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Abstract 
 

We investigate which factors matter to explain the returns of smart beta and conventional ETFs 
using a Bayesian approach. We find that smart beta ETFs are well explained by the market, 
size and the betting-against-beta factor, whereas conventional ETFs are explained by the 
market, the quality-minus-junk factor, and a value factor. Smart beta ETFs benefit from their 
exposure to the betting-against-beta factor, but still underperform on a risk-adjusted basis, 
while the factor exposure of conventional ETFs is purely detrimental. Our results suggest 
investors should be skeptical about the ability of smart beta ETFs to capture factor premiums. 
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The popularity of factor investing among institutional investors has spawned a range of 

financial products, most notably Exchange Traded Funds (ETFs), that aim to provide factor 

exposure in a cheap and transparent way.1 “Smart” or “strategic” beta ETFs, which explicitly 

target one or more factors or employ alternative weighting schemes using fundamental 

variables (i.e. fundamental indexation), have become a significant portion in the ETF market. 

A recent study published by MorningStar (Johnson, 2017) shows that, as of June 2017, there 

were 1,320 “strategic beta” exchange traded products, with global assets under management of 

over $700 billion worldwide, the majority of which comprises U.S. equity ETFs. 

The factor exposure of smart beta ETFs is an important issue for investors, but is not 

straightforward for various reasons, such as differences in the ways these products attempt to 

capture factor returns, potential time variation in factor loadings (Ang et al., 2017), differences 

with respect to factor definitions in the asset pricing literature, and the inherent uncertainty 

regarding which factors are priced or robust sources of return (Baker et al., 2017; Beck et al., 

2016). For example, even fundamental indexation strategies could create unanticipated 

(typically value) factor tilts (Asness, 2006; Blitz and Swinkels, 2008). Additionally, smart beta 

ETFs implement long-only strategies, hindering their ability to capture full factor premiums, 

as suggested by Blitz (2016). Therefore, it is important not only to understand the factor 

exposures of these products to intentional factor bets, but also to detect exposures to other 

factors not directly targeted by them.2  

In this study, we apply a Bayesian factor selection method to investigate which factors 

matter to explain the returns of smart beta as well as conventional ETFs. The returns of all 

ETFs in each category are analyzed using an extensive set of candidate factors, and the 

posterior probabilities of the best factor models are calculated for the two ETF groups. We then 

                                                        
1 A recent survey on factor investing among investment professionals (Amen et al., 2017) report that 73% make use of a multi-factor 
framework, with another 18% planning to implement one. See Ang (2014) for a review of the factor investing approach. See also Angelidis 
and Tessaroma (2017) for an application of factor investing in a global equity country allocation context.  
2 See, for example, Amenc et al. (2018) and Shirbini (2018). 



 

 

investigate the differences in factor exposure between smart beta and conventional ETFs by 

comparing the contribution of these factors to the two ETF groups. 

We explore all U.S. equity ETFs which are active as of December 2017 and have return 

data over the period from January 2013 to December 2017, comprising 200 smart beta ETFs 

and 168 conventional ETFs, totalling over $1.5 trillion in assets under management. We create 

automatic rules to classify ETFs as smart beta or conventional based on keyword searches in 

the ETFs names and descriptions obtained from Thomson Reuters DataStream, and then 

manually check the resulting classification to ensure that it conforms to our definition of smart 

beta ETFs. 

Due to the uncertainties regarding the (intended or unintended) factor exposures of 

smart beta ETFs, we consider a comprehensive set of candidate factors. This set includes the 

factors popular in asset pricing such as those proposed by Fama and French (2015), Chen and 

Zhang (2010), and Hou et al. (2015), which comprise the market factor and factors related to 

the size, value, investment and profitability effects. Additionally, we consider factors related 

to momentum (Jegadeesh and Titman, 1993), volatility (Ang et al., 2006), betting-against-beta 

(Frazzini and Pedersen, 2014), quality (Asness et al., 2017), illiquidity (Amihud, 2002), and 

the alternative value factor of Asness and Frazzini (2013).  

We compare the performance of the best models selected using our methodology with 

that of a benchmark model that includes the largest number of factors that do not cause severe 

multicollinearity. 3  The benchmark model includes eight factors. The first four factors 

comprise the market excess return, value (HML), profitability (RMW), and investment (CMA) 

factors from the Fama and French (2015) model. The other factors are the momentum (MOM), 

                                                        
3Some of these factors are highly correlated. For example, the correlation of the profitability factors based on ROE (return on equity) (Hou et 
al., 2015) and ROA (return on assets) (Chen and Zhang, 2010) is close to 0.95, and the correlation between the Fama and French (2015) size 
factor and the Amihud (2002) illiquidity factor is 0.92. Other related factors such as the Fama and French (2015) HML (High Minus Low) 
value factor and the Asness and Frazzini (2013) HMLd (High Minus Low “Devil”) factor have correlations close to 0.80. 
 



 

 

quality-minus-junk (QMJ), and illiquidity (ILL) factors, and the Chen and Zhang (2010) 

investment factor (INV).4 We note that multicollinearity is not an issue in our framework, as 

the variable selection methodology will focus on the most parsimonious sets of factors, and 

thus models which include highly correlated or redundant factors will naturally have low 

posterior probability. 

Our main results from applying the Bayesian factor selection procedure to smart beta 

and conventional ETFs show that (i) parsimonious models with up to three factors are selected 

with high posterior probability for both groups of ETFs; (ii) the selected factors for smart beta 

ETFs are different from those for conventional ETFs; (iii) the performance of the highest 

posterior probability models to explain the two groups of ETFs is similar to the performance 

of the benchmark model with eight factors.  

For smart beta ETFs, a two-factor model with the market and the size (small-minus-

big, SMB) factors is selected with high posterior probability (0.67). The second best model 

includes the Frazzini and Pedersen (2014) betting-against-beta (BAB) factor, with a posterior 

probability of 0.29. The average 𝑅"  of this three-factor model (the excess market return, 

SMB, and BAB) identified by our procedure is 0.84, compared to 0.89 using the benchmark 

model and 0.74 for the single-factor market model. The average absolute alpha across all smart 

beta ETFs from this three-factor model is 0.16% per month, whereas it is 0.14% for the 

benchmark model and 0.24% for the market model. Therefore, adding the two factors (SMB 

and BAB) to the market factor produces a parsimonious model that explains almost as much 

variability and average returns as the full benchmark model for smart beta ETFs. This result 

raises an important question about the ability of smart beta ETFs to capture premiums related 

to other factors such as value, momentum, profitability, and investment, especially as the BAB 

factor is not significantly correlated to these factors. 

