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1 Introduction

The debate on the importance of asset allocation decisions for individuals has been

progressively rising in prominence in public discourse, with policy makers growing

more preoccupied with its implications for various domains of individuals’ welfare

(e.g., retirement planning; see Thaler and Sunstein, 2008). Key to policy makers’

concerns is the fact that investors are susceptible to psychological forces capable of

biasing the selection of asset classes they allocate their wealth to, leading to poten-

tially sub optimal choices of asset mix.1 Prospect theory (Kahneman and Tversky,

1979) offers an excellent example of how such forces can impact asset allocation,

by showcasing how the interplay of various biases/heuristics (including anchoring,

framing and mental accounting) prompts individuals to evaluate the performance

of their investments on a relative basis, vis-a-vis some actual, historical reference

point. This leads to the encoding of performance into gains and losses, to which

investors have been shown to respond asymmetrically, appearing risk-seeking in the

domain of losses (by holding onto losing stocks) in order to avoid realizing them

(loss aversion) and risk-averse in the domain of gains (by selling their winning

stocks quickly – while they are still winning). However, comparing actual past and

contemporaneous values in assessing an investment’s performance represents only

one possibility of relative performance evaluation; in reality, individuals engage in

a risky investment in anticipation of positive returns, in which case what also mat-

ters to them is not only whether the investment’s realized return in the future is

positive or not, but also whether it is above or below their initial expectations.

A below-expectations performance of an investment can foment disappointment

(Fielding and Stracca, 2007) whose incorporation in an investor’s learning pro-

1Investors may choose, e.g., to invest more aggressively in equities motivated by representativeness,
if equities have recently performed well, thus potentially leading to trend-chasing and herding in specific
stocks and/or sectors (Choi and Sias, 2009). Another possibility is that, when presented with a finite
number, let n, of investment options, investors choose to allocate their assets equally to each one of them
(i.e., the well-known 1/n rule), a behaviour best known as ”naive diversification” (Benartzi and Thaler,
2001).
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cess can introduce disappointment aversion tendencies in her trading behaviour.

Although disappointment aversion has been shown to be important in asset allo-

cation decisions in a single-period setting (Ang et al., 2005), no research to date

has investigated its effect over asset allocation in a dynamic setting (admittedly, a

more accurate reflection of investment reality, compared to its static/single-period

counterpart) and it is this issue that the present study aims at addressing.

Our research is primarily motivated by extant evidence, according to which

investors do not strictly adhere to the assumptions of expected utility theory in

their decisions2, being prone to viewing choices in a biased fashion instead, often

under the influence of emotions and cognitive biases (such as mental accounting

and framing effects).3 Several theoretical propositions (Handa, 1977; Chew and

MacCrimmon, 1979; Quiggin, 1982; Fishburn, 1983; Tversky and Kahneman, 1992)

depart from the expected utility framework to reflect more accurately investors’ de-

cision making under risk, transforming probabilities into decision weights through

non-linear probability functions. Prospect theory (PT, hereafter), in particular,

has proved particularly successful in capturing frequently encountered traits of in-

vestors’ behaviour (Kahneman and Tversky, 1979; Berkelaar et al., 2004; Gomes,

2005; Barberis and Huang, 2008; Dimmock and Kouwenberg, 2010; Bernard and

Ghossoub, 2010). According to its context, investors are assumed to evaluate the

performance of their investments by anchoring on some historical reference point,

engaging in the computation of gains and losses relative to that point. Investors

also respond asymmetrically to gains versus losses – courtesy of loss aversion – by

exhibiting greater sensitivity to losses compared to gains, something further re-

2In practice, for example, the independence axiom is frequently violated, with the Allais paradox
representing the most famous evidence of the latter. Other notable violations of the expected utility
framework are observed in Ellsberg’s paradox and the St. Petersburg paradox. For more on those, see
Allais (1953), Ellsberg (1961), Kahneman and Tversky (1979) and Andreoni and Sprenger (2010).

3In the case of mental accounting, investors holding a portfolio of stocks may treat the performance
of each stock in isolation, instead of viewing it as part of the portfolio (Barberis et al., 2001). Framing,
on the other hand, can lead investors to choose an option not because it is optimal, but rather because
it appears attractive on the background of less attractive alternatives. For a more detailed discussion of
the above, see Kahneman et al. (2011).
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flected through the PT value function, which grows steeper in the loss region. As

a result, they grow more risk-seeking when in the domain of losses (they hold onto

their loser stocks in hope of a price rebound) and more risk-averse in the domain of

gains (they sell their winner stocks in order to realize their profits while they still

exist), thus ending up selling their winning assets more quickly compared to their

losing ones.4

One of the derivatives of PT is Disappointment Aversion (DA, hereafter) theory,

formally introduced by Gul (1991).5 DA theory extends the expected utility the-

ory by relaxing the independence axiom, whilst also retaining the basic features of

prospect theory (asymmetric preferences; reference dependence; diminishing sensi-

tivity; and probability weighting). Moreover, it provides us with better understand-

ing in the way the certainty equivalent is chosen and updated. Certainty equivalent

represents the certain level of wealth W that generates the same level of utility

as a portfolio composition which yields a (non-certain) wealth level W and in a

DA context serves as a reference point of investor’s wealth against which gains and

losses are compared. In PT these points are set exogenously and are usually equal

to the current wealth (the status quo), while in DA theory they are updated in an

endogenous way. In a later work, Tversky and Kahneman (1992) presented a more

tractable way to define the certainty equivalent by setting it equal to the midpoint

of a set of ordered outcomes with the smallest representing the ”lowest accepted

value” and the largest the ”highest rejected” one. This setup, although closer to

4Empirical evidence (Odean, 1998; Grinblatt and Keloharju, 2001; Locke and Mann, 2001; Shapira
and Venezia, 2001; Wermers, 2003; Haigh and List, 2005; Jin and Scherbina, 2010) suggests that this
pattern permeates both retail and institutional investors’ behaviour internationally, yet leads to sub
optimal performance. The latter has been ascribed to the effect of short term momentum (Jegadeesh
and Titman, 1993, 2001) in stock returns, according to which recent winners (losers) will continue
outperforming (underperforming) in the near future; this, in turn, suggests that investors in the prospect
theory setting should be keeping their winners (instead of selling them quickly) and selling their losers
(instead of keeping them). A potential explanation for the momentum effect can be given in the context
of a realization utility model (Barberis and Xiong, 2012), where the selling of well-performing stocks to
realize gains is attributed to the additional utility derived by real instead of paper profits.

5Although this framework is recognized as the DA theory one, Bell (1985) first studied the disappoint-
ment effect arising from the discrepancy between an agent’s prior expectations and realized outcomes.
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the way the reference points are updated in DA theory, does not suggest an entirely

endogenous way to that end, and thus we believe that the DA framework in Gul

(1991) offers a better understanding on this technicality (Ang et al., 2005).

Overall, empirical applications of DA theory have been rather limited to date,

a fact attributed by Abdellaoui and Bleichrodt (2007) to it lacking a method of

formally extracting the DA coefficient. To that end, Abdellaoui and Bleichrodt

(2007) proposed the trade-off method, which first derives the underlying utility

function and then, based on that, extracts the DA coefficient. DA theory has been

mainly used in asset pricing settings (Routledge and Zin, 2010; Bonomo et al.,

2011) where a slightly altered version of the original DA theory is used. More

specifically, these studies consider a generalized version of Gul (1991)’s framework,

extending the DA utility by an additional term and a new coefficient on top of

the DA coefficient - which shifts the disappointment region for an outcome. In

these setups, an outcome signals ”disappointment” only when it lies sufficiently

below the certainty equivalent, as determined by the additional coefficient and the

DA parameter. In asset allocation setups, Dahlquist et al. (2017) employed DA

preferences to derive analytical expressions for measures such as the effective risk

aversion, when studying higher moments of return distributions.

With regards to portfolio choices, Ang et al. (2005) first addressed this issue in

a single-period setting, with DA-utility investors allocating their wealth between a

risk-free security and a risky asset, while also assessing the robustness of their results

when accounting for loss aversion. Ang et al. (2005) find that the incorporation

of DA leads to more plausible portfolio compositions with smaller proportion of

wealth allocated to the risky asset, providing also a reasonable explanation for the

observed equity premium – non-participation puzzle. As a result, DA is highly

relevant to an individual’s decision making and should be taken into consideration

in asset allocation. Motivated by Ang et al. (2005), the present paper provides

a thorough investigation of the impact of the DA theory on the problem of asset
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allocation in a dynamic, long-horizon setting.

Studying DA in a dynamic framework allows us the opportunity to gauge

whether investors allocate different weights to their portfolio assets throughout

the investment horizon, thus rendering our study more realistic, compared, for ex-

ample, to a static or a single-period one.6 Our study first revisits and completes

the single-period version of DA utility by Ang et al. (2005), before developing a

discrete-time dynamic framework in partial equilibrium7 which allows for sequential

investing and re-allocation of the available wealth, to investigate how DA prefer-

ences affect the decision making of individuals who seek to maximize their terminal

utility of wealth. Investors choose portfolio allocations for two investable assets, a

risk-free bond and a risky asset. Since it is impossible to, a priori, assert investors’

beliefs as per the generation process of returns in the market we follow the rel-

evant literature by allowing for two possible Data Generating Processes (DGPs).

The first one assumes returns are independent and identically distributed (i.i.d.,

i.e., the observation at time t does not relate to the previous one at time t − 1);

the second one assumes a VAR-form, which uses the dividend price ratio (i.e., the

dividend yield) as its predictor variable.

An issue arising with the above two DGPs pertains to the uncertainty inherent

in their estimated parameters and how it may be treated by investors. To accommo-

date uncertainty, we consider a Bayesian framework following the relevant literature

on Bayesian portfolio analysis (see Bawa et al., 1979; Kandel and Stambaugh, 1996;

Barberis, 2000; Avramov and Zhou, 2010; Kacperczyk and Damien, 2011, among

others; see also footnote 8). To assess the impact of parameter uncertainty, we

compare portfolio allocations to the risky asset between cases where parameter un-

certainty is ignored and others where it is considered. The difference between an

6Dynamic portfolio allocation in general has, overall, been widely studied, both in discrete and con-
tinuous time (Campbell and Viceira, 2002; Brandt et al., 2005; Aı̈t-Sahalia et al., 2009).

7Our approach entails an exogenous price setting, which makes this study a partial equilibrium one.
Modelling the cash flows can lead to an endogenous price setting where equilibrium asset prices are
attained and markets clear. For an example of an equilibrium study, see Lynch (2000).
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investor who ignores parameter uncertainty and one who incorporates it in an asset

allocation problem lies in the way they use the given DGP to generate future return

paths. The former considers the values of the model’s parameters as true, while the

latter recognizes the underlying risk in their estimation. In a dynamic setting the

incorporation of new information about equity returns alters the estimated param-

eter sets at different horizons, introducing uncertainty in model parameters which

is modelled via their posterior distribution after considering the newly generated

data. Analytically, this is performed by integrating out the variance in the posterior

distribution of the parameters, constructing a distribution conditional on observed

data and not on the model parameters. To capture the difference between the

two approaches, we perform numerical experiments with and without parameter

uncertainty, assuming both i.i.d. and predictable risky asset returns. Overall, our

results indicate that equity allocation drops with the investment horizon as a result

of the higher volatility of the risky asset, which in turn stems from the additional

uncertainty around the true values of the model parameters.8

Our study presents evidence strongly supporting the role of DA in defining eq-

uity participation (and non-participation) regions. We show, both mathematically

and empirically, that, for every portfolio allocation and level of expected equity

premium, there is a critical value of DA below which it is optimal for a DA in-

vestor to hold zero units of the risky asset (stock). Perhaps more interestingly,

we find that DA investors tend to allocate significantly less to equity compared to

those with isoelastic (power) utility. DA appears to be powerful at every horizon

as we find that a small drop of the DA coefficient leads to a significant decrease in

8Evidence from recent research confirms the importance of predictability and parameter uncertainty
for portfolio choices. Branger et al. (2013) and DeMiguel et al. (2015) examine the construction of op-
timal portfolios under uncertainty about expected asset returns and find that parameter uncertainty is
highly relevant to portfolio choice. Chen et al. (2014) study the dynamic portfolio choice problem when
investors face uncertainty about the model specification, incorporating learning as well to construct
strategies which depart from the Bayesian approach. Hoevenaars et al. (2014) test the impact of differ-
ent uninformative priors on both short and long-term equity allocations, while Johannes et al. (2014)
investigate the impact of predictability and parameter uncertainty in an expected utility framework
focusing mainly on the impact of volatility on the portfolio choice problem.
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equity holdings in the case of an investor who accounts for predictability in stock

returns. We also observe the rise of differential horizon effects when parameter

uncertainty is either ignored or incorporated for investors who either use the i.i.d.

return generating process or account for return predictability. A moderately risk

averse, buy-and-hold investor will allocate a large part of her wealth to the risky

asset for a sufficiently long horizon when parameter uncertainty is ignored, taking

advantage of the lower per-period volatility of the risky asset’s returns which, in

turn, decreases the cumulative volatility she experiences over the investment hori-

zon. On the other hand, a DA investor who follows a dynamic strategy and assumes

predictability in returns will decrease their allocation to the risky asset at shorter

horizons. Again, the impact of the DA coefficient is drastic, as the more DA the

investor becomes the less the portfolio weight she assigns to equity. We also no-

tice that, when parameter uncertainty is incorporated, equity allocation at shorter

horizons is significantly lower to that at longer ones.

