on standardized-betas using non-penny stocks (>$1) and NYSE breakpoints. The equally 

weighted post-formation returns of the high-minus-low standardized-beta quintile portfolio is regressed on lagged 

beta herding in the presence of other control variables:  

𝑟𝐻𝑖𝑔ℎ,𝑡+𝑓
𝛽

− 𝑟𝐿𝑜𝑤,𝑡+𝑓
𝛽

= 𝛼 + 𝑐1𝐻𝑡
∗ + 𝑐1𝑆𝑡

∗ + ∑ 𝑐k𝑓𝑘,𝑡+𝑓
𝐾
𝑘=2 + 휀𝑖,𝑡+𝑓, 

where the forecasting horizon is set to 𝑓=3, 12, 15, 18, 24, 30, and 36, which are represented by 3M, 9M, … and 

36M, respectively, and 𝐻𝑡
∗ and 𝑆𝑡

∗ represent our standardized-beta herd measure and Baker and Wurgler (2006) 

sentiment index, respectively. Overlapping portfolios are constructed to increase the power of the tests as in 

Jegadeesh and Titman (2001). The control variables include Fama-French five factors and ten factors we estimate 

using firm characteristics. The ten factors include the excess market return (EMR) and nine other factors which 

are accruals (Sloan, 1996); asset growth (Cooper, Gulen, and Schill, 2008); book-to-market ratio (Rosenberg, 

Reid, and Lanstein, 1985; Fama and French, 1992, 1993); gross profitability (Novy-Marx, 2010); size (Banz, 1980; 

Fama and French, 1992, 1993); momentum (Jegadeesh and Titman, 1993, 2001); net operating assets (Hirshleifer, 

Hou, Teoh, and Zhang, 2004); net stocks issues (Fama and French, 2008); earnings surprises (Chan, Jegadeesh, 

and Lakonishok, 1996). These factors are return difference between the top and bottom decile portfolios. The 

coefficients on these nine factors are not reported. The numbers in the brackets represent Newey-West robust 

standard errors, and bold numbers show significance at the 5% level. 

 

 

Average 

Returns 
Constant 

Lagged Herd 

Measure 

Lagged 

Sentiment 
EMR SMB HML RAW CMA Adj R2 

A. Equally-Weighted Portfolio Returns (Five-factor model) 

3M 
0.049 0.265 -0.231 -0.288 0.528 0.171 0.003 0.037 0.066 0.58 

(0.146) (0.541) (0.214) (0.111) (0.040) (0.053) (0.082) (0.078) (0.105)  

12M 
0.013 0.682 -0.416 -0.240 0.488 0.183 -0.001 0.059 0.061 0.58 

(0.135) (0.544) (0.217) (0.087) (0.036) (0.049) (0.074) (0.062) (0.088)  

15M 
0.001 0.932 -0.523 -0.225 0.475 0.183 -0.008 0.059 0.065 0.59 

(0.132) (0.531) (0.217) (0.092) (0.034) (0.048) (0.070) (0.059) (0.084)  

18M 
-0.004 0.777 -0.457 -0.176 0.463 0.181 -0.010 0.050 0.063 0.58 

(0.129) (0.487) (0.201) (0.084) (0.032) (0.046) (0.067) (0.055) (0.081)  

24M 
0.001 0.625 -0.387 -0.128 0.450 0.172 -0.014 0.044 0.062 0.58 

(0.125) (0.427) (0.179) (0.090) (0.031) (0.045) (0.065) (0.051) (0.077)  

30M 
0.022 0.669 -0.391 -0.060 0.436 0.165 -0.022 0.033 0.056 0.59 

(0.122) (0.422) (0.177) (0.079) (0.030) (0.044) (0.062) (0.048) (0.073)  

36M 
0.039 0.340 -0.242 -0.018 0.423 0.168 -0.032 0.025 0.055 0.59 

(0.119) (0.406) (0.171) (0.071) (0.030) (0.044) (0.061) (0.046) (0.072)  

B. Equally-Weighted Portfolio Returns (Ten-factor model) 

3M 
0.299 0.395 -0.120 -0.191 0.547 

Nine Factors Controlled 

0.66 

(0.156) (0.422) (0.120) (0.108) (0.037)  

12M 
0.223 0.579 -0.211 -0.207 0.511 0.67 

(0.145) (0.377) (0.111) (0.095) (0.033)  