                                                        
4 The Chen and Zhang (2010) investment factor (INV) is based on a different definition of investment from the one proposed by Fama and 
French (2015) and has a low correlation with that factor. 



 

 

For conventional ETFs, the model with the highest posterior probability (with a 

posterior probability of 0.70) includes the market factor, the Asness and Frazzini (2013) HMLd 

factor, and the Quality-Minus-Junk (QMJ) factor of Asness et al. (2017). The average 𝑅" of 

this three factor model is 0.66, compared to 0.72 for the benchmark model, and 0.56 for the 

market model. These results reveal that conventional ETFs have significant factor exposures, 

but to different factors compared with smart beta ETFs. 

We find that, although smart beta ETFs, on average, benefit from their exposure to the 

BAB factor, they still underperform the market on a risk-adjusted basis, as evidenced by their 

negative alphas. The factor exposures of conventional ETFs to non-market factors such as 

QMJ, CMA and HMLd, on the other hand, are purely detrimental, reducing the average ETF 

return by -0.14% per month. These results suggest that investors should be skeptical about the 

possibility of obtaining factor exposure through smart beta ETFs, and should also be mindful 

of potentially undesired factor exposure in conventional ETFs. 

 

Methodology 

 

We start by considering a linear factor model with 𝑁 assets and 𝐾 predictor variables 

(factors) over 𝑇 periods: 

 𝐫' = 𝐗𝜷' + 𝐞',								𝑖 = 1,… ,𝑁, (1) 

where, for each asset 𝑖 (in this study, an ETF), 𝐫' is the 𝑇 × 1 vector of excess returns, 𝐗 

is the 𝑇 × 𝐾  matrix of factors, 𝜷' = (𝛽',5, … , 𝛽',6)′ is the vector of unknown regression 

coefficients (factor sensitivities), and 𝐞'  is the 𝑇 × 1  vector of disturbances or specific 

returns. The system can be stacked in a single equation 𝐫9 = 𝐗:𝜷: + 𝐞9  in the following way:5  

                                                        
5 If the error terms are contemporaneously cross-correlated, the system of regressions is a special case of the Seemingly Unrelated Regressions 
(SUR) model, where the predictor variables are the same for all equations. The SUR model, introduced by Zellner (1962), consists of	𝑁 
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This formulation assumes that we know, in advance, the 𝐾  factors that shoud be 

included in the model, which in practice is not the case. In order to carry out factor selection in 

model (2), we introduce a vector 𝜸 = (𝛾5,… , 𝛾6)′ of dummy variables, where 𝛾I = 1 if the 

𝑗 − 𝑡ℎ factor is included in the model, and zero otherwise. Given a set of 𝐾 candidate factors, 

each value of 𝜸 represents a distinct factor model.  

We focus on the identification of the binary vector 𝜸 in this study, which determines 

the combination of factors (or the linear factor model) that matters for the explanation of ETFs. 

Comparison of all possible models becomes computationally infeasible as the number of 

candidate factors (𝐾) grows, since the number of possible models increases at the rate of 26. 

In this study, we apply the Bayesian variable selection method introduced by Hwang and 

Rubesam (2018), which provides consistent estimates of model probabilities with large panels 

of data using Markov Chain Monte Carlo (MCMC) methods. The posterior distribution of the 

binary vector 𝜸 indicates which models are supported by the data, i.e. have high posterior 

probability to explain the returns on the 𝑁 assets.  

Let 𝐗O represent the matrix 𝐗 where each column is multiplied by the corresponding 

element of 𝜸. Then we can write the model with variable selection as 𝐫' = 𝐗O𝜷' + 𝐞', 𝑖 =

1,… , 𝑁, or stacking the 𝑁 equations as before: 

 𝐫9 = 𝐗:O𝜷: + 𝐞9  (3) 

where 𝐗:O is defined analogously. For the estimation of model (3), we need to specify the prior 

distributions of 𝜷:, 𝚺 and	𝜸, which reflect our prior beliefs about the distributions of factor 

                                                        
regression equations, each with 𝑇 observations, which are linked solely through the covariance structure of error terms at each observation, 
i.e. errors are contemporaneously correlated but not autocorrelated. Bayesian inference in the SUR model can be carried out in a relatively 
straightforward manner, see for example Giles (2003). 



 

 

sensitivities, the cross-correlation of specific returns, and the probability that each candidate 

factor should be included in the model, respectively. Under standard prior distributions for 𝜷:, 

𝚺 and	𝜸, we can iteratively generate values from the conditional posterior distributions of each 

parameter.6 The simulated values of 𝜸 can then be tabulated to make inference on posterior 

distribution of individual models and factors.  

 

Prior Distributions 

We assume Gaussian priors for 𝜷:, which leads to Gaussian conditional posterior distributions. 

Two alternative priors have been considered in this study. The first option is to use an empirical 

Bayes prior, by centering the prior distribution of the factor sensitivities of each ETF around 

their Ordinary Least Squares (OLS) estimates: 𝜷'~𝑁 S𝜷T', 𝑐𝑉𝑎𝑟Y𝜷T'Z[. The second option is to 

use a prior centered on a vector of zeros: 𝜷:~𝑁(𝟎, 𝑐𝐈). This choice reflects a complete lack of 

knowledge about the factors, both in terms of which predictors should enter the model as well 

as regarding the dependence structure of the regression coefficients. The parameter 𝑐 in both 

cases controls how informative the prior is: the prior becomes less informative as c increases. 

Note that the first component of each 𝜷'  is the intercept (alpha) of each regression. The 

intercept is included as a factor because there is no guarantee that the factors we test in this 

study can fully explain individual ETF returns. 

 

Data 

ETFs 

 We obtain all U.S. equity ETFs that are active as of the end of 2017 from Thomson 

                                                        
6 We apply the methodology for variable selection in the SUR model introduced by Hwang and Rubesam (2018). The method uses standard 
prior distributions for the parameters of the model, and assumes independence between the factor sensitivities and the dummy variables. The 
prior distributions for 𝜷:, 𝚺 and	𝜸 are Gaussian, inverse-Whishart, and binomial, respectively. A summary of the model estimation procedure 
is provided in the Appendix, and we refer the readers to the original paper for a detailed derivation of the conditional posterior distributions. 



 

 

Reuters. These 799 ETFs have approximately $1.6 trillion of assets under management (AUM). 