Our paper produces a series of original contributions to the extant literature on

portfolio choice under uncertainty. First, we extend the study of portfolio choice

for investors with DA utility by providing optimal participation conditions and

non-participation regions both for static (buy-and-hold) and dynamic allocations.

Second, we revisit and extend the study of the portfolio choice problem for a long-

term buy-and-hold investor under return predictability and parameter uncertainty.

Although our study primarily focuses on dynamic portfolio choice, revisiting the

buy-and-hold asset allocation problem for very long investment horizons (up to 40

years) reveals a number of important implications as regards the different invest-

ment behaviour of a long vs a short - term DA investor, which – to our knowledge –

have not attracted attention so far. Third, we demonstrate how the incorporation

of predictability in asset returns affects portfolio weights at different horizons for

a dynamic investor and how this can give rise to horizon effects, in the sense that

investors change their portfolios’ compositions taking into account the variability in
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investment opportunities. Fourth, we complete our study constructing a Bayesian

framework which incorporates both predictability and parameter uncertainty to

investigate how each of the two properties affect portfolio compositions in a DA

context. Here, the choice of the risky asset return generator is crucial; for exam-

ple, the impact of parameter uncertainty on a dynamic strategy where returns are

i.i.d. is not as powerful as in the case where predictability is considered, leading to

significantly different portfolio allocations.

Our results should be of particular interest to policy makers, as they indicate

that DA, conditional on its magnitude, tacitly fosters limited-to-no participation

in equity investing. To the extent that DA is likely to affect individual investors

more (given their lower sophistication levels), financial literacy programmes could

raise awareness of it, while at the same time train individuals to assess their in-

vestments from a longer-term perspective, irrespective of price movements in the

short run (where the effects of DA are more likely to be felt). This, in turn, will

help enhance the participation of retail investors in equity turnover (thus benefiting

market liquidity), while also ensuring that those that do invest in equities are less

likely to exit the market due to disappointment-related reasons. Our results are

also relevant to finance practitioners, in particular brokers and financial advisors,

who, by virtue of their profession, tend to engage on a regular basis with retail

investors. For these practitioners, accounting for DA in their clients’ risk profiling

and overall day-to-day interactions would help inform considerably their profes-

sional practice, by permitting them additional insight into their clients’ trading

decisions. Such insight could allow them to educate their clients as per the role of

DA in trading, thus helping them potentially improve on their trading decisions.

From an academic perspective, our results further contribute to the debate on the

equity premium puzzle, as they showcase that DA constitutes a plausible explana-

tion underlying the relative reluctance of investors to hold equities. What is more,

to the extent that disappointment stems from prior investment experience, our re-
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sults also offer an alternative explanation to previously documented evidence (Seru

et al., 2010; Strahilevitz et al., 2011) on the reluctance of investors to re-enter the

market if they have exited it previously at a loss.

Our paper is structured as follows; Section 2 presents the DA framework for

the single and multi-period case, along with the DA algorithm developed for the

dynamic problem and the theoretical framework for the predictability and param-

eter uncertainty elements of our empirical design. In Section 3 we present and

discuss a number of numerical examples, followed by concluding remarks in section

4. Finally, three appendices can be found in the end of this paper with all the tech-

nical details for the multi-period problem formulation, the algorithmic procedure

and the incorporation of parameter uncertainty and predictability in the DA asset

allocation context.

2 The disappointment aversion framework

The DA framework employed in this study is defined as in Ang et al. (2005):

U(µW ) =
1

K

(∫ µW

−∞
U(W )dF (W ) + A

∫ ∞
µW

U(W )dF (W )

)
, (1)

where A is the coefficient of DA, bounded between zero and one (i.e., 0 < A ≤

1), U(· ) is the constant relative risk aversion (CRRA) utility function defined by

U(W ) = W 1−γ/(1 − γ), µW is the certainty equivalent of wealth, F (· ) is the

cumulative distribution function for wealth and K is a scalar equal to P (W ≤

µW ) + AP (W > µW ). Assume two assets, one risky asset and one risk-free asset,

whose continuously compounded returns are denoted by ey and er, respectively.

Then, the investor’s wealth is defined as W = αX+er where α is the investment in

the risky asset as a percentage of the total investment (i.e., the weight of the risky

asset), X = ey − er is the excess risky asset’s return and the initial wealth is set
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to one, since the optimization problem is homogeneous in wealth under the CRRA

utility function. When a DA investor allocates her wealth into assets in order to

maximize the DA utility for a single period, the static optimization problem is,

max
α

U(µW ). (2)

The above constitutes the asset allocation problem under the assumption of DA

utility in a single period setting that has been extensively investigated in Ang et al.

(2005).

2.1 Dynamic allocation with disappointment aversion

utility

A dynamic optimization problem with DA utility in a multiple-period setting is

considerably more complicated than in a static one, because at every horizon the

optimization routine should take into account the investment opportunity set for

the whole remaining investment period (as opposed to a one-period forward looking

myopic strategy), while the certainty equivalent of wealth is itself a function of

each step’s optimal decision. The complexity of the optimization problem further

increases by considering a DGP with predictability, which, as a result, leads to

stochastic investment opportunity sets. We begin by first analysing a conventional

utility function defined over wealth U(W ) and then move to the dynamic asset

allocation with DA utility.

2.1.1 Dynamic Asset Allocation with Utility of Wealth U(W)

Assume the following dynamic asset allocation problem in discrete time, where an

agent aims to maximize the expected utility of the end-of-period wealth WT as

follows:

max
α0,α1,...,αT−1

E0[U(WT )], (3)
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where α0, α1, ..., αT−1 are the investment proportions of the risky asset at times

t = 0, 1, . . . , T − 1, respectively, and U(W ) = W 1−γ/1− γ. In this problem, the

investor allocates her wealth at time t = 0 for T periods, at t = 1 for T − 1 periods

and so on, until she reaches time t = T − 1 where she invests for a single period.9

Wealth Wt+1 is defined as Wt+1 = WtRt+1(αt), where Rt+1(αt) and αt represent

the total portfolio return over the period t to t + 1 and the investment weight on

the risky asset at time t, respectively. At time t when the investor seeks to allocate

optimally her available wealth between the risky and the riskless asset in order to

maximize her expected utility, the optimization problem becomes

max
αt

Et[U(Wt+1Q
∗
t+1,T )] (4)

where Q∗t+1,T = RT (α∗T−1)RT−1(α∗T−2) · · ·Rt+2(α∗t+1) represents the aggregate re-

turn from time t + 1 to T that maximizes the investor’s expected utility. Using

dynamic programming, we solve the problem at time t = T − 1 for the asset alloca-

tion decision for the period T − 1 to T . Continuing recursively, we solve the asset

allocation sub-problem at time T − 2 using the solution of the problem at T − 1,

until we reach time t. This procedure derives a final solution for the portfolio al-

location to the risky asset αt, αt+1, . . . , αT−1 that will be optimal as guaranteed

by the principle of optimality in dynamic programming.10 We apply the backward

induction to the conventional CRRA utility function. By plugging in the power

utility function, Eq. (4) takes the form of

max
αt

Et
[
W 1−γ
t+1

1− γ
(Q∗t+1,T )1−γ

]
. (5)

Backward induction suggests that Qt+1,T is optimal, because it represents the op-

timal investment decision between times t+ 1 and T , that maximizes the expected

9This problem mimics the optimization problem that pension fund managers face over multiple peri-
ods.

10See Bertsekas (1995) for more details on that.
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utility. Using dynamic programming we calculate the optimal investment propor-

tions of the risky asset at every time-step of the investment period as:

α∗t = arg max
αt

Et
[
W 1−γ
t+1 (Q∗t+1,T )1−γ

]
. (6)

2.1.2 Dynamic Asset Allocation with DA Utility

DA utility incorporates CRRA preferences as a special case when A = 1, but the

dynamic extension of the single-period problem for DA utility is far more com-

plicated, because of the so-called ”curse of dimensionality”: the number of state

variables increases exponentially with time.11 We begin by first formulating the

dynamic optimization problem between t and T .

Proposition 1 For given Q∗t+1,T = RT (α∗T−1)RT−1(α∗T−2) · · ·Rt+2(α∗t+1), the DA

utility function for the dynamic asset allocation problem is given by

U(µt) =
1

Kt

[
Et
(
U(Wt+1Q

∗
t+1,T )1Wt+1Q∗t+1,T≤µt

)
+AEt

(
U(Wt+1Q

∗
t+1,T )1Wt+1Q∗t+1,T>µt

)]
, (7)

where Wt+1Q
∗
t+1,T = WT , according to the recursive definition of wealth. The FOC

for the optimization of the utility of the certainty equivalent return is given by

Et
(
dU(WT )

dW
Q∗t+1,TRt+1(αt)WtXt+11WT≤µt

)
+AEt

(
dU(WT )

dW
Q∗t+1,TRt+1(αt)WtXt+11WT>µt

)
= 0, (8)

where Xt+1 = eyt+1 − ert is the excess return of the risky asset over the riskless

11As the state variables take a number of different values at each horizon, the state-space increases
exponentially with time with every iteration of the algorithm. For example, a T -period problem with
a state-variable with s states produces sT possible combinations. While from an analytical perspective
this is not a big obstacle (as the problem can still be mathematically formulated), computation-wise, the
exponential increment of the state-space renders the use of algorithmic processes problematic.
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asset.

Proof. See Appendix C.1

The main drawback with Proposition 1 is that the recursive optimization increases

the state space in Qt+1,T exponentially in order to take into account all the possible

states for the return of the risky asset between times t + 1 and T . To overcome

the ”curse of dimensionality” problem we elaborate on the approach proposed in

Epstein and Zin (1989) and Ang et al. (2005), by making the assumption that future

uncertainty about the risky asset’s returns is captured by the certainty equivalent.

Under this approach, instead of carrying backwards all the possible states for the

equity return at each horizon, we pay attention to only one variable, next period’s

certainty equivalent, keeping the dimension of the state-space to the minimum

possible. Let µt represent the certainty equivalent return for the utility at time

t+ 1 with the optimal asset allocation:

max
αt

E(U(Wt+1)) = max
αt

U(Wtµt(αt)). (9)

Then, we obtain the following result:

Proposition 2 The utility of the certainty equivalent return at time 0 ≤ t < T − 1

is as follows:

U(µt) =
1

Kt

[
Et
(
U(Rt+1(αt)Wt

T−1∏
i=t+1

µ∗i )1{Rt+1(αt)≤ξt}

)

+AEt
(
U(Rt+1(αt)Wt

T−1∏
i=t+1

µ∗i )1{Rt+1(αt)>ξt}

)]
. (10)

The value of U(µt) for the boundary condition t = T − 1 is given by:

U(µT−1) =
1

KT−1

[
ET−1

(
U(RT (αT−1)WT−1)1{RT (αT−1)≤µT−1}

)
+AET−1

(
U(RT (αT−1)WT−1)1{RT (αT−1)>µT−1}

)]
, (11)
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and the FOC for the optimization of the utility of the certainty equivalent return is

given by:

Et
(
dU(Rt+1(αt))

dαt
Xt+11{Rt+1(αt)≤ξt}

)
+AEt

(
dU(Rt+1(αt))

dαt
Xt+11{Rt+1(αt)>ξt}

)
= 0,

(12)

where ξt = µt
µ∗T−1···µ

∗
t+1Wt

, with µ∗’s the optimal certainty equivalents between t + 1

and T − 1.