15M 
0.220 0.644 -0.238 -0.199 0.501 0.67 

(0.142) (0.361) (0.107) (0.092) (0.031)  

18M 
0.222 0.641 -0.238 -0.176 0.493 0.67 

(0.139) (0.350) (0.106) (0.087) (0.030)  

24M 
0.222 0.562 -0.208 -0.180 0.478 0.68 

(0.133) (0.315) (0.100) (0.088) (0.029)  

30M 
0.230 0.750 -0.283 -0.172 0.464 0.68 

(0.128) (0.297) (0.096) (0.081) (0.027)  

36M 
0.235 0.640 -0.234 -0.158 0.452 0.68 

(0.126) (0.280) (0.090) (0.075) (0.027)  
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Table 7  Firm characteristics of portfolios formed on standardized-beta 
For the sample period from 1967 to 2016, every month we form decile portfolios sorted on standardized-betas using non-financial and non-penny stocks (>$1) from the merged 

CRSP-Compustat database. NYSE breakpoints are used to form the decile portfolios. Following Fama and French (1992), all firm characteristics from July of year t through 

June of year t + 1 are calculated using accounting data for fiscal year-ends in calendar year t−1. For each decile portfolio, firm characteristics are calculated as follows. Market 

equity is calculated from the price times the shares outstanding from CRSP, Book-to-Market is shareholders equity plus balance sheet deferred taxes divided by ME, Sales 

Growth  is the change in net sales divided by the prior-year net sales, External Finance is the change in the total assets minus the change in retained earnings divided by total 

assets, Asset Tangibility is property, plant and equipment divided by total assets, Dividend is dividends per share at the ex date times the shares outstanding divided by ME, 

and Profitability is the income before extraordinary items plus income statement deferred taxes minus preferred dividends divided by ME. Amihud illiquidity and idiosyncratic 

volatility are calculated as in Amihud (2002) and Ang et. al. (2006), respectively. For each decile portfolio, we calculate the median values except for standardized-beta and 

the beta where mean values are calculated. The right two columns show the average values and standard deviations of cross-sectional correlation coefficients between 

standardized-beta and firm characteristics. 

 Decile Portfolios Formed on Standardized-Beta 

Cross-sectional Regression 

of Standardized-beta on 

Firm Characteristics 

  Low 2 3 4 5 6 7 8 9 High 

Average 

Coefficients 

on Firm 

Characteristics 

Standard 

Error 

Standardised Beta -2.85 -1.51 -0.89 -0.43 -0.05 0.31 0.67 1.06 1.55 2.37   

Beta -0.73 -0.56 -0.38 -0.19 -0.02 0.15 0.32 0.50 0.68 0.86 0.981 (0.000) 

Market Equity 11.44 11.47 11.31 11.41 11.52 11.63 11.75 11.83 11.88 12.02 0.681 (0.017) 

Book-to-Market 0.90 0.82 0.77 0.75 0.73 0.73 0.70 0.69 0.69 0.68 -0.659 (0.014) 

Sales Growth (%) 7.75 8.38 8.95 9.50 9.71 9.54 9.89 10.09 9.74 9.82 0.355 (0.021) 

External Finance (%) 4.47 4.35 4.39 4.61 4.70 4.63 4.93 5.09 4.86 4.90 0.177 (0.021) 

Asset Tangibility  (%) 28.08 23.30 22.47 22.42 22.07 22.23 22.93 22.75 22.51 21.58 -0.122 (0.029) 

Dividend (%) 3.82 2.18 1.46 1.32 1.18 1.25 1.13 1.10 1.03 1.33 -0.646 (0.010) 

Profitability  (%) 10.12 10.11 9.85 9.84 9.72 9.71 9.78 9.94 10.07 10.23 0.175 (0.025) 

Past 12 Month Returns (%) 1.06 1.29 1.32 1.37 1.44 1.50 1.47 1.49 1.41 1.33 0.140 (0.029) 

Amihud iliquidity 0.21 0.23 0.21 0.22 0.19 0.16 0.15 0.13 0.11 0.07 -0.665 (0.012) 