Since we are interested in equity factor exposure, we remove leveraged and inverse ETFs, as 

well as ETFs which make use of derivatives. We further require 60 months of available returns, 

which leads to a sample of 368 ETFs, with aggregate AUM of $1.54 trillion.7 

 

Classification of ETFs 

There is no universally accepted definition of smart beta ETFs. In this study, we employ 

an automatic procedure to identify smart beta ETFs from each ETF’s name and description 

using certain keywords. We then manually review the list and the descriptions of smart beta 

and conventional ETFs to ensure the classification is consistent, consulting the fact sheet or 

other ETF documentation in case of doubt. 8  The ETFs that do not have any of the 

characteristics of smart beta ETFs are classified as “conventional ETFs”. This includes all 

passive ETFs which track common indices, as well as sector-specific ETFs. 

Smart beta ETFs in this study are those that have at least one of the following 

characteristics:  

• Attempt to increase returns relative to a market capitalization-weighted index by providing 

exposure to one or more factors thought to be sources of return (e.g. ETFs focused on value, 

size, quality, or momentum factors); 

• Attempt to reduce risk or increase diversification (e.g. low volatility and minimum variance 

ETFs);  

• Alternative weighting schemes (e.g. ETFs weighted by fundamentals; equally-weighted 

ETFs); 

• Deviation from market capitalization-weighted schemes in a systematic, rules-based way 

                                                        
7 Most ETFs excluded from our sample are due to their shorter history. If we were to require a longer history, the number of smart beta ETFs 
would decrease significantly. 
8 The details from this procedure are available upon request. 



 

 

(e.g. ETFs based on dividend or shareholder yield screens). 

Using the procedure outlined above, we classify 200 ETFs in the smart beta category, 

and 168 ETFs in the conventional category. Smart beta ETFs as a group manage $515 billion 

in assets, while the combined AUM of conventional ETFs is over $1 trillion. 

 

Factors 

We use a total of 14 factors in this study. We start with the five Fama and French (2015) 

factors, as well as the momentum (MOM) factor, from Professor Kenneth French’s data 

library.9 The five Fama and French (2015) factors are the market (MKT), size or Small-Minus-

Big (SMB), value or High-Minus-Low (HML), profitability or Robust-Minus-Weak (RMW), 

and Investment or Conservative-Minus-Aggressive (CMA). We also include the Quality-

Minus-Junk (QMJ) factor of Asness et al. (2017), the Betting-Against-Beta (BAB) factor of 

Frazzini and Pedersen (2014), and the alternative value factor HML “devil” (HMLd) of Asness 

and Frazzini (2013), which we download from the AQR data library10. Finally, we add five 

factors related to illiquidity (ILL, Amihud, 2002), volatility (VOL, Ang et al., 2006), and 

investment (INV) and profitability based on return on assets (ROA, Chen and Zhang, 2010) 

and return on equity (ROE, Hou et al., 2015).11 

Table 1 reports descriptive statistics on the 14 factors for the period from January 2013 

to December 2017. The average returns on most factors (Panel A) are relatively small during 

this period, with the exception of QMJ (0.95% per month) and BAB (1.25% per month). In 

                                                        
9  http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
10 https://www.aqr.com/Insights/Datasets  
11 These factors are value-weighted hedge portfolio returns based on double sorts on all available U.S. common stocks from the CRSP and 
Compustat databases, excluding micro-cap stocks, defined as those with market capitalization lower than the 20th percentile of all NYSE 
stocks. The illiquidity factor is based on a two-by-three sort on volatility and illiquidity as in Amihud et al. (2015) because of the high 
correlation between illiquidity and volatility. For each month, we calculate the median return volatility using the NYSE breakpoint, and use it 
to assign all stocks into low or high volatility groups. We then calculate the Amihud (2002) illiquidity measure for all stocks, and use the 
NYSE low 30%, middle 40% and high 30% breakpoints to assign stocks into three illiquidity groups. The illiquidity factor is calculated as the 
difference between the average return on the two high illiquidity portfolios and the average return on the two low illiquidity portfolios. The 
volatility, investment, and profitability factors based on ROE and ROA are constructed using two-by-three sorts on size (using the median 
NYSE market capitalization) and the variables in question. The volatility factor is the difference between the average return on the two low 
and high volatility portfolios. The investment factor is constructed following Chen and Zhang (2010), i.e. the difference between the average 
return on the two low and high investment portfolios. Finally, the ROA (ROE) profitability factors are the differences between the average 
return on the two high and low ROA (ROE) portfolios. 



 

 

fact, the returns on the Fama and French (2015) size (SMB), value (HML), and investment 

(CMA) factors are all negative. Interestingly, the average return on the Chen and Zhang (2010) 

investment factor is positive at 0.30% per month, which could reflect differences in the 

definition of investment, and highlights the importance of considering alternative factors when 

studying the factor exposure of products which may differ significantly in terms of 

implementation.12 The only factors with t-statistics above 2 during the sample period are MKT 

(t-stat of 3.44), BAB (t-stat of 4.94) and INV (t-stat of 2.03). 

Many of these factors are highly correlated. Panel B reports the ten largest correlations 

(in absolute value). The most extreme correlations are between ROE and ROA (0.95), SMB 

and ILL (0.92), VOL and ROA (0.86), QMJ and ROA (0.84), and VOL and ROE (0.82). As 

mentioned, this is not an issue for our variable selection methodology, but multicollinearity 

may be problematic in the conventional regression if all these factors were included as 

explanatory variables. Therefore, we build a benchmark model by including the largest number 

of factors that do not cause severe multicollinearity. Using variance inflation factors (VIFs), 

we remove the factors with the highest VIFs one at a time, and recalculate the VIFs each time. 

This procedure eliminates ROA, SMB, HMLd, VOL, BAB, and ROE. We consider all 14 

factors when applying the Bayesian variable selection methodology. The eight-factor 

benchmark model is used for comparison purposes.13 

 

[Table 1 about here.] 

 

 

                                                        
12 Fama and French (2015) define investment as “the change in total assets from the fiscal year ending in year t-2 to the fiscal year ending in 
t-1, divided by t-2 total assets”, while Chen and Zhang (2010) definition is “annual change in gross property, plant, and equipment plus annual 
change in inventories divided by lagged book assets ”. 
13 The resulting benchmark model has eight factors, the highest VIF (corresponding to CMA) is 2.78, and the highest correlation is 0.64, 
between CMA and HML.We also considered models with more than eight factors. In this case, individual factors had VIFs as high as 7. In 
any case, the results were not qualitatively different and do not change our conclusions.  