Proof. See Appendix C.2.

Remark Notice that eventually Wt will not be part of the expressions for U(µt) in

Eqs. (10) and (11) as moving backwards in time we will have Wt = W0
∏t
i=1Ri(αi−1)

where all the uncertainty about Rn(αn−1) will be captured by the certainty equivalent

return µ∗n and W0 is set to one given that the optimization problem is homogeneous

in wealth.

We also notice that, the investor’s gains or losses at time t + 1 are now calcu-

lated with respect to ξt, that is the certainty equivalent at time t with respect to

the optimal certainty equivalent from the period from t + 1 to T . By substitut-

ing portfolio returns with the corresponding certainty equivalent, the state-space

comprises a constant number of states which remains unchanged with time. As an

example of the advantage of using the certainty equivalent, we can present the FOC

in Eq. (12) for power utility as follows:

Et
(
R−γt+1(αt)Xt+11Rt+1(αt)≤ξt

)
+AEt

(
R−γt+1(αt)Xt+11Rt+1(αt)>ξt

)
= 0. (13)

To find the optimal numerical values for µt and αt, we adopt a Gaussian quadra-

ture scheme (see Davis and Rabinowitz, 2007, for an in–depth review of numerical

integration methods) as in Balduzzi and Lynch (1999) and Campbell and Viceira

(1999) to track the states
{
Rst+1(αt)

}N
s=1

(∏T−1
i=t+1 µ

∗
i

)
, where N is the number of

15



quadrature states for the equity return.12 Next, we solve the discretized expression

of Eq. (10) (adjusted for power utility) in parallel with the FOC for the DA maxi-

mization problem in Eq. (13) as in the static single-period case, incorporating now

recursively the calculations from periods T −1 to t+1. Details on the discretization

of the DA allocation problem and its solution can be found in Appendix B.

2.2 Non-participation under DA utility

The case for non-participation in risky assets has been the subject of considerable re-

search to date. Motivated by mental accounting (which assumes the non-fungibility

of monetary resources allocated to each asset; see e.g., Thaler and Sunstein, 2008),

narrow framing (Barberis and Huang, 2008) can prompt investors to perceive high-

volatility assets as “risky” in isolation, without assessing their contribution to the

risk-return profile of a portfolio. Non-participation can also be promoted by the

omission bias (Ritov and Baron, 1999), whereby omissions are favored over equiva-

lent commissions because, unlike omissions (e.g., not investing in stocks), commis-

sions (investing in stocks) involve commitment to a course of action, thus entailing

the possibility of a loss. Other alternative explanations proposed to account for

non-participation include familiarity bias (choosing more over less familiar assets,

believing the latter to be riskier; Huberman, 2001; Massa and Simonov, 2006),

recognition bias (preferring more over less recognizable assets; Boyd, 2001) and

limited cognition (if investors view risk-diversification as a decision of enhanced

complexity; Hirshleifer, 2008).

12Instead of quadrature–based methods, Monte–Carlo simulations or even regression–based methods
as in Brandt et al. (2005) can be used to calculate the expectations in Eq. (13). In practice however,
the quadrature method offers sufficient accuracy and greater computational speed compared to the
alternatives.
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2.2.1 Single-period

Although under CRRA preferences it is always optimal to hold positive portfolio

weights for risky assets when the expected excess return is positive (E(X) > 0), this

is not always the case with DA utility preferences. Under DA preferences there can

be cases where it is optimal to refrain from holding risky assets even if the expected

excess return is positive. This non-participation region in the following theorem

shows that it is not optimal to hold risky assets whenever the DA coefficient lies

below a critical value (A∗).

Theorem 1 Let µ = µW (A,α), with

• µ(A, :) ∈ C1,∀A ∈ [0, 1]

• dµ(A,0)
dα = ξ(A) ≤ 0, ∀A ∈ [0, 1]13

• E(X) > 0 and E(X1W≥ξ(A)) > 0, where X = ey− er is the return of the risky

asset in excess of the risk–free rate.

Then, setting

A∗ =
E(X1W≥ξ(A))

E(X1W<ξ(A))
, (14)

we have the following:

1. For every A ≤ A∗, α∗ = 0,

2. For every A > A∗, α∗ > 0,

where α∗ is the optimal investment proportion in the risky asset which maximizes

µ(A,α) for a given A. A∗ is independent of the risk aversion parameter γ.

Proof. See appendix C.3

Intuitively this theorem can be presented in the following way: focusing on the DA

13Positive risk premium when the end-of-period wealth exceeds the negative impact of the decrease
in the certainty equivalent as the investment proportion of the risky asset increases. Suppose that the
expected return of the risky asset is zero. The certainty equivalent decreases when the proportion of the
risky asset increases. This occurs because for α < 0 negative excess return states have higher wealth
than R and hence are downweighted (Ang et al., 2005).
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coefficient A, we find that, as it decreases, investors allocate less wealth to the risky

asset regardless of their level of risk aversion. Given that the utility of wealth is a

continuous function within the domain of A, there should be a level of A, let A∗,

at which the optimal portfolio allocation to the risky asset, α∗ equals zero. This

result obtains independently of the level of risk aversion γ. Recalling the condition

dµ(A, 0)/dα ≤ 0, we see that a further decrease in the portfolio weight allocated to

the risky asset α∗ (e.g., due to short-selling the risky asset) will result in a higher

certainty equivalent. When investment in the risky asset is zero, an increase in the

investment in the risky asset decreases the certainty equivalent. This is intuitively

correct since by increasing the portfolio allocation to equities to a non-zero level

we become more willing to take on an amount of risk instead of holding only the

risk-free security. This consequently implies that the monetary amount which can

keep us away from buying stocks should be now lower. Subsequently, the following

relationship will prevail:

W = α∗X +R > R,

for α∗ < 0 and negative states (X < 0) of the excess equity return. Therefore,

the optimal allocation for this critical level of the DA coefficient, A∗ is zero and

α = α∗ = 0.

[Figure 1 about here.]

2.2.2 Multi-period

To calculate A∗ at different horizons, we perform a number of Monte-Carlo (MC)

experiments for the buy-and-hold and dynamic allocation problems, where we sim-

ulate several asset return trajectories under the i.i.d. assumption and using the

DGP with predictability to estimate the excess return and the corresponding re-

turn volatility. Then, using a binary search algorithm we are able to extract the

critical DA coefficient A∗ (which results in allocating zero wealth to equity) for
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each problem.14 A typical binary search algorithm for our problem proceeds with

discretizing the state space of A (i.e., assuming discrete points on the interval (0, 1])

and subsequently performing sequential searches for the target value of A (i.e., the

one which makes α = 0). This is done by comparing the target value to the middle

element of the state space and cutting the state space in half with every iteration

until the optimal value is detected (for implementation details of the binary search

algorithm see sections 3.1 and 3.2 in Sedgewick and Wayne, 2011).

In the numerical experiments, we follow the simple assumption of normality,

where risky asset returns follow an i.i.d. process, which we also relax by assuming

predictable asset returns. To model the predictability of asset returns we use a

vector autoregression (VAR) model which has been frequently used in the asset

allocation literature in discrete time (see Barberis, 2000; Ang et al., 2005; Brandt

et al., 2005; Hoevenaars et al., 2014, among others). In our VAR, after examining

a number of candidate variables (see section 2.3.3 for more details) we choose the

dividend price ratio (d/p)t as the main driver of next period’s equity return.

In the MC simulations, quarterly data for the S&P 500 index and the 3-month

T-bill are used as proxies for the equity returns and the risk-free rate, respectively.

Our numerical experiments corroborate Theorem 1: risk-aversion, has no impact

on the non-participation region for the DA coefficient.

[Figure 2 about here.]

The left graph of Fig. 2 plots the critical level of the coefficient of DA (A∗) across

investment horizons for a buy-and-hold DA investor. The DA coefficient (A∗) is

critical because a DA investor should not hold any units of the risky asset if her

DA lies below A∗. A decreasing A∗ within these setting results in larger market

participation, as a lower A∗ implies that the investor has to be more disappointment

averse in order to refrain from holding the risky asset. For a longer than a five-year

14An alternative approach entails the calibration of a binary tree and the detection of the correct
interval for A∗ (Ang et al., 2005). In practice, both methods derive similar results for A∗.
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period, a DA investor who follows a buy-and-hold strategy will hold risky assets

regardless of the DGP assumed for equity returns.

The right graph of Fig. 2 reports critical levels of A∗ for dynamic asset allocation

strategies for various investment horizons (T − t, where t is the current horizon). In

the case of i.i.d. returns (dashed line), the critical DA coefficient remains constant

regardless of the investment horizon as a result of the invariable opportunity set.

The solid line corresponds to predictable returns using the VAR to forecast next

period’s equity return as a function of the dividend price ratio. Contrary to the

case of i.i.d. returns where A∗ remains constant, participation increases at longer

horizons.

2.3 Asset allocation with parameter uncertainty

The effects of parameter uncertainty on asset allocation can be investigated by

allowing for uncertainty in the estimates of the parameters. At time t investors

maximize the following utility function:

max
α

∫ ∞
−∞

U(Wt+n)p(rt+n|Y ; θ)drt+n, (15)

where n is investor’s horizon, U(· ) is the utility of wealth and p(rt+n|Y ; θ) is the

cumulative density function of the expected returns conditional on observed return

data Y and the set of parameters θ (in our case the mean and variance of risky

asset’s return). The uncertainty arises with respect to θ, since these parameters

become known after we reach the end of the investment horizon. One of the popular

approaches in the literature to deal with the parameter uncertainty problem, is

using a Bayesian framework that incorporates uncertainty in the parameters of θ.

Integrating out θ in the prior distribution p(rt+n|Y ; θ), we end up with the posterior

predictive distribution which updates the distribution parameters by embodying the

20



new data. A DA investor now maximizes

max
α

[ ∫
Wt+n≤µW

U(Wt+n)p(rt+n|Y )drt+n+A

∫
Wt+n>µW

U(Wt+n)p(rt+n|Y )drt+n

]
,

(16)

in place of Eq. (15), in line with the DA utility definition in Eq. (1), where the

distribution of the returns is now conditional only on observed stock return data

and not on the set θ.

2.3.1 Data

In order to study the problem of portfolio choice we utilize quarterly data from the

U.S. market from January 1934 to September 2016 for the S&P 500 index (nominal

index returns), the 3-month T-bill rate (which represents our risk-free asset) and

the dividend price ratio (dividend yield). The latter is the predictor variable for

the empirical part of this work. To calculate the annual dividend price ratio we

sum up all the dividends paid throughout each year and divide them by the index

level of the S&P500 at the end of the year. These datasets can be easily acquired

by a number of sources as they are readily available online.15

2.3.2 i.i.d. returns

When investors ignore predictability in returns, they consider them to be i.i.d. and

they use the following model to estimate next period’s excess equity return:

xt = (µ− r) + εt, (17)

where xt is the continuously compounded quarterly excess return of the S&P 500

index in quarter t and εt are i.i.d. disturbance terms distributed as εt ∼ N (0, σ).

15Our sources were the online platform of Bloomberg Professional Services (for the data on S&P 500
returns and the dividend price ratio), and the Federal Reserve (for the nominal interest rates).
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The values for the parameters in Eq. (17) are µ = 0.02515, r = 0.00854 and

σ = 0.08175, also given in Table 1.

[Table 1 about here.]

Assuming investors are unaware of the true parameter value, we use an uninforma-

tive (diffuse) prior of the following type

p(µ, σ)dµdσ ∝ 1

σ
dµdσ, (18)

while the joint posterior of the mean return µ and volatility σ is

p(µ, σ|Y ) ∝ p(µ, σ)× L(µ, σ|Y ), (19)

where L is the likelihood function. The following lemmas report the results for the

case of i.i.d. returns (Lemma 1) and predictive returns (Lemma 2) where the VAR

is used.

Lemma 1 The distribution of the posterior moments for the case of i.i.d. returns

is given by

σ2|Y ∼ Inv −Gamma
(
N

2
,
1

2

N+1∑
i=1

(yi − µ)2

)
µ|σ, Y ∼ N

(
µ,
σ2

N

)
,

where Y is the observed asset return data, N is the sample size and µ is the sample

mean.

Proof. See Appendix D.1.