Idiosyncratic volatility 2.85 4.08 4.58 4.92 4.95 4.98 5.11 5.02 4.68 3.87 0.417 (0.015) 
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Table 8  The effects of beta herding on standardozed beta-sorted 

portfolios in other models 
For the sample period from January 1967 to December 2016, every month we form quintile portfolios sorted on 

standardized-betas using non-penny stocks (>$1) and NYSE breakpoints. The post-formation returns of the high-

minus-low standardized-beta quintile portfolio is regressed on lagged beta herding in the presence of other control 

variables:  

𝑟𝐻𝑖𝑔ℎ,𝑡+𝑓
𝛽

− 𝑟𝐿𝑜𝑤,𝑡+𝑓
𝛽

= 𝛼 + 𝑐1𝐻𝑡
∗ + ∑ 𝑐k𝑓𝑘,𝑡+𝑓

𝐾
𝑘=2 + 휀𝑖,𝑡+𝑓, 

𝑟𝐻𝑖𝑔ℎ,𝑡+𝑓
𝛽

− 𝑟𝐿𝑜𝑤,𝑡+𝑓
𝛽

= 𝛼 + 𝑐𝑡
+𝐻𝑡

∗𝐼t + 𝑐𝑡
−𝐻𝑡

∗(1 − 𝐼t) + ∑ 𝑐k𝑓𝑘,𝑡+𝑓
𝐾

𝑘=2
+ 휀𝑖,𝑡+𝑓, 

where the forecasting horizon is set to 𝑓=3, 9, 12, 15, 18, and 24, which are represented by 3M, 9M, … and 24M, 

respectively, and 𝐼t = 1 if 𝐻𝑡
∗ >

1

𝑇
∑ 𝐻𝑡

∗𝑇
𝑡=1  and 𝐼t = 0 otherwise. Overlapping portfolios are constructed to 

increase the power of the tests as in Jegadeesh and Titman (2001). The control variables include the excess market 

return (EMR) for the market model whereas they include nine other factors in the ten-factor model, which are 

accruals (Sloan, 1996); asset growth (Cooper, Gulen, and Schill, 2008); book-to-market ratio (Rosenberg, Reid, 

and Lanstein, 1985; Fama and French, 1992, 1993); gross profitability (Novy-Marx, 2010); size (Banz, 1980; 

Fama and French, 1992, 1993); momentum (Jegadeesh and Titman, 1993, 2001); net operating assets (Hirshleifer, 

Hou, Teoh, and Zhang, 2004); net stocks issues (Fama and French, 2008); earnings surprises (Chan, Jegadeesh, 

and Lakonishok, 1996). These factors are return difference between the top and bottom decile portfolios. The 

coefficients on these nine factors are not reported. The numbers in the brackets represent Newey-West robust 

standard errors, and bold numbers show significance at the 5% level.  

 

 

Average 

Returns 
Constant 

Herd Measure 

(𝐻𝑡
∗) 

Adverse Herding 

(𝐻𝑡
∗𝐼t) 

Herding 

(𝐻𝑡
∗(1 − 𝐼t)) 

EMR   Adj R2 

A. Equally-Weighted Portfolio Returns (Market model) 

3M 
0.190  -0.048  -0.044      0.844          0.52  

(0.236) (0.490) (0.091)   (0.055)      

12M 
0.161  0.352  -0.131    0.812      0.51  

(0.228) (0.477) (0.087)   (0.052)      

18M 
0.154  0.338  -0.127    0.786      0.51  

(0.223) (0.475) (0.086)   (0.051)      

24M 
0.165  0.175  -0.088    0.768      0.50  

(0.218) (0.502) (0.094)     (0.050)           

3M 
0.190  -0.638    0.037  0.151  0.844          0.52  

(0.236) (0.737)  (0.115) (0.217) (0.055)      

12M 
0.161  0.071   -0.093  -0.038  0.812      0.51  

(0.228) (0.708)  (0.109) (0.202) (0.052)      

18M 
0.154  1.592   -0.299  -0.543  0.792      0.51  

(0.223) (0.772)  (0.118) (0.216) (0.049)      

24M 
0.165  1.870   -0.319  -0.649  0.769      0.51  

(0.218) (0.813)   (0.127) (0.216) (0.049)           

B. Equally-Weighted Portfolio Returns (Ten-factor model) 

3M 
0.299  0.365  -0.105      0.548  

Nine Factor 

Controlled 

0.66  

(0.156) (0.416) (0.118)   (0.037)  

12M 
0.223  0.562  -0.201    0.511  0.67  

(0.145) (0.376) (0.110)   (0.032)  