 

 

Empirical Results 

Exploratory Analysis of ETF Factor Exposure 

We start by conducting an exploratory analysis of ETFs using OLS regressions for 

individual ETFs. Panel A of Table 2 reports OLS estimates of factor sensitivities for three 

groups of ETFs: all ETFs (Panel A.1), smart beta ETFs (Panel A.2) and conventional ETFs 

(Panel A.3). We report the average aggregate sensitivity to each factor, the corresponding t-

statistic, the 5th and 95th percentiles of factor sensitivities, and the percentage of ETFs for which 

the factor is significant, either with a positive or negative sign at the 95% confidence level.  

Panel A.1 shows that the aggregate factor sensitivities across all ETFs is significant for 

the excess market return, CMA, QMJ, and ILL factors, as evidenced by their t-statistics. 

Aggregate sensitivities are close to zero and not statistically significant for the other factors 

(HML, RMW, MOM, and INV). However, all factors are significant for many individual ETFs. 

For example, the HML factor is significantly positive (negative) for 18% (23%) of the ETFs. 

It is also evident that factor exposure is skewed; the 5th and 95th percentiles do not appear 

equidistant from their means, although the aggregate exposure to most factors is not different 

from zero.14  

Panels A.2 and A.3 of Table 2 reveal similarities as well as differences between the 

factor sensitivities of smart beta and conventional ETFs. Both groups of ETFs have, on average, 

a positive sensitivity to CMA (tilt towards “conservative” firms in terms of investment), and a 

negative sensitivity to QMJ (tilt towards “junk” or unprofitable companies), although the latter 

is more pronounced for conventional ETFs. Smart beta ETFs also have, on average, positive 

and significant sensitivities to the momentum and illiquidity factors, revealing a tilt towards 

                                                        
14 We confirm the significant differences in factor sensitivities between conventional and smart beta ETFs by estimating the distribution of 
factor sensitivities with a nonparametric method (not reported). In general, despite the fact that both groups of ETFs have similar mean factor 
sensitivities for many factors, conventional ETFs have a much wider range of factor sensitivities compared to smart beta ETFs, i.e. the 
estimated densities for conventional ETFs have much longer tails. This may reflect other characteristics such as sector returns, which we have 
not considered in this study.  



 

 

past winners and less liquid (typically smaller) stocks. In contrast, conventional ETFs are, in 

aggregate, tilted towards growth stocks, as evidenced by the negative and significant sensitivity 

to HML, while smart beta ETFs have zero sensitivity to that factor on average. We also note 

that smart beta ETFs have, on average, a slightly lower market beta than conventional ETFs, 

which is not surprising considering that there are many low volatility ETFs in the smart beta 

category. 

Panel B of Table 2 reports, for each group of ETFs, the average return and its 

decomposition in terms of the return due to market exposure, the return due to exposure to 

other factors, and the intercept. Smart Beta ETFs in our sample appear to perform slightly better 

than conventional ETFs by 0.05% per month, although neither group performs particularly well 

and both underperform the market portfolio. Based on the benchmark model, smart beta ETFs 

do not appear to benefit from their non-market factor exposures, which contribute -0.05% per 

month. They also show a negative (although insignificant) alpha of -0.01% per month. The 

factor exposure of conventional ETFs appears even more detrimental, reducing the average 

conventional ETF return by -0.21% per month.  

Panel B also reports the average 𝑅" when only the market factor is considered and 

with the benchmark model, the number of ETFs, total AUM, and the average (AUM-weighted) 

expense ratio for each group of ETFs.15 Across all ETFs, the average 𝑅" of the benchmark 

model is 0.79, compared to 0.64 of the market model. Interestingly, a higher proportion of the 

variance of the returns of smart beta ETFs is explained by the market factor: i.e. 0.74 compared 

to 0.56 of conventional ETFs. Also, the increase in 𝑅"  from adding the additional seven 

factors is more pronounced for conventional ETFs (from 0.56 to 0.72, increase of 27%) 

compared to smart beta ETFs (0.74 to 0.89, increase of 20%). We also note that the annual 

expense ratio of smart beta ETFs is slightly higher than that of conventional ETFs (0.21% 

                                                        
15 All 𝑅2 values used in this study are adjusted 𝑅2.  



 

 

compared with 0.17%).  

Summarizing, smart beta and conventional ETFs have significant sensitivities to 

different factors. In aggregate, smart beta ETFs have slightly lower market betas compared to 

conventional ETFs, and are tilted towards less liquid stocks and stocks with strong recent 

performance, while conventional ETFs are more tilted towards growth stocks. Therefore, the 

trading strategies of smart beta ETFs may satisfy investors who pursue the overall market 

performance but, at the same time, seek for higher returns or lower risk by attempting to exploit 

various trading strategies, in particular, the size, low volatility and momentum effects. 

However, smart beta ETFs do not seem to reap any benefits from their factor exposure.  

 

[Table 2 about here.] 

 

Bayesian Factor Selection 

The main results of applying our Bayesian factor selection method to the groups of 

conventional and smart beta ETFs are obtained using an empirical Bayes prior for the factor 

sensitivities that are centered around their OLS estimate. All factors are assumed to have the 

same prior probability of being selected, and thus the prior probability for the inclusion of each 

factor is set equal to 0.5. We then estimate the model using 50,000 iterations of the MCMC 

algorithm.16  

We focus on the posterior distribution of 𝜸, which reveals which factors best explain 

each group of ETFs. Panels A and B of Table 3 report models with the largest posterior 

probabilities for smart beta and conventional ETFs, respectively. With 14 factors plus the 

intercept, there are 25` = 32,768 possible models. Nevertheless, the results reveal that only 

a handful of models have meaningful posterior probabilities. The highest posterior probability 

                                                        
16 Later we investigate the robustness of our results with respect to the form of the prior and its variance scaling parameter, 𝑐. 



 

 

model for the group of smart beta ETFs includes the market (MKT) and size (SMB) factors 

(posterior probability = 0.67). The second best model (posterior probability = 0.29) also adds 

the betting-against-beta (BAB) factor. Other models have negligible posterior probabilities. 

For conventional ETFs, different factors appear to be significant. The best model (posterior 

probability = 0.70) includes the market factor (MKT), the quality-minus-junk (QMJ) and the 

alternative value factor HMLd. The second best model (posterior probability = 0.30) also adds 

the Fama and French (2015) investment factor (CMA). Interestingly, the set of factors selected 

for the group of conventional ETFs includes many factors typically targeted by smart beta 

ETFs. We note that, in all cases, the intercept is not selected, which means that the selected 

factors are enough to explain the returns of ETFs. 

 

[Table 3 about here.] 