To construct the posterior predictive distribution for the i.i.d. returns of the risky

asset we follow a standard sampling technique. We first sample once from the

marginal posterior distribution p(σ2|Y ) and then, we use the draw for σ to sample
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from the posterior distribution p(µ|σ, Y ) which is now conditional on σ. We repeat

this process to generate a sufficient number (i.e., 1,000,000) of pairs (µ, σ) to create

return values and subsequently the posterior distribution for the returns of the risky

asset, by sampling once for each pair (µ, σ). Details on the sampling procedure from

the derived distributions for the mean and variance can be found in Appendix D.1.

2.3.3 Return predictability

In practice, asset returns do not follow a random walk. It is well documented that

there are factors which can be used to predict part of the variability in asset returns

(Lettau and Ludvigson, 2001; Campbell and Yogo, 2006; Ang and Bekaert, 2007;

Cochrane, 2008). Investors use available information to predict future returns for

optimal asset allocation problems. In this study, we replicate the prediction process

using a VAR model where asset returns and the predictable variable are consid-

ered together. This results in time–varying investment opportunity sets which are

conditional on the predictor variable in the VAR model. Investors’ reaction entails

the modification of their current investment proportions in the risky asset. We ex-

amined a number of financial variables16 and chose the dividend yield (calculated

as the dividend price ratio for the S&P 500 Composite Index) to be the driver of

next period’s equity return. The optimal lag-length was calculated to be one lag,

as confirmed by both the Akaike and the Bayesian Information Criterion.

We then model the dividend-adjusted log excess returns of the risky asset as a

first-order vector autoregression (VAR) of the following form

Xt = C +BXt−1 + Et. (20)

16To determine the variable that fits best with our data we test the following predictors: dividend
yield (the sum of the dividends over a year divided by the level of the index at the end of the year);
term spread (the difference between the 10-year T-bond and the 1-year T-bond); credit spread (the
difference between Moodys BAA corporate bonds yield and its AAA equivalent); the 3-month T-bill;
and the 10-year T-bond. The criteria for selecting the best fit are a) whether a variable enters the VAR
as statistically significant and b) how much of the risky asset’s excess return variability it explains.
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In the model of Eq. (20) Xt =

yt − rt−1

(d/p)t−1

 where yt−rt−1 = xt is the excess equity

return, rt is the risk–free rate and (d/p)t−1 is the dividend price ratio, B is the (2

× 2) matrix of the autoregression coefficients, C is a (2× 1) vector of the constant

terms and E is a vector of i.i.d. normally distributed non-observable disturbance

terms.

We use the lagged rate rt−1 to indicate that the value of the risk-free rate is

known at the time of portfolio formation t−1, in contrast to the risky asset, whose

return becomes known only at time t. When asset returns are not predictable, all

elements of the matrix with the autoregressive coefficients B are not different from

zero and returns are assumed to be i.i.d. As a result, the VAR model reduces to

the i.i.d. return generator of Eq. (17). The vector autoregression in Eq. (20) is

estimated using maximum likelihood estimation (MLE) and the results are reported

in Table 2.

[Table 2 about here.]

Simulating return trajectories under the assumption that the dividend yield at time

t can forecast asset returns at time t + 1 we match the first two moments of the

historical returns’ distribution up to two to three significant figures. All coefficients

of the matrix with the autoregressive parameters B are statistically significant at

the 5% level, while both series (dividend yield and excess asset log returns) are

stationary.

2.3.4 Parameter uncertainty with return predictability

The VAR in Eq. (20) can also be written in its compact form

X = BZ + E, (21)
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where X = (X1 . . . XT ) is a (2×T ) matrix with the number of observations T for the

estimated variables, Z = (z0 . . . zT ) a (3× T ) matrix, B ≡ (c B) is a (2× 3) matrix

of the auto-regressive coefficients and the constant terms, and the E = (ε1 . . . εT ) is

a (2×T ) matrix with the uncorrelated disturbance terms. A suitable uninformative

prior is the Jeffreys prior given by

p(B,Σ) = p(B)p(Σ)

∝ |Σ|−(m+1)/2,

(22)

where m = 2 is the total number of regressors on the left-hand side of Eq. (21),

p(B) is constant and B is independent of Σ. We obtain the posterior density for

the parameter matrix B and the covariance matrix of Eq. (21) by the following

lemma.

Lemma 2 The posterior distribution, p(vec(B),Σ|X) for the coefficient matrix, B

and the variance-covariance matrix, Σ conditional on data X is given by

Σ|X ∼ W−1((X − ZB̂)′((X − ZB̂), T − n− 1)

vec(B)|Σ, X ∼ N (vec(B̂),Σ−1Z ′Z),

where T is the number of observations in our sample and n is the number of pre-

dictor variables.

Proof. See Appendix (D.2).

Again, in order to sample from p(vec(B),Σ|X), we sample first from p(Σ|X) –

the variance - covariance matrix – conditional on dataset X and then, given this

draw, from the posterior distribution p(vec(B),Σ|X) which will give a draw for the

matrix of the VAR coefficients. The details of this process and the return generating

procedure are presented in Appendix (D.2).
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3 Asset allocation with DA preference

3.1 Buy-and-hold strategies

We first investigate the asset allocation problem for different investment horizons

for buy-and-hold strategies. Here agents choose a static portfolio allocation strat-

egy to the risky asset at the beginning of the investment period without optimal

annual reallocation. This strategy results in the same allocation regardless of the

investment horizon for an investor with power utility when returns follow an i.i.d.

process (i.e., are normally distributed). The same result (i.e. fixed allocation to the

risky asset) is achieved with an exponential utility function and lognormal returns

or quadratic utility with normal returns. Our goal here is to explore the effects of

introducing DA utility in conjunction with parameter uncertainty in place of power

utility on the optimal asset allocation. We mainly focus on whether parameter

uncertainty in a DA framework induces horizon effects (i.e. whether the long-term

allocation to the risky asset is different to the short-term one).

[Figure 3 about here.]

Fig. 3 shows the optimal buy-and-hold portfolio allocations to the risky asset for

a DA investor (A = 0.44 or A = 0.30) and an investor with power utility (A = 1;

solid line) when returns are i.i.d. and parameter uncertainty is either considered

(solid line) or ignored (dashed line). A DA investor who acknowledges parameter

uncertainty will decrease the portfolio allocation to the risky asset with the invest-

ment horizon compared to one with power utility who will hold the same portfolio

regardless of the horizon. This comes as a result of the variance’s evolution of cu-

mulative returns at difference horizons, which, under parameter uncertainty, grows

faster than linearly, which is the case when parameter uncertainty is ignored. Under

parameter uncertainty investors consider equity not as attractive in the long-run

as in the case where parameter uncertainty is ignored which results in lower port-
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folio allocation to the risky asset. By Lemma 1 we see that the magnitude of the

horizon effects depends on the available data incorporated in the model, in the

following way: given σ, the variance of µ is inversely proportional to N (the sample

size of risky asset return); subsequently, the larger the N , the lower the variance

of µ and equivalently the smaller the uncertainty around its true value. Using a

smaller sample would result in significantly lower allocation to the risky asset for

an investor who considers uncertainty compared to one who ignores it, especially

for longer horizons.

The incorporation of DA changes portfolio composition drastically. A DA in-

vestor (A = 0.44 or A = 0.50 will increase the investment proportion to the risky

asset when they allocate wealth for longer periods. The effect of DA appears to be

more powerful at short horizons (T < 10), as a DA investor who uses the DA utility

function will hold significantly less equity compared to one with power utility. A

DA investor who allocates optimally for horizons ranging between one and ten years

will allocate between 20 and 50% of their portfolio to the risky asset (between 60

and 20% less equity compared to one with power utility), while an even more disap-

pointment averse one (A = 0.30) will hold no more than 10 to 40 % equity for the

same horizon. However, eventually investors with DA utility will allocate similarly

to those with power utility as investment horizon increases. A DA investor appears

to be very conservative in the short-run, while, when investing for long horizons,

even a very DA one (A = 0.30, i.e. losses in her utility function are weighed more

than three times more than gains) is willing to accept the additional risk by holding

the risky asset in anticipation of higher terminal wealth, with lower volatility as a

result of the longer investment horizon.

Predictability is critical in the case of a buy-and-hold investor, as one who

takes into account predictability will allocate significantly larger weights to equity

for longer investment horizons, as volatility does not grow proportionally to asset

returns. The latter results in lower long-term volatility, compared to the short-
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term, thus making equities appear more attractive to an investor with a long-term

outlook. In Fig. 4 we display optimal allocations to the risky asset for three levels

of risk aversion (the ones most commonly used in relevant studies) and four levels

of DA, among which is the value of 1
λ where λ is the loss aversion coefficient equal

to λ = 2.25, as calculated by Tversky and Kahneman (1992). As expected, both

risk aversion and DA affect the allocation to the risky asset as the more risk averse

or disappointment averse an investor becomes, the lower this allocation will be.

DA seems to be more relevant at shorter horizons (where the portfolio allocation

to the risky asset for a DA investor is significantly lower compared to that for an

investor with power utility - see left column of Fig. 4) and it is possible that this is

due to short horizons’ higher volatility rendering disappointment more likely to be

experienced by an investor.

[Figure 4 about here.]

The cause behind the horizon effects we report for the buy-and-hold investor

who uses the VAR to forecast equity returns can be traced in the evolution of return

volatility. Long-term volatility is lower than in the case of i.i.d. returns, due to the

correlation between the predictor variable and the predicted equity return.

[Figure 5 about here.]

More specifically, when we model returns as i.i.d., the two-period variance is equal

to

varr1,r2 = varr1 + varr2 ⇔ σr1,r2 =
√
varr1 + varr2 .

When returns are predictable, the covariance between equity returns and the pre-

dictor variable should be taken into consideration as well. The two-period variance

is now equal to

varr1,r2 = varr1 + varr2 + 2cov(r1, r2).
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Given that the covariance term in our VAR estimation is negative (see ρ and σ11, σ22

in the first column of Table 2), the following holds:

varr1 + varr2 + 2cov(r1, r2) < varr1 + varr2 .

As a result, the long-term volatility for a buy-and-hold investor who uses the VAR is

much smaller than that for the investor who uses the i.i.d. return generator, growing

slower than linearly. In particular, under i.i.d. returns, the 40-year total volatility

equals 0.1625
√

40 = 1.02 while the standard deviation for the 40-year total return

as predicted by the VAR equals 0.5091, i.e., is half as much (see Fig. 5). This shows

how the investment allocation in stocks can be affected (i.e., increase) by utilizing

a variable that is believed to be able to predict stock returns.

The intuition behind this effect is twofold. On the one hand, assuming that

dividend yield falls, its negative correlation with the expected stock return (ρ < 0;

see Table 2) will drive the latter up. As dividend yield is now lower, actual stock

returns will be lower as well given that b12 is positive. Higher expected returns (as

predicted by the negative correlation between the dividend price ratio and risky

asset returns) and lower realized returns (as indicated by the positive coefficient of

risky asset returns) introduce a mean-reverting component, which, in turn, reduces

the rate of increase of the variance, thus rendering equity more attractive at longer

horizons. On the other hand, it is also possible that investors relying on a given

strategy (in our case, the dividend yield) tend to develop illusion of control, if they

grow overly confident in the ability of the strategy to generate precise predictions

in terms of future returns; as this is bound to boost their overconfidence levels, it

can lead them to assume higher risk in their investments by increasing their equity

exposure (Odean, 1998; Gervais and Odean, 2001). This is expected to be further

encouraged by the fact that investors whose outlook involves long horizons and/or

buy-and-hold strategies end up monitoring their investments less frequently; the
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latter leads them to experience feelings of regret and/or disappointment equally

less frequently, prompting them to view equity as less risky (since longer horizons

entail fewer price fluctuations than short ones) and, thus tacitly encourage them to

increase their exposure to it (Benartzi and Thaler, 1995).

When parameter uncertainty is incorporated (right column of Fig. 4), a DA

investor who accounts for predictability will allocate a smaller proportion to the

risky asset compared to one who ignores parameter uncertainty. When parameter

uncertainty is incorporated, equities do not look as attractive as when parameter

uncertainty is ignored, as a result of the higher volatility of equity returns; the

latter is due to uncertainty dampening the correlation between the predictor vari-

able and the dependent variable (i.e., equity return), which in turn increases the

volatility faster than the case where parameter uncertainty is not considered. Ex-

pressing uncertainty about the parameters of the model is, in essence, equivalent to

expressing uncertainty about the forecasting capacity of the predictor variable (i.e.,

the dividend price ratio). This uncertainty, in turn, can prompt investors to start

viewing the VAR-process as potentially misspecified, thus rendering them more

ambiguity-averse and leading them to reduce their exposure to equity investments

(Maenhout, 2004). Under parameter uncertainty a DA investor will still hold larger

weights for longer horizons compared to shorter ones but they will be significantly

lower to those allocated when parameter uncertainty is ignored.