18M 
0.222  0.627  -0.230    0.493  0.67  

(0.139) (0.350) (0.106)   (0.030)  

24M 
0.222  0.543  -0.198    0.476  0.68  

(0.133) (0.315) (0.100)     (0.029)   

3M 
0.299  0.645    -0.178  -0.259  0.547  

Nine Factor 

Controlled 

0.66  

(0.156) (0.688)  (0.178) (0.302) (0.037)  

12M 
0.223  0.799   -0.263  -0.333  0.511  0.67  

(0.145) (0.599)  (0.163) (0.278) (0.032)  

18M 
0.222  1.001   -0.328  -0.437  0.492  0.67  

(0.139) (0.544)  (0.153) (0.258) (0.030)  

24M 
0.222  0.547   -0.199  -0.200  0.476  0.68  

(0.133) (0.499)   (0.150) (0.257) (0.029)   
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Figure 1  Beta herding in the US market 
 

 
Past 60 past monthly returns in the merged CRSP-Compustat database are used to estimate betas in the Fama-French five-factor model. Empirical estimates of betas suffer 

various well-known problems. In particular, when prices do not reflect investors’ expectations due to illiquidity, our measure may not fully reflect what it was designed to 

show, in particular, during market crises when liquidity dries up quickly. In order to avoid these unwanted effects and extreme returns associated with microstructure biases 

and thin trading, we omit non-penny stocks whose prices are less than $1 at the estimation month as well as stocks whose turnover (trading volume divided by shares 

outstanding) belongs to the bottom 1% or whose volatilities are excessively high or low (top and bottom 1%) during the past 𝜏 months. The top and bottom 1% of 

standardized-beta estimates (i. e. , (�̂�𝑖
𝑏 − �̂�𝑏)/�̂��̂�𝑖

) are also omitted in our calculation of 𝐻𝑡
∗. The beta-based herd measure is calculated with the cross-sectional variance of 

LS estimates of betas while the standardized herd measure is calculated with the cross-sectional variance of t-statistics of LS estimates of betas.  
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Figure 2  Herd measure and economic events 
 

  
 

In Figure 2A the seven changes from recession to expansion (Before and After NBER Expansion) and from expansion to recession (Before and After NBER Recession) 

since 1962 are aligned at month 1. For each month, the average value of herd measure and its standard error are calculated. The dotted lines represent 95% confidence. For 

clear visual presentation, we plot the two cases to different vertical axes. In Figure 2B beta herd measure is plotted for eleven changes, all of which are aligned at month 1. 

The 95% confidence level is not plotted in Figure 2B, but the Mann-Whitney test results show that the changes before and after the shocks are all significant at the 5% level. 

  

1

2

3

4

5

6

7

-2

-1

0

1

2

3

4

-1
2

-1
1

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

Months Before and After Changes in Business Cycle

Figure 2A  Herd measure around changes in 

business cycle

Before and After NBER Expansion (Left Y Axis) (after 1962)
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1973 Oil Shock (Left Y Axis) 1982 (Left Y Axis)
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Figure 3  Standardized-beta herding calculated with various portfolios since 1932 
 

 

We use the monthly data file from the Center for Research in Security Prices for stocks listed on the New York Stock Exchange (NYSE), American Stock Exchange (AMEX), and NASDAQ. 

Every month we use 60 past monthly returns to estimate betas in the Fama-French five factor (the Fama-French three factor model with momentum before January 1967), which are obtained 

from Kenneth French's data library. The standardized herd measure is calculated with the cross-sectional variance of t statistics of betas, which are calculated with the Newey-West 

heteroskedastic adjusted standard errors. For herd measure with individual stocks, we omit stocks whose prices are higher than $1 (non-penny stocks) at the estimation point and whose past 

60 monthly observations are available. We also do not use stocks whose turnovers belong to the bottom 1% or whose volatilities are excessively volatile or little volatility at all (top and bottom 

1%) during the past 60 months. A statistical trimming process is used by omitting the top and bottom 1% of standardized-beta estimates in our calculation of the beta herd measure. Using 

1,080 monthly observations from January 1927 to December 2016 and rolling windows of 60 months, we obtain 1,020 monthly herd measures from January 1932 to December 2016. For the 

herd measure for industry portfolios, we omit financial sectors and industries in which there are less than five firms at the time of estimation. 
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