  

The results obtained with smart beta ETFs are somewhat surprising, considering that 

many of these products explicitly attempt to capture premiums related to other factors such as 

value, momentum and volatility. In order to better understand these results and assess to what 

degree smart beta ETFs capture any factor premiums, we estimate (using OLS) the three-factor 

model suggested by our Bayesian procedure, which includes the MKT, SMB and BAB factors. 

The results are reported on Panel A of Table 4. 

As expected, we find that the SMB and BAB factors are significant for many smart beta 

ETFs, as evidenced by the large t-statistics and the percentage of significant factor sensitivities. 

Although smart beta ETFs seem to benefit from their positive exposure to the BAB factor, 

which generates a monthly premium of 1.25% during our sample period, they underperform 

on a risk-adjusted basis, with an alpha of -0.08% per month. Moreover, their positive average 

exposure to SMB produces a small negative return of -0.04% per month (not reported). Panel 



 

 

B of Table 4 shows that the average excess return of smart beta ETFs is 1.20% per month, of 

which 1.21% per month on average is due to their market exposure, and 0.08% is due to their 

exposure to the SMB and BAB factors.  

In order to gauge how the three-factor model for smart beta ETFs obtained using the 

Bayesian approach performs relative to the eight-factor benchmark model, we compare the 

average absolute alpha and 𝑅" across all smart beta ETFs using the three factors (MKT, SMB 

and BAB factors).17 The results are reported in Panel B of Table 4. The average absolute alpha 

from the three-factor model for the group of smart beta ETFs is 0.16% per month, and the 

average 𝑅" is 0.84. For the eight-factor benchmark model, the numbers are 0.14% and 0.90, 

respectively. The difference between the average absolute alphas using the two models, 0.02% 

per month, is economically insignificant, and thus it is unlikely that these smart beta ETFs 

exploit profit opportunities related to the other factors. This result raises serious questions about 

the ability of smart beta ETFs to capture factor premiums, which may be related to their long-

only restriction, or to other differences related to how factors are constructed in the asset pricing 

literature. 

We repeat this exercise for conventional ETFs, estimating a four-factor model with the 

MKT, CMA, QMJ, and HMLd factors identified by our Bayesian procedure. The results are 

shown in Panel A.2 of Table 4. We find that, on average, the only factor other than the market 

return which has a significant sensitivity is the QMJ factor, although CMA and HMLd 

sensitivities are significant for many ETFs. Contrary to the results of smart beta ETFs, the non-

market factor exposure of conventional ETFs during this sample period is purely detrimental 

because it reduces the average ETF return by -0.14% per month (Panel B). These ETFs show, 

on average, positive exposures to CMA and HMLd whose returns are negative, and a negative 

exposure to QMJ, which shows a high positive return of 0.95%. 

                                                        
17 The average absolute alpha should be close to zero if the model explains the returns on the ETFs well. 



 

 

The average absolute alpha and average 𝑅" for the model identified with the Bayesian 

method for conventional ETFs are 0.31% and 0.66, respectively, while for the benchmark 

model the numbers are 0.29% and 0.72, respectively. Again, we find that the Bayesian method 

finds a parsimonious model which performs quite well compared to the benchmark model. 

  

[Table 4 about here.] 

Robustness Analysis 

Our main results were obtained using an empirical Bayes prior, centering each 𝜷' 

around their OLS estimate by setting 𝜷'~𝑁 S𝜷T', 𝑐𝑉𝑎𝑟Y𝜷T'Z[, with 𝑐 = 1. In this subsection 

we analyze the robustness of our results relative to this choice, by varying both the type of prior 

and the value of 𝑐. For a different type of prior, we try 𝜷:~𝑁(𝟎, 𝑐𝐈), which does not make use 

of the data and reflects a complete lack of knowledge about the predictors. We also vary the 

value of 𝑐 and obtain results using 𝑐 = 1, 2, 5. A larger 𝑐 represents a less informative prior 

regarding the range of possible values for the regression coefficients (i.e. factor sensitivities). 

The results using the empirical Bayes prior with 𝑐 = 2 are reported in Panel A of 

Table 5, and are essentially similar to our main results with 𝑐 = 1. The best models remain the 

same for both smart beta ETFs (Panel A.1) and conventional ETFs (Panel A.2). This is also the 

case with 𝑐 = 5, and we omit the results. 

Panel B of Table 5 reports results using the prior centered on a vector of zeros with 

𝑐 = 1. The only difference compared to our previous results is that the QMJ factor is not 

selected in the best model for conventional ETFs, although both the QMJ and CMA factors are 

present in the second and third best models, as before. The results with 𝑐 = 2 do not differ 

significantly and are omitted. The results with 𝑐 = 5 (also omitted) show that the best model 

for both smart beta ETFs (posterior probability=0.90) and conventional ETFs (posterior 

probability = 0.80) is the model with only the MKT factor. Thus, for an investor with an 



 

 

uninformed view about the factor sensitivities of both groups of ETFs, i.e. when coefficient 

priors are centered on zero and the prior variance is large, the model selection procedure can 

only find posterior evidence for the market beta for either group of ETFs. In this case, the 

selected models suggest that smart beta ETFs are not different from ETFs that just follow the 

market. This did not occur when the empirical prior was used, as the point of departure is in 

the neighborhood where factor sensitivities are more likely to be different from zero.  

Overall, we interpret that our results are robust to the prior specification for the 

regression coefficients, except in cases when the prior variance is too large and the prior is 

centered on zeros. 

 

[Table 5 about here.] 

 

Conclusion 

Smart beta ETFs have grown enormously in popularity and assets over the last years. 

These products are intended to increase returns or lower risk relative to market capitalization-

weighted indices by attempting to capture premiums on well-known factors such as size, value, 

quality, momentum and volatility. 

In this paper, we employ a Bayesian variable selection methodology to investigate the 

factor exposure of smart beta and conventional ETFs. Our results reveal that the market and 

the Fama and French (2015) size (SMB) factors are relevant to explain the returns of smart beta 

ETFs, with weaker evidence for the inclusion of the Frazzini and Pedersen (2014) betting-

against-beta (BAB) factor. For conventional ETFs, the best model includes the quality-minus-

junk (QMJ) factor of Asness et al. (2017) and the alternative value factor (HML “devil”) of 

Asness and Frazzini (2013), with weaker evidence for the inclusion of the Fama and French 

(2015) investment (CMA) factor. 