3.2 Dynamic strategies

We now present the results for the case of a DA investor who follows a dynamic

strategy, reallocating her available wealth at the beginning of each period between

the risk-free and the risky asset. An investor who allocates wealth dynamically

considers the investment opportunity set for the whole remaining investment period

T − t and assigns the optimal weight to the risky asset knowing that she will have

the chance to revise her strategy by the end of next period in case her expectations
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of the risky asset’s return and volatility change. This is the difference between

a dynamic and a myopic strategy in which investors follow a one-period forward-

looking strategy.

3.2.1 Results with i.i.d. returns

With i.i.d. returns an investor who allocates dynamically ignoring parameter un-

certainty, uses the normality assumption and the i.i.d. asset return generator with

parameters equal to the historical annual mean and volatility of the S&P 500

(µ = 0.1045, σ = 0.1635; see Table 1). As a result she has the same invest-

ment opportunity set at every horizon and the allocation to the risky asset does

not change at different horizons (dashed line in Fig. 6).

[Figure 6 about here.]

3.2.2 Results with predictable returns

The left column of Fig. 7 reports optimal portfolio allocations for four different

levels of the DA coefficient A and three levels of the risk-aversion coefficient γ at

horizons T − t between one and 40 years. The four levels of DA are the same as in

the buy-and-hold case.

[Figure 7 about here.]

In these experiments, investors re-allocate their available wealth at the end of

each year, taking into consideration the optimal solutions from the solved sub-

problems at each horizon. For the same level of risk aversion, the more disap-

pointment averse an investor is, the less she allocates to equities. The investment

horizon effect of DA is visible by measuring the equity allocation at T = 40 and

t = 1. The dynamic allocation to the risky asset drops as the investment horizon

becomes shorter as a result of the lower per-period volatility for longer investment

periods shown in Fig. 5. A moderately DA investor will still invest a significant
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part of her portfolio to equity even at very short horizons (dashed line in Fig. 7 )

while a more DA one will almost refrain from holding any units of the risky asset

even for a relatively low level of risk aversion.

When investors believe returns to be forecastable, they use the VAR to predict

next period’s equity return and allocation drops with respect to the investment

horizon for all four different values of A. As the investment horizon T − t shortens,

a DA investor who follows a dynamic strategy allocates a smaller proportion of her

wealth to the risky asset, while a DA and risk-averse investor will hold no units

of the risky asset as T − t approaches zero. Again, investing dynamically to the

risky asset for the short-run is not as attractive as for the long-run given the higher

volatility per period of the former. As a consequence, the more disappointment

averse an investor is the more likely it is to be affected by short-run volatility. This

gives rise to horizon effects as investors try to hedge their portfolios at shorter

horizons against a possible sharp move in the value of the independent variable

(dividend yield).

3.2.3 Parameter uncertainty

Let us assume an investor who uses the i.i.d. return generator and considers uncer-

tainty in the model’s parameters. In this case she will exhibit slightly different port-

folio allocations compared to when the model’s parameters are treated as known.

Fig. 6 shows that both a DA investor and one who uses the power utility function

will increase their portfolio allocation to the risky asset with the investment horizon

(solid line) to eventually hold a portfolio position very similar to one who ignores

parameter uncertainty (dashed line). Investing for a longer horizon appears to be

more risky than holding the risky asset in the short-run as a result of the lower per

period volatility of the latter. As a result, an investor who invests dynamically with

a shorter term outlook will hold slightly more equity in their portfolio compared to

one who invests for a longer horizon.
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Turning to the case of predictability, the right column of Fig. 7 reports results

which reflect optimal allocations to the risky asset for investors who rebalance their

portfolios by predicting asset returns based on the dividend yield when parame-

ter uncertainty is accounted for. These plots reveal mainly two facts; first, equity

allocation is, in general, lower compared to the case of an investor who ignores

parameter uncertainty and second, the impact of DA appears again to be more

powerful at shorter horizons (up to 10 years) while for longer ones allocation lines

become relatively flat. When we express uncertainty about the parameters of the

VAR, we use the posterior predictive distribution in Lemma 2 in place of the VAR

model with fixed parameters as stated in Eq. (20). In this case, instead of sim-

ulating future return paths conditioning on fixed values for the model parameters

(constant terms, matrix of AR coefficients and variance-covariance matrix), we sam-

ple from their posterior distributions obtaining each time a new set of parameters

which is conditional only on observed data.

The results exhibit a similar pattern to the ones in the left column of Fig. 7.

The more disappointment averse and risk averse an investor grows, the lower the

equity allocation will be at different investment horizons. As in the case of a DA

investor who follows a buy-and-hold strategy, the choice of the DA level affects

mainly the dynamic allocation at longer horizons, while, as T − t approaches zero,

the allocation lines exhibit converging behaviour. The underlying cause for this

behaviour can be found in the way the mean return and variance change over

time. Investors’ uncertainty about the predictive capacity of the dividend yield

makes equity returns generated by the VAR more similar to those derived by the

i.i.d. return generator, as the negative correlation between the equity return and

the predictor variable is weaker. The latter results in higher long-term per-period

volatility, which explains the lower allocation to the risky asset compared to the

left column of Fig. 7 where parameter uncertainty is ignored.

In other words, there are cases where parameter uncertainty makes investors
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sceptical about whether investment opportunities actually change over time. Sub-

sequently, they doubt that higher or lower equity allocations will result in more

optimal portfolios. In this case, the allocation will be similar at different horizons

compared with the case where parameter uncertainty is ignored.

4 Concluding remarks

Disappointment aversion (DA) is a critical factor in portfolio choice, as its variation

can affect portfolio compositions drastically. Our experiments suggest that in the

context of an utility maximization problem, a DA investor would allocate lower

weights to equities compared to an investor who uses a standard CRRA power

utility function.

For a buy-and-hold investor, we detect horizon effects for a DA investor who uses

either of the return generators and accounts for or ignores parameter uncertainty.

For an investor who uses the VAR to predict equity returns, the examination of

the evolution of risky asset’s return volatility throughout the investment horizon

reveals that it grows slower than linearly - the case when the i.i.d. return generator

is used. This seems to offer a plausible explanation for the observed horizon effects

while in the case of a VAR with parameter uncertainty, the additional uncertainty

is expressed as additional volatility in risky assets return which in turn decreases

the allocation to the risky asset.

Focusing on dynamic investing, we examined cases where investors believe re-

turns are i.i.d. or forecastable (through the dividend yield), and parameter uncer-

tainty is ignored as well as incorporated in the asset allocation framework. Overall,

the decision of whether one will invest under predictable or non-predictable returns

is critical in the presence of DA, as the equity allocation changes measurably be-

tween the two alternatives. When predictability is taken into consideration, the

distribution of the future returns generated by the VAR is significantly different

34



from that of i.i.d. returns, due to the presence of correlation between the dividend

price ratio and the return of the risky asset. With i.i.d. returns, horizon effects

arise when parameter uncertainty is taken into consideration. Investors allocate

smaller proportions to stocks for shorter horizons after accounting for the increased

variance in equity returns.

Finally, the incorporation of parameter uncertainty in the DA framework with

predictability changes equity allocations drastically. Overall, it is beneficial to be

examined as a special case in a portfolio model, as frameworks which do not account

for this may generate portfolios with too large equity allocations. When model pa-

rameters are taken as uncertain, a DA investor will still allocate larger weights to

stocks at longer horizons. Nevertheless, the difference between a long-term and a

short-term equity weight is smaller compared to the case where parameter uncer-

tainty is ignored, as a result of the doubts investors cast on the predictive power of

the dividend yield.

Our results overall suggest that the prevalence of DA among investors tends to

prompt them to reduce their exposure to equity, with the degree of said exposure

varying conditional on their view of the return-generation process and the uncer-

tainty innate in the latter’s parameters. With retail investors being more likely

to be subject to DA given their overall susceptibility to behavioural biases – see

Barber et al. (2009) –, financial literacy initiatives could raise awareness of the lat-

ter’s effects in order to help individual investors improve on their trading decisions.

Similarly, finance practitioners with regular client-interface (such as brokers and

financial advisors) could consider controlling for DA when assessing their clients’

risk profile in order to gain better understanding of their clients’ disposition to-

wards trading and help them improve on their investments. What is more, our

results further denote that DA can help explain the relative reluctance of investors

to hold equities (thus contributing to the debate on the equity premium puzzle)

and re-enter the market if they have exited it previously at a loss.
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APPENDICES

A Static Portfolio Allocation

In this appendix we revisit the static asset allocation problem, with the purpose

of updating Ang et al. (2005) using the most recent data sample (1934–2016). We

start by formulating the first order condition (FOC, thereafter) for the single-period

investing, which is given by:

Proposition 3 The FOC for the maximization of U(µ) in Eq. (1) is given by

E
[
dU(µW )

dµW
X1[W≤µW ]

]
+ AE

[
dU(µW )

dµW
X1[W>µW ]

]
= 0, α 6= 0, (23)

where X = ey − erf is the return of equity over that of the riskless asset.

Proof. We calculate the FOC for the single-period case. Let

W = α(ey − er) + er = αXe + er, (24)

where α is the portfolio weight allocated to the risky asset, y is the risky asset’s

return, r is the risk-free interest rate known at the time of every investment decision

and Xe is the equity premium. Considering an arbitrary utility function U , we

extend it to define µ (i.e., the certainty equivalent of wealth) in the following way:

U(µ) =
1

K

{
E(U(W ))1W≤µ +AE(U(W ))1W>µ

}
, (25)

where K = E(1W≤µ) +AE(1W>µ). Now, maximizing over α, the Eq. (26) derives:

dU

dµ

dµ

dα
=

1

K

{
d

dα
E(U(W )1W≤µ +A

d

dα
E(U(W )1W>µ)

}
−

U(µ)

K

{
d

dα
E(U(W )1W≤µ) +

d

dα
AE(U(W )1W>µ)

}
, (26)
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where the second part of the last equation follows after plugging Eq. (25) into

Eq. (26) and simplifying the expression. We notice that

µ = αX +R⇔ X =
µ−R
α

, (27)

therefore the derivatives of the expected values can be expressed as follows,

d

dα
E(U(W ))1W>µ =

d

dα

(∫ ξ

µ−R
α

f(X)U(αX +R)dX +

∫ ∞
ξ

f(X)U(αX +R)dX

)
,

(28)

which by the Leibniz rule can be written as

∫ ∞
µ−R
α

f(X)
dU(αX +R)

dα
XdX − f

(
µ−R
α

)
U(µ)

d

dα

(
µ−R
α

)
=

E
(
X
dU(W )

dW
1W>µ

)
− f

(
µ−R
α

)
U(µ)

d

dα

(
µ−R
α

)
,

(29)

where f(X) is the normal probability density function. Similarly, the Eqs. (30), (31)

and (32) are calculated,

d

dα
E(U(W )1W≤µ) = E

(
X
dU(W )

dW
1W≤µ

)
+ f

(
µ−R
α

)
U(µ)

d

dα

(
µ−R
α

)
, (30)

d

dα
E(1W≤µ) =

d

dα

∫ µ−R
α

−∞
f(X)dX =

d

dα

(
µ−R
α

)
f

(
µ−R
α

)
(31)

and

d

dα
E(1W>µ) =

d

dα

∫ ξ

µ−R
α

f(X)dX = − d

dα

(
µ−R
α

)
f

(
µ−R
α

)
. (32)
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Substituting Eqs. (30) to (31) into (29), we take:

dU

dµ

dµ

dα
=

1

K

[
E
(
XdU(W )

dW
1W≤µ

)
+ U(µ)f

(
µ−R
α

)
d

dα

(
µ−R
α

)
+AE

(
XdU(W )

dW
1W>µ

)
−AU(µ)f

(
µ−R
α

)
d

dα

(
µ−R
α

)]
− U(µ)

K

[
d

dα

(
µ−R
α

)
f

(
µ−R
α

)
−Af

(
µ−R
α

)
d

dα

(
µ−R
α

)]
=

1

K

[
E
(
X
dU(W )

dW
1W≤µ

)
+AE

(
X
dU(W )

dW
1W>µ

)]
.