 

 

Although, on average, smart beta ETFs benefit from their exposure to the BAB factor, 

they still underperform the market on a risk-adjusted basis, as suggested by their negative 

alphas. The factor exposures of conventional ETFs to non-market factors such as QMJ, CMA 

and HMLd, on the other hand, are purely detrimental, reducing the average ETF return by -

0.14% per month. 

The best models selected by the Bayesian method perform very similarly to a 

benchmark eight-factor model in terms of their ability to explain the average returns and the 

return variation on each set of ETFs, as measured by the average absolute alpha and the average 

𝑅". Therefore, it is unlikely that smart beta ETFs are exploiting other factors. Overall, our 

results suggest investors should be skeptical about the ability of smart beta ETFs to capture 

factor premiums. This may be related to their long-only restriction, as mentioned by Blitz 

(2016), or to differences in how ETFs implement factor exposure compared to asset pricing 

studies. 

 



 

 

References   

 

Amen, Noël, Goltz, Felix, and Le Sourd, Véronique. 2017. EDHEC Survey on Equity Factor 

Investing.  Tech. rept. EDHEC-Risk Institute. 

Amenc, Noël, Goltz, Felix, and Lodh, Ashish. 2018. Mind the Gap: On the Importance of 

Understanding and Controlling Market Risk in Smart Beta Strategies. The Journal of 

Portfolio Management, 44(03), 60–70. 

Amihud, Yakov. 2002. Illiquidity and stock returns: cross-section and time-series effects.   

Journal of financial markets, 5(1), 31–56. 

Amihud, Yakov, Hameed, Allaudeen, Kang, Wenjin, and Zhang, Huiping. 2015. The illiquidity 

premium: International evidence. Journal of Financial Economics, 117(2), 350–368. 

Ando, Tomohiro. 2011. Bayesian Variable Selection for the Seemingly Unrelated Regression 

Model with a Large Number of Predictors. J. Japan Statist. Soc., 41(2), 187–203. 

Ang, A., Hodrick, R. J., Xing, Y., and Zhang, X. 2006. The cross-section of volatility and 

expected returns. Journal of Finance, 61, 259–299. 

Ang, Andrew. 2014. Asset management: A systematic approach to factor investing.  Oxford 

University Press. 

Ang, Andrew, Madhavan, Ananth, and Sobczyk, Aleksander. 2017. Estimating Time-Varying 

Factor Exposures. Financial Analysts Journal,  73(4). 

Angelidis, Timotheos, and Nikolaos Tessaromatis. 2017. Global Equity Country Allocation: 

An Application of Factor Investing. Financial Analysts Journal, 73 (4). 

Asness, Clifford. 2006. The value of Fundamental Indexing. Institutional Investor, 40, 94–99. 

Asness, Clifford, and Frazzini, Andrea. 2013.  The devil in HML’s details. The Journal of 

Portfolio Management,  39(4), 49–68. 

Asness, Clifford S, Frazzini, Andrea, and Pedersen, Lasse Heje. 2017. Quality minus junk. 



 

 

Baker, M., Taliaferro, R. and Burnham, T., 2017. Optimal Tilts: Combining Persistent 

Characteristic Portfolios. Financial Analysts Journal, 73(4).75-89. 

Beck, Noah, Hsu, Jason, Kalesnik, Vitali, and Kostka, Helge. 2016. Will Your Factor Deliver? 

An Examination of Factor Robustness and Implementation Costs. Financial Analysts 

Journal,  72(5), 58–82. 

Blitz, David. 2016. Factor Investing with Smart Beta Indices. 

Blitz, David, and Swinkels, Laurens. 2008. Fundamental Indexation: An Active Value Strategy 

in Disguise. Journal of Asset Management, 9, 264–269. 

Brown, P J, Vannucci, M, and Fearn, T. 1998. Multivariate Bayesian variable selection and 

prediction. J. R. Statist. Soc. B,  60(3), 627–641. 

Chen, Long, and Zhang, Lu. 2010. A better three-factor model that explains more anomalies.   

Journal of Finance, 65(2), 563–595. 

Fama, Eugene F, and French, Kenneth R. 2015. A Five-Factor Asset Pricing Model. Journal 

of Financial Economics, 116, 1–22. 

Frazzini, Andrea, and Pedersen, Lasse Heje. 2014. Betting against beta. Journal of Financial 

Economics, 111(1), 1–25. 

George, E I, and McCulloch, Robert E. 1993. Variable Selection Via Gibbs Sampling. Journal 

of the American Statistical Association, 88(423), 881–889. 

George, E I, and McCulloch, Robert E. 1997. Approaches for Bayesian Variable Selection.   

Statistica Sinica, 7, 339–373. 

Giles, David E A. 2003. Computer-Aided Econometrics. New York, N.Y.: Marcel Dekker, Inc. 

Hall, Anthony, Hwang, Soosung, and Satchell, Stephen E. 2002. Using Bayesian variable 

selection methods to choose style factors in global stock return models. Journal of 

Banking and Finance, 26(12), 2301–2325. 

Hou, Kewei, Xue, Chen, and Zhang, Lu. 2015. Digesting Anomalies: An Investment Approach.   



 

 

The Review of Financial Studies, 28(3), 650–705. 

Hwang, Soosung, and Rubesam, Alexandre. 2018. Searching the Factor Zoo. Working Paper 

Series 2018-ACF-03. IÉSEG School of Management. 

Jegadeesh, Narasimhan, and Titman, Sheridan. 1993. Returns to buying winners and selling 

losers: Implications for stock market efficiency. The Journal of finance, 48(1), 65–91. 

Johnson, Ben. 2017. A Global Guide to Strategic-Beta Exchange-Traded Products. Tech. rept. 

Morning Star. 

Kuo, Lynn, and Mallick, Bani. 1998. Variable selection for regression models. Sankhya, 60(1). 

O’Hara, R B, and Sillanpää, M J. 2009 A Review of Bayesian Variable Selection Methods: 

What, How and Which. Bayesian Analysis, 4(1), 85-118. 

Puelz, David, Hahn, P Richard, Carvalho, Carlos M, 2017. Variable selection in seemingly 

unrelated regressions with random predictors. Bayesian Analysis. 

Shirbini, Eric. 2018. Misconceptions and Mis-selling in Smart Beta: Improving the Risk 

Conversation in the Smart Beta Space. Tech. rept. ERI Scientific Beta. 

Smith, Michael, and Kohn, Robert. 2000. Nonparametric seemingly unrelated regression.   

Journal of Econometrics, 98(2), 257–281. 

Wang, Hao. 2010. Sparse seemingly unrelated regression modelling: Applications in finance 

and econometrics.  Computational Statistics and Data Analysis, 2866–2877. 

Zellner, A. 1962. An efficient method of estimating seemingly unrelated regressions and tests 

of aggregation bias. Journal of American Statistical Association, 500–509. 

  

  



 

 

Appendix  

  

Bayesian Variable Selection in the SUR Model 

We briefly review the estimation of the model using the Gibbs sampler and refer the 

reader to Rubesam and Hwang (2018) for the details. The main advantage of the method is that 

it can be used with large panels of returns (large 𝑁) and with a large number of candidate 

factors (large 𝐾). Since in model (2) specific returns are potentially cross-correlated at each 

point in time, if we let 𝐞d = (𝑒d,5, … , 𝑒d,=)′ represent the specific returns of all assets at time 

𝑡 , we have Cov(𝐞d) = 𝚺 . Thus the main assumption of the model can be written as 

𝐞9~𝑁(𝟎, 𝚺 ⊗ 𝐈𝐓). Let 𝜷:k' denote the full vector 𝜷: omitting 𝜷' and assume the following 

prior distributions for 𝜷', 𝚺 and 𝜸:  

 𝜷'|𝜷:k'~𝑁(𝐛n,' , 𝐁n,'),				𝑖 = 1,… , 𝑁 

 𝚺~𝐼𝑊(𝜈n,𝚽n)  

 𝛾I~𝐵(1, 𝜋I),				𝑗 = 1,… , 𝐾 

where 𝐼𝑊(𝜈n,𝚽n) denotes the inverted-Wishart distribution (a generalization of the inverse 

gamma distribution often used to model covariance matrices in the Bayesian framework) with 

𝜈n  degrees of freedom and parameter matrix 𝚽n , and 𝐵(1, 𝜋I)  denotes the Bernoulli 

distribution with probability of success 𝜋I. The standard choice for the prior of 𝚺 is to set 

𝜈n = 𝑁 and 𝚽n = 𝐈. In the above, each 𝛾I is independent of the remaining ones, therefore 

the prior for 𝜸 is given by 𝑓(𝜸) = ∏6
Ix5 𝜋I

Oy(1 − 𝜋I)5kOy. 

With the priors above and given initial values for the variables, the estimation procedure 

using the Gibbs sampler is as follows:   

1. Generate 𝜷'|𝜷:k', 𝜸, 𝚺, 𝐫9~𝑁(𝐛5,' , 𝐁5,'), where  

 𝐛5,' = (𝐁n,'k5 + 𝜎''𝐗O′𝐗O)k5(𝐁n,'𝐛n,' + 𝜎''𝐗O′𝐫'∗) 



 

 

 𝐁5,' = (𝐁n,'k5 + 𝜎''𝐗O′𝐗O)k5, 

 𝐫'∗ = 𝐫' − (𝜎'')k5𝐀k'(𝐫9k' − 𝑿:~,k'𝜷:k'), 

where 𝜎'' is the (𝑖, 𝑖) element of 𝚺k5 and 𝐀k' is a 𝑇 × (𝑁 − 1)𝑇 partition of 

𝛀k5 

with the terms corresponding to the 𝑖 − 𝑡ℎ equation removed. 

2. Generate 𝚺|𝜷:, 𝐫~𝐼𝑊(𝜈5,𝚽5), with 𝜈5 = 𝜈n + 𝑇 and 𝚽5 = 𝚽n + 𝐒, where 𝐒 is the 

matrix of cross-products of the residuals, that is, if 𝐄 = [𝐞5 …𝐞=], then 𝐒 = 𝐄′𝐄. 

3. Generate (in random order) 𝛾I  conditional on the remaining 𝛾�, 𝑘 ≠ 𝑗 , from the 

following conditional distribution:  

 𝑃(𝛾I = 1|𝜸kI, 𝜷:, 𝚺, 𝐫9) = �1 + 5k�y
�y

exp(−0.5𝑇𝑟(𝚺k5(𝐒O5 − 𝐒On))�
k5
, (4) 

where 𝐒O5 and 𝐒On represent the matrices of residuals when 𝛾I = 1 and 𝛾I = 0, 

respectively. 

The estimation process iterates these steps in sequence a large number of times. The posterior 

distribution of 𝜸 can then be inferred from the values generated using equation (4).  

 

 
 
 
  



 

 

Table 1. Descriptive statistics of factors, Jan/2013-Dec/2017 
Panel A: Statistics of individual factor returns   Panel B: 10 largest absolute correlations  

  
Average 

monthly return 
Standard 

error t-statistic  Factor pair Correlation 
MKT 1.27% 0.37% 3.44**  ROE, ROA 0.95 
SMB -0.04% 0.31% -0.12  SMB, ILL 0.92 
HML -0.04% 0.30% -0.13  VOL, ROA 0.86 
RMW 0.11% 0.20% 0.56  QMJ ,ROA 0.84 
CMA -0.18% 0.18% -1.00  VOL ,ROE 0.82 
MOM 0.23% 0.39% 0.59  QMJ ,VOL 0.81 
QMJ 0.95% 0.58% 1.63  HML, HMLd 0.77 
BAB 1.25% 0.25% 4.94**  MOM, HMLd -0.77 
HMLd -0.23% 0.35% -0.68  QMJ, ROE 0.77 
ILL 0.04% 0.34% 0.11  RMW, ROA 0.70 
VOL 0.18% 0.41% 0.43    
INV 0.30% 0.15% 2.03*    
ROE 0.23% 0.23% 1.00    
ROA 0.20% 0.27% 0.76      
* Significant at the 5% level.  
**Significant at the 1% level. 

   

   
 

  



 

 

Table 2: Ordinary Least Square Analysis of ETFs, Jan/2013-Dec/2017 
Panel A.1 - Statistics of factor sensitivities for all ETFs  

  
Average 

sensitivity t-stat 
5th 

percentile  
95th 

percentile 
% significantly 

positive 
% significantly 

negative 
Intercept 0.01% 0.17 -0.44% 0.56% 2% 2% 
MKT 1.03 51.51** 0.73 1.43 99% 0% 
HML -0.04 -1.41 -0.71 0.80 18% 23% 
RMW 0.05 1.07 -0.73 0.68 18% 4% 
CMA 0.16 2.88** -1.14 1.71 24% 17% 
MOM 0.00 0.11 -0.48 0.41 24% 15% 
QMJ -0.10 -6.71** -0.60 0.16 13% 33% 
ILL 0.11 4.72** -0.30 0.75 30% 14% 
INV -0.07 -1.20 -1.97 1.02 20% 16% 