(33)

The FOC is now given by

E
(
X
dU(W )

dW
1W≤µ

)
+AE

(
X
dU(W )

dW
1W>µ

)
= 0, α 6= 0. (34)

Eqs. (1) and (23) have to be solved simultaneously, since µW = µW (A,α) is

itself a function of α and A. A way to proceed with the solution of the resulting

system of equations is to discretize it so as to convert it into a discrete one. For

more details on this process, see Appendix B.
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B Solution to DA Portfolio Choice Problem

This appendix describes the discretization procedure of the DA asset allocation

problem and the solution to the system of simultaneous equations (including the

DA utility function and its optimization expression).

Analytically, to solve the system of Eqs. (10) and (13), the Gaussian Quadrature

method is used. Since a lognormal distribution for the returns is assumed, the

logarithmic returns are normally distributed. Under this assumption the numerical

scheme of Gauss–Hermite is used to convert integrals of exponential expressions

into the form of ∫ ∞
−∞

exp(−x2)f(x)dx ≈
N∑
i=1

f(xi)wi, (35)

where {xi}Ni=1 are the discrete points the integral in Eq. (35) is calculated at and

{wi}Ni=1 are the corresponding weights. The points xi, known as abscissae, are the

roots of the Hermite polynomials, while the weights wi are derived after a relevant

transformation. Based on the discretization procedure, we write Eq. (10) as

µt = Wt

(
T−1∏
i=t+1

µ∗i

)[∑M
s=1 psW

1−γ
s,t+1 +A

∑N
s=M+1 psW

1−γ
s,t1+1

P (Wt+1 ≤ µt) +AP (Wt+1 > µt)

]1/(1−γ)

, (36)

and Eq. (34), the FOCs of the problem, as

M∑
s=1

psW
−γ
s,t+1Xs,t+1 +A

N∑
s=M+1

psW
−γ
s,t+1Xs,t+1 = 0, (37)

where Xt+1 = ey,t+1 − er,t is the excess return of the risky asset over the period

t, t+1, and s takes one of the values 1 to N , where N is the number of risky asset’s

discrete states. We notice that the outcomes are split to the two sums with respect

to their relationship to the certainty equivalent. Given that the discrete return

states are ordered from smallest to largest, the first sum takes on all the discrete

outcomes that lie below µt while the second one takes those above the certainty
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equivalent and scales them down via the DA coefficient A.

The solution to the Eqs. (36) and (37) yields the portfolio weight α that maxi-

mizes the DA utility and the value of the certainty equivalent for each corresponding

period. This solution is non-trivial, and thus we need to follow an algorithmic pro-

cedure similar to that in Ang et al. (2005). Considering the N states for the excess

return at time t+1, yt+1−rt, we construct N −1 ordered intervals for the portfolio

return as follows:

[
(αX1 + er)

T−1∏
j=t+1

µ∗Wj
, (αX2 + er)

T−1∏
j=t+1

µ∗Wj

)
, . . . ,

[
(αXN−1 + er)

T−1∏
j=t+1

µ∗Wj
, (αXN + er)

T−1∏
j=t+1

µ∗Wj

)
.

(38)

Assuming that the certainty equivalent µW lies in the interval defined by the return

states i and i + 1, i.e., [(αXi + er)
∏T−1
j=t+1 µ

∗
Wj
, (αXi+1 + er)

∏T−1
j=t+1 µ

∗
Wj

) where

1 < i ≤ N ,
∏T−1
j=t+1 µ

∗
Wj

is the indirect utility of wealth and α satisfies the FOC,

(37),

∑
s:Ws

∏T−1
j=t+1 µ

∗
Wj
≤α∗Xi+er

psW
−γ
s Xs +A

∑
s:Ws

∏T−1
j=t+1 µ

∗
Wj

>α∗Xi+1+er

psW
−γ
s Xs = 0,

(39)

where α∗ is now the optimal value for the portfolio weight. As Eq. (36) indi-

cates, the probabilities for the outcomes above the certainty equivalent should be

downweighted. Therefore, the corresponding probabilities are multiplied by the DA

coefficient A and then divided by the sum of all probabilities related to the possible

return states so as to add up to one. The new probability distribution is defined as

πs =
ps1{s≤i} +Aps1{s≥i+1}∑i
s=1 ps +A

∑N
s=i+1 ps

, 1 < s ≤ N. (40)

Given initial guess i for the state of the certainty equivalent we solve for α∗ and
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µ∗W which is now stated as

µWi =

(
πs

N∑
s=1

(Ws)
1−γ

T−1∏
j=t+1

µ∗Wj

) 1
1−γ

, (41)

where the second term of Eq. (36) is absorbed by the changed probability distribu-

tion in Eq. (40). In case µ∗Wi
lies within the interval defined by our initial guess

µWi ∈
[
(αiXi + er)

T−1∏
j=t+1

µ∗Wj
, (αiXi+1 + er)

T−1∏
j=t+1

µ∗Wj

)
, (42)

µ∗W = µWi , α
∗ = αi and i is the optimal state for the problem. If the condition in

Eq. (42) is not satisfied we perform a binary search given ordered return intervals,

until α falls within the right interval.
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C Different Proofs

This appendix contains the proofs of propositions and the theorem stated in the

main body of this paper.

C.1 Proof of Proposition 1

We define the DA utility function for the dynamic asset allocation problem in

accordance with Ang et al. (2005) as follows:

At time t = T − 1 we have

U(µT−1) =
1

KT−1

[
ET−1(U(WT−1RT (αT−1))1{WT−1RT (αT−1)≤µT−1})

+AET−1(U(WT−1RT (αT−1))1{WT−1RT (αT−1)>µT−1})

]
. (43)

Continuing recursively, at time t = T − 2 the DA utility is defined as

U(µT−2) =
1

KT−2

[
ET−2(U(WT−2RT−1(αT−2)RT (α∗T−1))1{WT−2RT−1(αT−2)RT (α∗T−1)≤µT−2})

+AET−2(U(WT−2RT−1(αT−2)RT (α∗T−1))1{WT−2RT−1(αT−2)RT (α∗T−1)≤µT−2})

]
.

(44)

Eventually, at time t, we will have

U(µt) =
1

Kt

[
Et(U(WtRt+1(αt)Q

∗
t+1,T ))1{WtRt+1(αt)Q∗t+1,T≤µt})

+AEt(U(WtRt+1(αt)Q
∗
t+1,T ))1{WtRt+1(αt)Q∗t+1,T>µt})

]
, (45)

where Q∗t+1,T = Rt+2(α∗t+1) · · ·RT (α∗T−1) is the optimal aggregate return between

t+ 1 and T that maximizes the correspodning utility of wealth U(W ).

We next calculate the optimization condition for the multiperiod dynamic prob-

lem. In this case, we have T periods and our investor maximizes the utility of wealth

max
α0,α1,··· ,αT−1

E0[U(WT )], (46)

where the wealth is given by Wt = Rt(αt−1)Wt−1, where Rt(αt−1) = αt−1(eyt −

ert−1) + ert−1 . Considering we are at time T − 1, we follow Eq. (33) and by adding
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time subscripts we end up with the following expression:

dU(µT−1)

dµT−1

dµT−1

dαT−1
=

1

KT−1

[
ET−1

(
XT

dU(WT )

dW
1WT≤µT−1

)
+AET−1

(
XT

dU(WT )

dW
1WT>µT−1

)]
=

1

KT−1

[
ET−1

(
WT−1

dU(RT (αT−1))

dW
XT1WT≤µT−1

)
+AET−1

(
WT−1

dU(RT (αT−1))

dW
XT1WT>µT−1

)]
.

(47)

But at time T − 1, the terms in WT−1 become known and eventually WT−1 can be

taken outside the expectation term leading to the following FOC

ET−1

(
dU(RT (αT−1))

dW
XT1WT≤µT−1

)
+AET−1

(
dU(RT (αT−1))

dW
XT1WT>µT−1

)
= 0.

(48)

Moving backwards to time t, the wealth WT can be expressed as

WT = Q∗t+1,TRt+1(αt)Wt (49)

and Eq. (47) can be rewritten in the following way

dU(µt)

dµt

dµt
dαt

=
1

Kt

[
Et
(
dU(WT )

dW
Q∗t+1,TRt+1(αt)WtXt+11WT≤µt

)
+AEt

(
dU(WT )

dW
Q∗t+1,TRt+1(αt)WtXt+11WT>µt

)]
, (50)

and the FOC is as follows

Et
(
dU(WT )

dW
Q∗t+1,TRt+1(αt)WtXt+11WT≤µt

)
+AEt

(
dU(WT )

dW
Q∗t+1,TRt+1(αt)WtXt+11WT>µt

)
= 0. (51)

C.2 Proof of Proposition 2

We formulate the FOCs for the optimization problem by performing the substi-

tution of the value Ri+1(α∗i ), i = t, t + 1 · · · , T − 1 with the certainty equivalent

for the same period, µ∗i . Using this approach, we keep the dimension of the state

space constant with time, which allows us to solve the problem computationally in

reasonable time. Recalling the implicit definition for the certainty equivalent and
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the expression for Q∗t+1,T we have that

U(µt) =
1

Kt

[
Et(U(Wt)1WT≤µt) +AEt(U(Wt)1WT>µt)

]
=

1

Kt

[
Et(U(Q∗t+1,TRt+1(αt)Wt)1WT≤µt) +AEt(U(Q∗t+1,TRt+1(αt)Wt)1WT≤µt)

]
=

1

Kt

[
Et
(
U(µ∗T−1 . . . µ

∗
t+1Rt+1(αt)Wt)1{Rt+1(αt)≤ µt

µ∗
T−1

...µ∗t+1Wt
}

)
+AEt

(
U(µ∗T−1 . . . µ

∗
t+1Rt+1(αt)Wt)1{Rt+1(αt)>

µt
µ∗
T−1

...µ∗t+1Wt
}

)]
. (52)

In Eq. (52), the product µ∗T−1 . . . µ
∗
t+1Wt is known at time t and thus, for simplicity,

it can be written outside the expectation terms as a function of the utility of wealth

U(·). This transformation is as follows:

U(µt) =
f(U(

∏T−1
i=t+1 µ

∗
iWt))

Kt

[
Et(U(Rt+1(αt))1{Rt+1(αt)≤ξt})

+AEt(U(Rt+1(αt))1{Rt+1(αt)>ξt})

]
, (53)

where ξt = µt
µ∗T−1...µ

∗
t+1Wt

and Kt = Et(1WT≤µt) +AEt(1WT>µt). Hence, we obtain

1

f(U(µ∗T−1 . . . µ
∗
t+1Wt))

dU(µt)

dµt

dµt
dαt

= − 1

K2
t

dKt

dαt
KtU(µt)+

1

Kt

[
d

dαt
Et(U(Rt+1(αt))1Rt+1(αt)≤ξt

+A
d

dαt
Et(U(Rt+1(αt))1Rt+1(αt)>ξt

]
=

1

Kt

[
A

d

dαt
Et(U(Rt+1(αt))1Rt+1(αt)>ξt +

d

dαt
Et(U(Rt+1(αt))1Rt+1(αt)≤ξt

]
− U(µt)

Kt

[
A

d

dαt
Et(1Rt+1(αt)>ξt) +

d

dαt
Et(1Rt+1(αt)≤ξt)

]
. (54)

But we know that

Rt+1(αt) > ξt ⇔ αtXt+1 + ert > ξt ⇔ Xt+1 >
ξt − ert
αt

≡ ξ, α > 0, (55)
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therefore, we can express the derivatives as in the proof of Proposition 1. More

specifically, the first term of Eq. (54) is

d

dαt
Et(U(Rt+1(αt))1Rt+1(αt)>ξt =

d

dαt

∫ ∞
ξ

U(Rt+1(αt))F (Xt+1)dXt+1

=
d

dαt

∫ ∞
ξ

U(αtXt+1 + ert)F (Xt+1)dXt+1

=
d

dαt

∫ ξ′

ξ
U(αtXt+1+ert)F (Xt+1)dXt+1+

d

dαt

∫ ∞
ξ′

U(αtXt+1+ert)F (Xt+1)dXt+1

=

∫ ξ′

ξ

d

dαt
U(αtXt+1 + ert)Xt+1F (Xt+1)dXt+1 − F (ξ)U

(
αt
ξt − ert

αt
+ ert

)
dξ

dαt

+

∫ ∞
ξ′

d

dαt
U(αtXt+1 + ert)Xt+1F (Xt+1)dXt+1

=

∫ ∞
ξ

d

dαt
U(αtXt+1 + ert)Xt+1F (Xt+1)dXt+1 − F (ξ)U(ξ1)

dξ

dαt

= Et
(
Xt+1

dU(Rt+1(αt))

dαt
1Rt+1(αt)>ξt

)
− F (ξ)U(ξt)

dξ

dαt
.

(56)

Expressing the remaining terms of Eq. (54) in the same way we obtain the following

result:

1

f(U(µ∗T−1 . . . µ
∗
t+1Wt))

dU(µt)

dµt

dµt
dαt

=
1

Kt

[
Et
(
dU(Rt+1(αt))

dαt
Xt+11Rt+1(αt)≤ξt

+AEt
(
dU(Rt+1(αt))

dαt
Xt+11Rt+1(αt)>ξt

)]
,

which considering the FOC of the expression above yields

dU(µt)

dαt
= 0⇔

Et
(
dU(Rt+1(αt))

dαt
Xt+11Rt+1(αt)≤ξt

)
+AEt

(
dU(Rt+1(αt))

dαt
Xt+11Rt+1(αt)>ξt

)
= 0,

(57)

with t = T − 1, . . . , 0. Comparing Eqs. (57) and (51), one can see the advantage

of using the former over the latter as it involves only one uncertain variable, the

return of the portfolio between t and t+ 1.
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C.3 Proof of Theorem 1

We prove that for the critical level of disappointment aversion, A∗, any A below

this value induces non-participation (α < 0) while any A larger than A∗ leads to

positive portfolio allocation. Let µ = µW (A,α), with

• µ(A, :) ∈ C1,∀A ∈ [0, 1],

• dµ(A,0)
dα = ξ(A) ≤ 0, ∀A ∈ [0, 1],

• E(X) > 0 and E(X1W≥ξ(A)) > 0, where X = ey − er is the excess return of

the equity over the bond.

Then, setting

A∗ =
E(X1W≥ξ(A))

E(X1W<ξ(A))
, (58)

we have the following:

• For every A ≤ A∗, α∗ = 0;

• For every A > A∗, α∗ > 0,

where α∗ is the portfolio weight which maximizes µ(A,α) for a given level of A.

Proof. We have that

W = α(ey − er) + er
∆
= αX +R, (59)

which as α → 0 tends to R. The expected value of Eq. (59) equals E(W ) =

αE(X) + r. From the definition of the DA utility we have

lim
α→0

U(µ) = lim
α→0

E(U(W ))1W≤µ +AE(U(W ))1W>µ

P(W ≤ µ) +AP(W > µ)
, (60)

which given that both the utility function and the certainty equivalent are C1-

functions can be written as

U(µ(A, 0)) =
E(U(r)1r≤µ(A,:) +AE(U(R))1r>µ(A,:)

P(r ≤ µ(A, :)) +AP(r > µ(A, :))
=⇒ µ(A, 0) = r. (61)

The last equality follows from the fact that the certainty equivalent U is a 1 − 1

function. We now examine the behaviour of the function µ around zero. Thus,
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we consider two cases, one where α approaches zero from negative values and one

where it approaches zero from positive ones.

• a < 0; from the FOCs for the optimization problem we have

dU

dµ

dµ

dα
=

1

K

{
E
(
X
dU

dW
1X≥(µ−r)/α

)
+AE

(
X
dU

dW
1X<(µ−r)/α

)}
, (62)

where K = P(W ≤ µ) + AP(W > µ) = P(X ≥ µ−r
α ) + AP(X < µ−r

α ).

Therefore,

dU

dµ

dµ

dα
=

1

K

{∫ +∞

(µ−r)/α
X
dU(αX + r)

dW
f(X)dX+A

∫ (µ−r)/α

−∞
X
dU(αX + r)

dW
f(X)dX

}
.

(63)

We have that

dµ(A, 0)

dα
= ξ(A) ≡ ξ (64)

with

lim
α→0

µ(A,α)− µ(A, 0)

α
= ξ ⇔ lim

α→0

µ(A,α)− r
α

= ξ. (65)

We now define

B(A,α) =


µ(A,α)−r

α if α <> 0

ξ if α = 0
(66)

where B is a continuous function. Therefore, Eq. (62) can be rewritten as

dU

dµ

dµ

dα
=

∫ +∞
B(A,α)X

dU(αX+r)
dW f(X)dX +A

∫ B(A,α)
−∞ X dU(αX+r)

dW f(X)dX∫ +∞
B(A,α) f(X)dX +A

∫ B(A,α)
−∞ f(X)dX

,α ≤ 0.

(67)

Subsequently we have,

du(µ(A, 0))

dµ
lim
α→0−

dµ(A,α)

dα
=

∫ +∞
ξ X dU(r)

dW f(X)dX +A
∫ ξ
−∞X

dU(r)
dW f(X)dX∫ +∞

ξ f(X)dX +A
∫ ξ
−∞ f(X)dX

⇔

lim
α→0−

dµ(A,α)

dα
=

E(X1W≥ξ) +AE(X1W<ξ)

P(X ≥ ξ) +AP(X < ξ)
.

(68)

Since ξ(A) ≤ 0 and A ∈ [0, 1] we have that

X1W≥ξ +AX1W<ξ ≥ X ⇒ lim
α→0−

dµ(A,α)

dα
> 0. (69)

Thus, there is ε > 0 such that dµ(A,α)
dα > 0 for every α ∈ (−ε, 0)⇒ µ(A,α), is
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strictly increasing with respect to α in (−ε, 0).

• α > 0; in the case where zero is approached from the right we have

du(µ(A, 0))

dµ
lim
α→0+

dµ(A,α)

dα
=

∫ ξ
−∞X

dU(r)
dW f(X)dX +A

∫ +∞
ξ X dU(r)

dW f(X)dX∫ ξ
−∞ f(X)dX +A

∫ +∞
ξ f(X)dX

⇔

lim
α→0+

dµ(A,α)

dα
=

E(X1W≤ξ) +AE(X1W>ξ)

P(X ≤ ξ) +AP(X > ξ)
,

(70)

which leads to

lim
α→0+

dµ(A,α)

dα
=

E(X1W≤ξ) +A∗E(X1W>ξ)

K
, (71)

since A < A∗ and the expected value of the return premium, X is positive.

Now, given that

A∗ =
E(X1W≤ξ)

E(X1W>ξ)
, (72)

the limα→0+
dµ(A,α)
dα < 0. Thus, there is δ > 0 such that limα→0+

dµ(A,α)]
dα < 0

for every α ∈ (0, δ), µ(A,α) is a strictly decreasing function with a local

maximum at α = 0 where µ(A, 0) = r. Therefore,

µ(A,α) ≤ µ(A, 0), ∀ α ∈ (−ε, δ)⇒

U(µ(A,α)) ≤ U(µ(A, 0)) = U(r)⇒max
α

U(µ(A,α)) = max
α

U(µ(A, 0)) = U(r).

(73)

We should notice that if A < A∗, the weight α is positive. Indeed we obtain

lim
α→0+

dµ(A,α)

dα
>
A∗E(X1W>ξ) +A∗E(X1W≤ξ)

AE(X1W>ξ) +A∗E(X1W≤ξ)
= 0, (74)

which implies that there exists

δ > 0 :
dµ(A,α)

dα
> 0,∀α ∈ (0, δ)⇒ µ(A,α) ↑ (0, δ). (75)

Thus,

µ(A,α) ↑ (−ε, δ)⇒ ∃ ξ0, µ(A,α) ↑ [−ξ, ξ]

max
α

µ(A,α) =µ(A, ξ), ξ > 0⇒ α∗ = ξ.

(76)
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D Bayesian Portfolio Analysis

This appendix includes the proofs to lemmas 1 and 2 regarding the posterior dis-

triburion with i.i.d. and predictable returns respectively.

D.1 Proof of Lemma 1 (i.i.d. returns)

We present the results for the Bayesian portfolio with investment in a risk-free

and a risky asset.17 The investor models her excess returns based on the following

equation

rt = µ+ εt, (77)

where rt is the continuously compounded excess return at time t and εt ∼ N (0, σ2)

are i.i.d. disturbance terms.

In line with most of the relevant literature, to estimate the posterior distribution

p(µ, σ2|Y ), we consider an uninformative prior of the form

p(µ, σ)dµdσ ∝ 1

σ
dµdσ. (78)

The joint posterior of µ and σ is

p(µ, σ|Y ) ∝ p(µ, σ)× L(µ, σ|Y ), (79)

where L(.) is the likelihood function. The joint posterior density for µ and σ follows

a normal distribution and is also equal to

p(µ, σ|Y ) ∝ 1

σ

n∏
i=1

1√
2πσ2

exp

{
−(yi − µ)2

2σ2

}

∝ σ−(n+1)exp

{
− 1

2σ2

n∑
i=1

(yi − µ)2

}

= σ−(n+1)exp

{
− 1

2σ2
n

(
µ2 +

∑
i y

2
i

n
−

2µ
∑

i yi
n

)}
.

(80)

17The derivations for both cases (i.i.d. returns and predictable returns) follow closely the models of
(Zellner, 1996; Tiao and Zellner, 1964) but they are reported in a more analytical way here as especially
in the case of i.i.d. returns a number of steps is omitted in the original papers.
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Completing the square, Eq. (80) can be written as

= σ−(n+1)exp

{
− 1

2σ2
n

(
µ2 −

2µ
∑

i yi
n

+

∑
i y

2
i

n
+

(
2
∑

i yi
2n

)2

−
(

2
∑

i yi
2n

)2)}

= σ−(n+1)exp

{
− 1

2σ2
n

((
µ−

∑
i yi
n

)2

+

∑
i y

2
i

n
− 2

(∑
i yi
n

)2

+

(∑
i yi
n

)2)}

= σ−(n+1)exp

{
− 1

2σ2

(
n

(
µ−

∑
i yi
n

)2

+
∑
i

y2
i − 2

∑
i yi
n

∑
i

yi + n

(∑
i yi
n

)2)}
.

(81)

Performing the substitution µ =
∑
i yi
n , Eq. (81) can be rewritten as

p(µ, σ|Y ) ∝ σ−(n+1)exp

{
− 1

2σ2

(
n(µ− µ)2 +

∑
i

y2
i − 2µ

∑
i

yi + nµ2

)}

= σ−(n+1)exp

{
− 1

2σ2
(n(µ− µ)2 +

∑
i

(yi − µ2))

}
.

(82)

Dividing
∑

i(yi − µ2) by n − 1 in Eq. (82) yields the unbiased variance estimator

s2 which gives the following:

p(µ, σ|Y ) ∝ σ−(n+1)exp

{
− 1

2σ2
(n(µ− µ)2 + (n− 1)s2)

}
, (83)

where (n − 1)s2 =
∑

i(yi − µ)2. From Eq. (83), we see that the conditional mean

and variance for the posterior mean are E(µ|σ, Y ) = µ and var(µ|σ, Y ) = σ2/n,

respectively. To sample from the posterior for the mean, p(µ|Y, σ) conditional on

σ and the sample data Y we use the normal N (µ, σ2 +σ2/n). As this expression is

conditional on σ we calculate the marginal posterior distribution for the standard

deviation and then using this result we draw from the normal for the mean. Follow-

ing Zellner (1996), we marginalize out µ to derive the marginal posterior density

for σ by expressing Eq. (82) as

p(σ|Y ) =

∫ ∞
−∞

p(µ, σ|Y )dµ

=

∫ ∞
−∞

σ−(n+1)exp

{
− 1

2σ2
(n(µ− µ)2 + (n− 1)s2)

}
dµ

= σ−(n+1)exp

{
− 1

2σ2
(n− 1)s2

}∫ ∞
−∞

exp

{
− 1

2σ2
n(µ− µ)2︸ ︷︷ ︸
φ2/2

}
dµ.