       
Panel A.2 - Statistics of factor sensitivities for smart beta ETFs  

  
Average 

sensitivity t-stat 
5th 

percentile  
95th 

percentile 
% significantly 

positive 
% significantly 

negative 
Intercept -0.01% -0.17 -0.31% 0.39% 3% 1% 
MKT 1.00 48.26** 0.86 1.14 100% 0% 
HML 0.00 0.07 -0.38 0.45 20% 25% 
RMW 0.10 1.93 -0.25 0.45 26% 2% 
CMA 0.17 2.92** -0.44 1.12 32% 14% 
MOM 0.06 2.71** -0.19 0.33 33% 11% 
QMJ -0.06 -3.79** -0.26 0.13 14% 39% 
ILL 0.22 9.52** -0.17 0.84 43% 14% 
INV 0.01 0.08 -0.73 0.66 20% 16% 

       
 
Panel A.3 - Statistics of factor sensitivities for conventional ETFs  

  
Average 

sensitivity t-stat 
5th 

percentile  
95th 

percentile 
% significantly 

positive 
% significantly 

negative 
Intercept 0.03% 0.40 -0.52% 0.64% 2% 1% 
MKT 1.05 45.55** 0.68 2.04 98% 0% 
HML -0.08 -2.28* -0.85 0.99 17% 21% 
RMW 0.01 0.25 -0.90 0.92 12% 2% 
CMA 0.15 2.39* -1.29 1.94 17% 12% 
MOM -0.04 -1.86 -0.62 0.48 17% 9% 
QMJ -0.14 -7.81** -0.69 0.21 12% 33% 
ILL 0.01 0.35 -0.43 0.54 19% 12% 
INV -0.14 -1.97 -2.18 1.17 20% 14% 
*Significant at the 5% level.  
**Significant at the 1% level. 

 

 

  



 

 

Panel B - Summary by type of ETF 

  All ETFs 
Smart beta 

ETFs 
Conventional 

ETFs 
Average return 1.17% 1.20% 1.15% 
Average return due to market factor 1.30% 1.26% 1.33% 
Average return due to other factors -0.14% -0.05% -0.21% 
Average non-factor return (intercept) 0.01% -0.01% 0.03% 
Average R2 (market model) 0.64 0.74 0.56 
Average R2 (benchmark model) 0.79 0.89 0.72 
# ETFs 368 168 200 
AUM ($ Billions) 1542 515 1027 
Average (AUM-weighted) expense ratio 0.18% 0.21% 0.17% 
Note: This panel presents a decomposition of the average returns of each category of ETFs based on an eight-factor. The return components 
due to the market factor, due to other factors, and the non-factor return sum up to the average return of the ETFs in each category.  

 

 

  



 

 

Table 3: Posterior model probabilities, Jan/2013-Dec/2017 
Panel A: Smart Beta ETFs 
Model Number of Factors Probability 
MKT, SMB 2 0.67 
MKT, SMB, BAB 3 0.29 
MKT, SMB, HML 3 0.03 
MKT, SMB, BAB, HMLd 4 0.01 
   
Panel B: Conventional ETFs   
Model Number of Factors Probability 
MKT, QMJ, HMLd 3 0.70 
MKT, CMA, QMJ, HMLd 4 0.30 
Note: The table shows the posterior probabilities of models using all smart beta ETFs (Panel A) and all 
conventional ETFs (Panel B). An empirical Bayes prior is used for the factor sensitivities.    

   



 

 

Table 4: Ordinary Least Square Analysis of High Posterior Probability Models 
Panel A.1 - Statistics of factor sensitivities for smart beta ETFs  

  
Average 

sensitivity t-stat 
5th 

percentile  
95th 

percentile 
% significantly 

positive 
% significantly 

negative 
Intercept -0.08% -1.48 -0.43% 0.21% 0% 4% 
MKT 0.95 42.28** 0.44 1.33 98% 0% 
SMB 0.29 14.33** -0.28 1.08 53% 20% 
BAB 0.07 2.11* -0.40 0.76 30% 9% 

       
Panel A.2 - Statistics of factor sensitivities for conventional ETFs  

  
Average 

sensitivity t-stat 
5th 

percentile  
95th 

percentile 
% significantly 

positive 
% significantly 

negative 
Intercept -0.03% -0.39 -0.77% 0.73% 2% 3% 
MKT 1.04 47.41** 0.46 2.06 96% 0% 
CMA 0.02 0.42 -0.99 0.74 11% 9% 
QMJ -0.13 -8.55** -0.58 0.22 16% 36% 
HMLd 0.04 1.41 -0.70 1.47 19% 23% 
*Significant at the 5% level.  
**Significant at the 1% level. 

 

Panel B - Summary by type of ETF 

  Smart beta ETFs Conventional ETFs 
Average excess return 1.20% 1.15% 
Average return due to market factor 1.21% 1.32% 
Average return not due to market factor 0.08% -0.14% 
Average non-factor return (intercept) -0.08% -0.03% 
Average absolute alpha (Bayesian model) 0.16% 0.31% 
Average absolute alpha (Benchmark model) 0.14% 0.29% 
Average R2 (Bayesian model) 0.84 0.66 
Average R2 (Benchmark model) 0.89 0.72 

 

  



 

 

Table 5: Posterior factor and model probabilities under 
alternative priors for the factor coefficients 

   
Panel A: Empirical Bayes prior, c=2 

Panel A.1: Smart Beta ETFs 
Model #Factors Probability 
MKT, SMB 2 0.90 
MKT, SMB, BAB 3 0.09 
MKT, SMB, BAB, HMLd 4 0.01 

   
Panel A.2: Conventional ETFs 
Model #Factors Probability 
MKT, QMJ, HMLd 3 0.98 
MKT, CMA, QMJ, HMLd 4 0.02 

   
Panel B: Uninformative prior, c=1 

Panel B.1: Smart Beta ETFs 
Model #Factors Probability 
MKT, SMB 2 0.90 
MKT, SMB, BAB 3 0.08 
MKT, SMB, HML, BAB, HMLd 5 0.02 

   
Panel B.2: Conventional ETFs 
Model #Factors Probability 
MKT, HMLd 2 0.80 
MKT, QMJ, HMLd 3 0.19 
MKT, CMA, QMJ, HMLd 4 0.01 
   
Note: The table shows the posterior probabilities of models using all smart beta ETFs under 
different specifications for the prior distributions of factor sensitivities. Panel A reports 
results using an empirical Bayes prior with a less informative parameter (𝑐 = 2), and Panel 
B reports results using a prior centered on zeros with 𝑐 = 1.  

 