(84)
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Setting the absolute value of the exponent inside the integral equal to φ2/2, we

rewrite Eq. (84) as

p(σ|Y ) ∝ σ−(n+1)exp

{
− 1

2σ2
(n− 1)s2

}∫ ∞
−∞

exp

{
−φ

2

2

}
σdφ, (85)

where the integration is now taking place w.r.t. φ as a result of the substitution, we

performed. This follows from setting φ = σ−1√n(µ − µ) which by differentiating

both sides leads to dφ = σ−1√ndµ ∝ σ−1dµ since everything else is constant. Next,

we rewrite Eq. (85) as follows

p(σ|Y ) = σ−(n+1)σexp

{
− 1

2σ2
(n− 1)s2

}∫ ∞
−∞

exp

{
−1

2
φ2

}
dφ

=
√

2πσ−nexp

{
− 1

2σ2
(n− 1)s2

}
∝ σ−nexp

{
− 1

2σ2
(n− 1)s2

}
.

(86)

In the second equality we substitute the integral with its solution as it represents a

Gaussian integral which has a known general solution given by
∫∞
−∞ e

−αx2dx =
√

π
α .

Setting n− 1 = N we have n = N + 1 and Eq. (86) can be written as

p(σ|Y ) ∝ σ−(N+1)exp

{
−Ns

2

2σ2

}
. (87)

As Zellner (1996) observes, the PDF, Eq. (87), is proportional to the form of an in-

verse Gamma distribution with parameters α = N/2 = (n−1)/2 and β = Ns2/2 =

(N/2)(1/N)s2 = 1/2s2 = 1/2
∑n

i=1(yi − µ2). The posterior distribution of the

variance is now given by

σ2|Y ∼ Inv −Gamma
(
N

2
,
1

2

N+1∑
i=1

(yi − µ)2

)
. (88)

Next, given the draw for σ we sample from the posterior of the mean

p(µ|σ, Y ) ∼ N
(
µ, σ2/N

)
. (89)

We observe that Eq. (89) captures the dependence of the posterior mean on the size

of the available dataset. As N becomes larger, the variance of µ becomes lower as

a result of the smaller uncertainty around its true value which in turn stems from

the more available data. To obtain an accurate approximation of the posterior
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distribution, we sample from Eqs. (88) and (89) a few hundred thousand times

generating every time one value for µ and one value for σ. Now, for an investor

who considers parameter uncertainty to sample from the predictive posterior we

create a return value for each pair (µ, σ2) (if we create 1, 000, 000 pairs of µ and σ

from Eqs. (88) and (89), we will generate 1, 000, 000 return values, one for each

pair). These returns (R1, . . . , RN ) are the inputs to the Monte Carlo simulations

we run to obtain the optimal weights.

The difference between an agent who considers parameter uncertainty and one

who ignores it, lies in the way the returns are modelled; the latter creates new

samples by drawing from a distribution with fixed parameter values while the former

uses each time one of the pairs (µ, σ2) generated by the sampling procedure.

D.2 Proof of Lemma 2 (Parameter Uncertainty with
Predictable Returns)

We present the Bayesian framework for the case of returns predictable through the

dividend yield. Under the assumption of normality and working with the compact

form of the VAR as in Eq. (21), the likelihood of B,Σ given X,Z, where Σ is the

residual positive-definite covariance matrix, takes the form of

L(B,Σ|X,Z) =
1√

((2π)k|Σ|)n
exp

{
− 1

2

n∑
i=1

(Xi −B′Zi)′Σ−1(Xi −B′Zi)
}

=
1√

((2π)k|Σ|)n
exp

{
− 1

2
tr(X −BZ)(X −BZ)′Σ−1

}
∝ |Σ|(−n/2)exp

{
− 1

2
tr(X −BZ)(X −BZ)′Σ−1

}
= |Σ|(−n/2)exp

{
− 1

2
tr[S + (B − B̂)′Z ′Z(B − B̂)]Σ−1

}
,

(90)

where tr is the the trace function. The last equality follows from (X − BZ)′(X −

BZ) = (X − B̂Z)′(X − B̂Z) + (B − B̂)′ZZ ′((B − B̂)) = S + (B − B̂)′ZZ ′((B −

B̂)). A suitable uninformative prior given independence between B and Σ is the
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independence – Jeffreys prior given by

p(B,Σ) = p(B)p(Σ)

∝ |Σ|−(m+1)/2,

(91)

with p(B) a constant. Now, combining the prior in Eq. (91) with the likelihood in

Eq. (90) we derive the joint posterior for B and Σ

p(B,Σ|Z,X) ∝ |Σ|−(m+1)/2|Σ|(−n/2)exp

{
− 1

2
tr[S + (B − B̂)′Z ′Z(B − B̂)]Σ−1

}
= |Σ|−(n+m+1)/2exp

{
− 1

2
tr[S + (B − B̂)′Z ′Z(B − B̂)]Σ−1

}
.

(92)

We notice that Eq. (92) can be written in a similar form to the expression for the

i.i.d. case as

p(B,Σ|Z,X) = p(B|Σ, Z,X)× p(Σ|Z,X), (93)

which is equal to

p(B,Σ|Z,X) ∝ |Σ|−(n+m+1)/2exp

{
− 1

2
tr[(B − B̂)′Z ′Z(B − B̂)]Σ−1

}
× exp

{
1

2
tr SΣ−1

}
.

(94)

Chatfied and Collins (2013) show that we can split Eq. (94) as

p(B|Σ, Z,X) ∝ |Σ|−k/2exp
{
− 1

2
[(β − β̂)′Σ−1 ⊗ Z ′Z(β − β̂)]

}
, (95)

where β = (β1, . . . , βm) is the matrix of regression coefficients (β̂ are their esti-

mates), ⊗ is the Kronecker product operator and ν = n− k +m+ 1 and

p(Σ|Z,X) ∝ |Σ|−ν/2exp{tr SΣ−1}, (96)

where S = (X − B̂Z)′(X − B̂Z). It can be proved (Tiao and Zellner, 1964; Zellner,

1996) that the conditional posterior for B is in the form of a multivariate nor-

mal density function with mean β̂ and covariance Σ−1 ⊗ Z ′Z while the posterior

predictive for Σ in Eq. (96) is distributed as

Σ ∼ W−1((X − ZB̂)′((X − ZB̂), T − n− 1). (97)
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In Eq. (97), W−1 represents the inverse Wishart distribution with parameters the

variance-covariance matrix scaled estimator and T − n − 1 degrees of freedom. In

order to facilitate and speed up the sampling procedure we inverse this relationship

to obtain the distribution of the inverse variance covariance matrix. This follows

now the distribution

Σ−1 ∼ W([(X − ZB̂)′((X − ZB̂)]−1, T − n− 1). (98)

with the same degrees of freedom and the sampling parameter equal to the inverse

of the variance covariance matrix estimator.

To sample from the posterior distribution we use a standardized procedure. We

first sample for the variance – covariance matrix from p(Σ−1|X) and then given

this draw we sample for the AR matrix and the constant coefficients from the

p(vec(B)|Σ−1, X) = N (vec(B̂),Σ−1 ⊗ Z ′Z). Given these sets of parameters we

simulate forward the VAR to obtain a large number (≥ 10, 000) of future stock

return paths. This specification captures the uncertainty in stock returns’ forecasts

since the VAR parameters are not taken as the true ones as in the case where

parameter uncertainty is ignored. An investor who uses the latter approach simu-

lates forward the VAR based on fixed parameters obtained by the calibration using

observed data.

In the next step of the sampling procedure we calculate the mean and variance

of the first two moments of the return paths generated in step one. Based on these

statistics we sample for the return values and their variance which are now normally

distributed, with each draw representing a quarterly return and variance. In our

case, given the 40–year horizon, we sample 40 × 4 = 160 points, which are the

inputs to the dynamic programming algorithm to solve the DA portfolio problem.
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Figure 1: Stock market participation/non-participation regions with DA preferences. The
graph shows how the expected level of stock returns (stated annually) affects the critical level
of the DA coefficient (A∗). Two lines are presented: the solid one corresponds to the critical DA
coefficients for the dataset used in our study (1934-2016) and the dashed line plots the critical
DA values for the dataset used in Ang et al. (2005). The grey squares represent the critical
DA level (A∗ which induces non-participation) which correspond to the historical mean of the
equity return for the two data samples.
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Figure 2: Critical DA level (A∗) that induces non–participation in the stock market for a
buy–and–hold investor (left graph) and a dynamic investor (right graph). The dashed line
corresponds to the case of i.i.d. returns (normality and non–predictability) while the solid line
corresponds to the case of predictable returns. Investors would invest in the stock market when
their DA coefficient lies in the area above the lines. To display the graphs more clearly, the one
on the left (buy–and–hold) plots the A∗ for a period up to 10 years as beyond that point A∗

remains constant and very close to zero.
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Figure 3: Optimal portfolio allocation to the risky asset for an investor who follows a buy-
and-hold investment strategy, uses the i.i.d. return generator and either incorporates (solid
line) or ignores (dashed line) uncertainty in model parameters. The investor in the top row
uses a CRRA (i.e. power) utility function with two levels of risk aversion while the other two
cases (middle and bottom row) make use of the DA utility function with two different values
for the DA coefficient. A = 0.44 is equivalent to the value of the Loss Aversion (LA) parameter
calculated in Tversky and Kahneman (1992), i.e., DA = 1/λ = 0.44. We observe that a DA
investor holds a significantly different portfolio to one who uses a power utility function.
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Figure 4: Optimal portfolio allocation to equities for different horizons when the VAR is used to
forecast equity returns. The investor follows a buy–and–hold strategy by choosing the portfolio
allocation to the risky asset in the beginning of the investment period. A = 0.44 is equivalent
to the value of the Loss Aversion (LA) parameter calculated in Tversky and Kahneman (1992),
i.e., DA = 1/λ = 0.44. The graphs on the left column ignore parameter uncertainty while the
ones on the right account for this. Three levels of risk aversion and four levels of disappointment
aversion are represented.
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Figure 5: Evolution of per-period and long-term volatility for the risky asset. The dotted line
corresponds to the case of an investor who models returns as iid while the solid line shows the
volatility for an investor who uses the VAR to forecast equity returns.
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Figure 6: Dynamic portfolio allocation between the risky and the riskless asset for an investor
who uses the i.i.d. return generator for the risky asset. The objective of this exercise is to
show how the portfolio allocation to the risky asset changes for an investor who acknowledges
parameter uncertainty (solid line) compared to one who ignores it (dashed line) and holds the
same portfolio throughout the investment horizon. A = 0.44 is equivalent to the value of the Loss
Aversion (LA) parameter calculated in Tversky and Kahneman (1992), i.e., DA = 1/λ = 0.44.
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Figure 7: Optimal portfolio allocation at different time horizons for an investor who follows
a dynamic reallocation using the VAR to forecast returns. The left columns reports results
when parameter uncertainty is ignored while the one on the right takes parameter uncertainty
into account. Each line corresponds to a different level of the DA coefficient (A) as follows:
solid line, A = 1; dashed line, A = 0.70; dotted line, A = 0.44; solid/dotted line, A = 0.30.
A = 0.44 is equivalent to the value of the Loss Aversion (LA) parameter calculated in Tversky
and Kahneman (1992), i.e., DA = 1/λ = 0.44.
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Table 1
Summary statistics

S&P 500 3-month T-bill Excess Return

Annualized
mean 0.1045 0.0344 0.0695
stdev 0.1625 0.0088 0.1644

Quarterly
mean 0.0251 0.0085 0.0166
stdev 0.0817 0.0044 0.0822

S&P 500 and T-bill summary statistics annualized. Excess return is calculated by subtracting
the 3-month T-bill rate from the value of the S &P 500 for the same period.
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Table 2
Parameter estimates for the Data Generating Process (VAR)

Parameter With predictability Without predictability

c1 0.1222 0.0128
(0.0173) (0.0178)

c2 -0.0004 -0.0317
(0.0119) (0.0150)

b11 0.0259 0.0
0.1176 –

b12 0.0220 0.0
(0.1354) –

b21 -0.7068 0.0
(0.0807) –

b22 0.9978 0.9932
(0.0929) (0.0912)

σ11 0.0850 0.0856
(0.0037) (0.0042)

σ22 0.0408 0.0752
(0.0017) (0.0029)

ρ -0.5216 -0.2980
(0.0021) (0.0028)

VAR estimation and corresponding standard errors of the parameters for the two systems
(predictability/no-predictability). The model in Eq. (20) is estimated with the method of
Maximum likelihood (MLE). In the case of the non-predictability system the autoregressive
coefficient matrix is set to zero, while when we account for predictability in returns, all four
coefficients are free to vary without restrictions. Parentheses include the standard errors of the
estimated coefficients. For the S&P500 index and the dividend yield quarterly data from the
period January 1934 to September 2016 are used in our calculations.
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